Practical PHP 7,
MySQL 8, and MariaDB
Website Databases

A Simplified Approach to Developing
Database-Driven Websites

Second Edition

Adrian W. West
Steve Prettyman

Apress’

Practical PHP 7,
MySQL 8, and MariaDB
Website Databases

Adrian W. West
Steve Prettyman

Apress’

Practical PHP 7, MySQL 8, and MariaDB Website Databases: A Simplified Approach to Developing
Database-Driven Websites

Adrian W. West Steve Prettyman
Colyton, Devon, United Kingdom Key West, Florida, USA
ISBN-13 (pbk): 978-1-4842-3842-4 ISBN-13 (electronic): 978-1-4842-3843-1

https://doi.org/10.1007/978-1-4842-3843-1
Library of Congress Control Number: 2018957652
Copyright © 2018 by Adrian W. West and Steve Prettyman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www. freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress. com; for reprint, paperback, or audio
rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484238424. For more
detailed information, please visit waw.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3843-1
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:editorial@apress.com
mailto:bookpermissions@springernature.com
www.apress.com/bulk-sales
www.apress.com/9781484238424
www.apress.com/source-code

Contents

About the AUtNOIS.....cccuiiisssmmmmsssssssnmsssssssnmsssssssnmsssssnsnnsssssnnnsssssnnnnsssssnnnnsssssnnnnnsssnnns Xiii
Acknowledgments.......ccuseesmmssssnnsmsssssnnsssssssnnsssssssnnsssssssnnnssssssnsnsssssnnnnsssssnnnnsssssnnnnss XV
L0 LT T | Xvii
Chapter 1: Create and Test a Database and Tableccccccurrnssnnnnmnssssnsnsnsssssssenns 1
Defining Developer, Administrator, and USErc.ccocvvrercrcncssescescss s 2
Defining INteractive WEDSITES ..o 2
SUMMEAIY ...t e s s e e e s Re e s a e e e Re e e e eae e s aenen e nnennnnas 31
Chapter 2: Create Web Pages That Interact with Users.........cccccvnnssssmennnnnnnnssssnns 33
Creating the Folder for Holding the Database Pagescccocervrrrerrerrensessessensessensenens 34
Creating the Temporary Template.........cccccuceeriiernicresne e 34
Introducing the PHP include() FUNCHIONc.coueomeeeceeceecee e 36
The Included HEAdEr File ..ottt e 37

The INCIUded MENU Filvoeieeeeieere e e st e e nn s 39

The Included Information COIUMN...........coeiiier e e 40

The INCluded FOOTEE Fleccoeieieireirerecr et s e p e e e 4

The Interactive Version of the Templateccevevvevirieernree e 42
Connecting 10 the Databasec.ccovvereeeriernnserrcre e sne e 44
The RegiStration PAQeccecrerienicriescse e n e e st s n e nn s 47

The PHP KEYWOId ECHOcocvcerirircrir et sn e snssn e e sn e s nnnnns 58
The “Thank YOU” PAQe.......ccccvceeiirierirce s s s sss s e s s s sne s s sne s s sne s s sne s 58
Displaying Error Messages That Are Collected in an Array..........coccoeerenereresesessesesessnnes 60

iii

iv

CONTENTS

Hashing the PaSSWOI...........cccceeieerenmienniresesse e ses s sss s snsssnssns 61
Viewing Members’ RECOIAS........cccuverererererrsersessessessesassssssessssssssssssssssssssssasssssssssssssanss 61
The VIeW USEIS PAQE........ccccvcererierieresessissesses s ses e e sss s e s s snssnssnssnssnssnssnsssssssnsnnnnns 61
The Change PassWord PAgE..........ccccevereneierensmsesnssesssssssessssessssssssssssssssssssssssssssssssnssnes 65
Confirming a Successful Password Change..........ccoovvvrererrerreesessessssssssssssssessssssssesssssens 72
Testing the TULOMAI'S PAGEScceievrrereerereererererereseres e sss e saesessesessesassessssessesessessssesessesassesassessensssenssaes 72
MOIE ADOUL AITAYSeeeeeresessessesse s e s e s s e s e s e s e e ss s sr e sn e e s snen s nnsnnsnnssnennennennnnnnnnas 73
1111 1P SRS 74
Chapter 3: Create Login/Logout Functionality for Members and
an Administrator ... —————————————————————— 75
Creating the logindb Database and users Table.........ccocvvvrrvrrrern s 76
Removing or Replacing Redundant Menu Buttons in the Headers..........ccccccvvrvienierinnnne 77
Adding a Login Button to the Home Page Header ... 78
Removing Redundant Buttons from the Registration and New Password Headerscccccceuruneee. 79
The Revised Registration Page..........ccccviciiriinnicnne e sns s senes 79
The New Header for the New Password Page...........ccoureerereneneneneniseesessseesess s 80
A New Header Menu for the MEMDErS PAGEc.ccecrerrireieririreee e 82
Amend the Header for the “Thank YOU” Page........ccccevierrrrinnnnncnsessesss s e s sss e e senas 82
The Registration Page and Undesirable Characters...........ccccvevververversersessensensessensensenns 84
Registering SOME MEMDELScccouiieerireereriree e ne s s 87
Differentiating Between Two Types of Membershipcccvvvvrvensrsnsensessessessessessenens 88
Creating User Levels to Limit Access to Private Pagescccoceeereresenssssesseesensennnns 88
0 X | L)
The Header for the LOGIn PAGEc.cceeeeereeereririre s se s ssnsans 91
THE LOGIN PAGE ...t s st b s e s e e nnns 92
SBSSIONSvuerererreueeressesesesesss e e e ss e e e esse e e e s s ese e e s e ae e e R e Re e e A e R e e R AR e AR R R e R e Re e e R e Re e e A e Re e e e nRenn s 99
A Members-0nly PAge........ccvererrerererersessessessassanses 101
Planning the Administrator’s ROIE...........ccccverercercr s 104
A New Header for the Administration Pagecccccceerrerniennsennsne s sss s sesnes 105

CONTENTS

Testing the Login/Logout FUNCHIONccoceieciccnesirerncre s 109

Amending and Deleting Individual RECOIUScueoeeererreiereririnesererse e sesens 109
RS0 2 110
Chapter 4: Create an Administration Interface.........cccccussemmmnssssnnnmnssssnnnnnssssnnns 111
The Administration Databasec.cccorrrerrnncsrnsc s 111

LT ILE =T E T Lo 113
Revising the View Users Page to Include Editing and Deletingccoccvvrvrcrcercennnne 115
Displaying Pages of Records (Pagination)...........cccuceveernerenmnennsesessssesessesesessesssennes 121
Planning the Search Criteriaccovvrversrsnsenserses s se s e se s sassesnns 128
A Temporary Search Page for Displaying Specified Membersccccoeveerercercnncnnne. 128
THE SEArCH FOIM ..ot nr s 132
The Final Form Handler for Receiving Search Form Inputccocvvvvrvrvrcensensensennn, 135
Editing RECOIUSccecerereriririr sttt sn s nnnn 139

Deleting RECOIMScceeueereieerircre et e b e e e e e p e 145
SUMMEAIY ...ttt e s e ae e s s r e e s e a e e ne e s nnnnnnnnas 150
Chapter 5: Expand and Enrich Your Websiteccccunnnmmmmmmmmnnmnssssssssssnnssnnsnnes 151
Creating a New Database, a Table with 15 Columns, and a Price Table............cc.c...... 151

Creating the File for Connecting to the Database...........ccvvierrrererrnsrs s 152

Creating the TADIES ... 153

USING ENUIM ...ttt s e b s se b b s se e e s se e e e nsennnneas 154
The Importance of Documentation.........cccccvveririercnre e 154
Extending the Registration Form and Adding a Pull-Down Menu...........cccocveveerienanns 156

Always Announce Prices and Fee Payments Up-Front..........cccccovnnninncnnncnsscss s sessesennas 157
Adding PayPal Debit/Credit Card IMagesccccerrerermrernserenrsseseesesesessessesessesessesnes 168
Including PayPal on the “Thank YOU” PAgeccceverererreresresssssesssssessesssssessssssssenenns 168
Registering SOmMe MEMDEIS.........ccocvcrirrrsrserser s s sn s snesnennenns 173

A Small Amendment to the LOgin Pageccovcrirenncnsern s ss e 175
Amending the Administrator’s HEaderccoeerierenmrenssenesssess e 175
Adding Class and Paid to the admin_view_users Table..........ccccocervrrrrrrrrsnsessensennn 177

CONTENTS

Searching and Editing RECOIUScocevriernierenrnsere e sesnens 181
Modifying the Form for Editing RECOIMSccccourueeeeririeccrerer e 184
E3 1111 1P 7 190
Chapter 6: Add the Finishing Touches: Security and Validation............ccceeei0nes 191
Creating the Database...........cccererrereerereresesee e see e sa e sae e sassaesassassassaennns 191
Creating the File for Connecting 10 the Database...........ccccvrierrrrererererereresseres e sessesessessssenes 192
Creating the users Table by Importing @ SQL DUmp Filecceoeeeeeeecececeeceeceecee s 193
Registering Some Members Manually............cccoirninnneere e 195
Adding a Title Column to the USers TADIEc.ccerverereriernserense e 197
Creating the Prices Table by Importing @ SQL DUMP Filecovoueereeireeeerreeerer e 199
Tidying Up the Folders and Filing System........ccccvvrvrvrvrvrrnsr e 200
Degrees Of SECUNTY.......ccucvcrierirsr s e sn s snenrenn 200
Adding a Layer 0f SECUNLY........ccoceerereererireeeri s 200
An Increased Layer of ProteClion..........ccciccccnc e 202
Validation and Sanitization..........c.ccccuceeeeienninense e 202
The filter_var() FUNCHIONccoeiceececretr ettt a e e sa s e s p e 202
L1 110 0] T 202
RS2 011 L0 204
Validating Telephone NUMDEIS ... e 205
A Safer Registration Pageccccevererereneessrer s ses s sas s ssssessssssssssssssassasssssassasses 205
Searching for a Title, an Address, or a Telephone NUmbercccocervrrcniernenieninnne 221
Viewing the Retrieved Title, Address, and Phone NUMDETccccverevnicnncss e 225
Editing the Title, Addresses, and Telephone NUMDEIScccorrernerniennse e 228
SUMMEAIY ...t a s s ae e s e re e s e a e e ne e s nnnnnnnnns 236
Chapter 7: Migrate to a Host and Back Up Your Website Database..........ccuuuune. 237
Making Last-Minute Changesc.ccvceerverennnensnmsesssse s sessesssesnes 237
Creating @ NeW Databaseccccerrreerrineescrrie e e 238
Allowing Members to Update Their OWN RECOIASccceeverrrerererineicririse e sesesens 240
A Secure FEedDACK FOMM ... 254

vi

CONTENTS

The FEEADACK FOIM ... 255
The “Thank You” Page and the Error MESSAQgESccuvrrrrerrerssrsensessssssssesssssesssssssssssesssssssssssessssssnsens 266
FAN 0] 01 T0] 8 (T T T P 269
Logging EXCeptions and EITOrcccccevererereenssessessse e sssssssaessssssssssssssssasssssassssssssnns 272
Migrating the Database and Tables to @ Remote Hostcccceeeerercescescesceeseecennns 274
A PUZZIING EFrOr MESSAQEecvereereerirrirsiessssesssssassessssssssassssssssassssssssssssssassasssssssssssssssssssssssssssssssssssssnens 275
Creating and EXporting the SQL File........vccverrerererererereresessssessssessesessessssessssessesesssssssssassessssesssnenes 275
Using the GUIS 0n @ RemMOtE HOSE'S SBIVENccceveerererererere s eree e sessesessesasessesessesessesessessssesssnenes 281
Connecting to the Database on the Remote HOSt.........cccccevrievrrercrererere e sa e 282
Securely Uploading the mysqli_connection.pip File...........ccceveierriereveresesesesesessessesessssesssssssesassens 283
Uploading the Interactive Pages t0 the HOSt.........ccooevivevennsc s 285
Backing Up Your Databasec.ccccvvrreriersessensensessss s s s ses s sessessnssessnssnssnssnssnssssnnnns 286
RS0 2 286
Chapter 8: Create a Product Catalogcccusceemmnssssmmnsnssssnnnmmsssssnnsssssssnnssssssnnnns 287
Preparing the Database and Administration Plan...........c.ccccvvrvrvrvnvnsnses s 287
Creating @ New Database............ccoeerierrirccnccsecncrr e s 288
Creating the File for Connecting to the Database...........ccccceverererrcesesessses s 289
LT oL 1]) SR 290
Creating a Home Page with Search Capability..........ccccccoverrirnsriennssesrseee e 292
The Header for the Majority 0f the Pages........ccuvvrrrrrrnninsnrr s seseas 293
The HOME PAQE COUEcceverereerererrerertesesesassesaeessesessesessesassessssesssssssssassessssesassesssssssesssssssssessensssensnnes 294
Displaying the Catalog..........ccccverrrreririeniersisser s sn e snenns 296
The Header for the Page of Search RESUILSccccovrverrrververcin s 303
Creating the House Details Page..........cccocveercereninenncsssss s 304
Creating the Admin/Adding @ House Page.........cceoeerrereeresenesre s see e e e e snnnns 309
The Header for the Administrator’s Pageccccvvrververvnvensenses s sss e e 318
Administrator’s View of the Entire Stock of Houses for Sale............cccovvvenerricnernnieens 320

vii

CONTENTS

The Administrator’s SEarch PAgeccccuvveerierenmienne s ses e 325
The ReSUIL OF @ SEAICH ..o 327
The Contact US PAQeccccvververrerreriersissersesses st sesses e ses s s e s e s s s s s s snssssssssassnsnes 328
BT 111 112 SRS 334
Chapter 9: Join Multiple Tables and Other Enhancements.........cusssssssnnnnsnsnnes 335
Introduction to Multiple TADIESccoeeeeeeececec e e 335
NOMALIZALION ...ttt e s esn e e e ne e n e 336
Creating the Database and TADIESccorueeeeerirerencrerieecre e 337
Viewing the CoNNECLION Filecccceiiieririerrer e r e 338
Preparing the Tables for JOINING ..o 339
Populating the TWO TaADIESc.eceeieeeeeereeree e 340
Joining Data from the TWO TabIEScccecrerrienerirernere e 342
Creating the THird TADIE ... 345
Creating Pages to Display the Data from Your Joined Tablesccocevrievrierrcnrsnccre e 347
THE HOME PAJE ...t e p e e s e np s 347
The Main Menu for the PAges.........coveerrieenerreesesse e 349
The Header for All the PAGEScovureererrreererereesesesse e sssssssssssnsns 350
The Page for Viewing the Birds...........ccccoereerrnsesrree s sessns 351
The Page for Viewing the Locations and Habitats of the ReServesccoevrecenrncccscnensccscsennnns 355
Payments DY CRECKcocvverieriererer et se e sn e sn s sn s sn e sn e 366
A Choice of Payment MELNOMccccvereriereriereerere e resereseressessesessesessesassesassessssessesassesassesassessenssnes 367
Printing Onling FOrMS........cocvicercecerr st sn s nn 375
SUMMEAY ...ttt ae s a s s ae e s r e e s e a e e ne e s nnnnnnnns 376
Chapter 10: Create a Message Boardccusemmmmssssnnnmmssssnnnmsssssssnssssssssnssssssnnnss 377
LI LL=JE 24 - 377
Creating the Database..........ccccererrererereresr e sae e se e e sae e sassassassassaesaenns 378
Creating the TADIES........cccoeeeeerecere e e e sr e s sr e sresr s sn e nesn s snesnennennans 378
Creating the Second TabIe...........ccoeeiiernieiennere e 379

viii

CONTENTS

Creating the Registration FOrMccovoieeiinnnncsre e 385
THE “TRANK YOU” PAGEcueeeeereeeeeiririecsesis e sss s s s s ssssssssssssnns 393
Populating the Members TabIe.........c.ccocvvervrinrnrersr e 394
The LOGIN PAQE.......ccocvererirserserses s sn s sn s sn s snssnssn s snsnnssnssnssnn s 395
0T o 11T 10 SRS 400
Creating a Gateway to a Choice 0f QUOLEScccecerererrererrrerr e 400
The Form for Posting QUOtations........c..ccccveereriersensisses s 402
Posting Some QUOLALIONSc.ccovverrenriesrreresr e 408
The Comical QUOTES PAQE........cccurerirnerirnirirn st sas e 409
The WiSe QUOTES PAQGEccuevereerererrerereeserereresassessesessesessessssesssessesessssassessssessssesssssssessssessssessenssssssses 413
Adding Search FaCIlIities........ccorererererererresre e e sse e ssessesse e snessesnssnssnesrssnssnesnssnnnns 417
The Header for VIieWPOSTS.PRPcoceeceriirercircer st 420
Searching for Specific Words or PRrases.........ccccvvrrerrerrersessensessessessesssssssssssessessssssnsens 421
The FUll TEXt SEArCH FOIMccoeeeeerescseseseres e neenes 422
Displaying the Search ReSUILS..........c.ccooreerirrersinsisses s snesnenns 424
The Header for the quotes_found Page..........coccviricnccncnncrn e 427
Enhancing the Message Board..............ccoveereniennninennnsessssse s snsesnes 428
Converting the Message Board t0 @ FOTUMouocecenrcicsinreeseresie e 428
31111 P2 7 429
Chapter 11: E-commerce: A Brief Introductioncccccemmmmmnnnnnssssssssssnnnnnnssnnes 431
SECUNLY WAMING ... coceecererrirerrer s ses s e e s sa s sa s e sassn s sn e s sn s e s saesnesaesnesansnes 433
T - R 433
Creating the PayPal Cart Sitecccevrienniesesnese e 434
Creating the PayPal Cart Database and TabIEsS..........ccccevierrierrrerenere s 434
Viewing the CONNECHION FIleccourueieirirceirreeses e 435
Populating the PayPal Cart TADIESccccvurrererererreenereresseesesesesesesessssssesessssssesesssssssssssssssssssssssssssens 435
The PayPal Cart HOME PAQEcccoueereercrirerir et se e sas e s sas e st st sae e 438
Using the PayPal Cart Home Page to Search for Paintings...........cocoreenerrnenesnnesesesesese s 441
Integrating with the PayPal Shopping Cart BUHTONS...........cccovreienrneeserr e 444

ix

CONTENTS

Creating @ CUSTOM Cart ..o s 450
The Custom Cart HOME PAGE..........corueererrreciririeeseses e se s sesns 452
Create the Custom Cart Database and TabIES ..o 452
Retrieving @ FOrgotten PaSSWOIccccourueienererreenesisiseeseses e sesessssssens 460
The Custom Cart SEArCh PAGE...........ccceeririeeririreesesir et 464
Adding Paintings to a Table for a Custom Shopping Cartcceveerrrenesrneneserese s 465
THE CHECKOUL PAQE.....cccoveeeeerireecriririe s s s np s 477
The Additional AdmINISTrative TASKScccveeceerereienerireesesesse e sessns 477

RS0 2 478

Chapter 12: Take a Brief Look at Oracle MySQL 8ccccrrnsssnmmnmnssssnnnsssssnnnns 479

Advantages of UPgradingcccceeverererereesensssssssssssssessssssssssssssssssssssssssssassssssssassanses 479

Installing MySQL 8 CommuUNIty SErVEr........ccceceeeierere e see e sessnesnesnssns s sssnnnns 481

Exploring the Features of MySQL Workbenchcccvvveviennicnesssenssesesesesesenas 488

Connecting PHP 7 to the MySQL 8 Community Server..........ccoeevieenreresensesssessesenenns 495

Migrating to MySQL 8 ComMUNItY SEIVETcvereeriercerserserses s ses e sns s snennns 498

Using Our PHP Files with MySQL 8 Community SErver..........ccoovvernseresrssesssessesensenns 502

E3 1111 1P 7 505

Appendix A: TroubleShooting........ccuuseemmmsssssnnmmssssssnnmssssssnnessssssnsessssssnsessssnnnsesss 507

BrOWSEE QUITKS....viveeseeseseeeseseresssssssssssssesesessssssssssssnssssssssssssssssssssssssssssassssassssssssnens 508

Tables NOt DiSPIaYiNg.......ccccucrrerrerrrsirsirses s e sr s sn s sn s sn s sn s sn s sr e snesnennn s 508

A Style Change Has NO EffeCtccoceeerrernsenesrse e sssesnas 509

Included Items Missing from the DiSplaycccceceeerereresssesese e senneens 509

A Page Fails 1o Validatecooeeeeerecececeeceree e sn s 509

A PayPal Pull-Down Menu Does Not WOrKccccoeeeirnmniersmnsessessee s see s e 509

ACCESS DENIBA........coeeririeireer e s 509

PHP EITOF LEVEIS......cuceeeeceririeisesie e 510

Call to an Undefined FUNCLIONcccoceereiererecrneeressse e 510

Cannot Redeclare FUNCHIONooceiceie i i scee e s e s ssse s s sse s ssseesssns s ssne s sssssssnessssnessnne 510

CONTENTS

Undefined Index or Undefined Variable ... 510
Empty Variable ValUE..........cocevererererercressis e ses e sse e ses s s sesssssassssssssasssssassssnnnns 511
Headers Already SENt...........cccoorcrirsnsrr s s nnennnnn 511
BIANK SCIEEN ..ot ss s sn s s n s nr s en s 511
Unexpected End of File in LiNe XXX......cceeirreriinnmniirneses e sseseessee s sse s s ssesesssessessnens 511
Parse Error and Unexpected Characterscccvvrvercersrsensessssses s ses s s sessessnssnnnnns 512
Unexpected T_STRING..........ccceveerieererieerierreesesssesessseseessessssssesssessssssessesssssssssssssnsssesns 512
UNEXPECIEA T_ELSE..........ooeeeeceereceeree e ses e ssesaessesaesaesassassasssesassassassassassassasssssssnnnns 513
Wrong EQUAI SigN.......coceeciiiririrr s sn s sn s 513
Failed 10 Open STre@m........ccccevcevieeririeerirree s s ree s se s saesn s snesaesn e saesnesaesnesaes 513
SYNEAX EITOIS....cviiieecereeie e sa s s n e s n e nn s nner s 513
Warning: DiviSion DY ZEr0.........ccocvcririrserser s 514
Display Is Not What Was EXPected.........cccvvrvrrrierverserser s ses e e e e sesens 514
Reference to a Primary Key Could Not Be Created...........cceccvrermiernnriennscsenensesenennes 514
Element <style> Not Allowed as Child of Element <div>..........cccceevvrirrrnervnieninnnnnns 514
Problem with Prepared Statement.........cccvvvveriricrrrre e 514
(T Tz L 0] SRS 515
The Internet IS YOUr FHENd ... e snssnsnens 515
31111 P 7SS 515
AppendiX B: R@SOUICES. .. .cuuiiusssmmmmmssssnnnmssssssnnsssssssnssssssssnnsssssssnnnsssssnnnnsssssnnnnsssss 517
PHP QUICK REFEIBNCEcceerererereseeseese s se e sssssssesesenens 517

AITAYS .eeeeeeeeeeseses et s se e se e e e e e e e R e e e e R e e e e e A e Re e e e R e Re e e A e Re e R A e R e e R A e R e e e e R e e nE e Eans 517
Bootstrap TEMPIALEcovceeceere et e 533
MySQL and phpMyAdmin Quick ReferencCe..........cceevereersersersesses s e e snsnnns 534

GALE_TIME ..o 535

INSERT «..cvvvvvussesessssssesesssssssssssssssessnssssns 536

SELECT «.vvvvuueeeessssseeesssssseeeesssssessessssssesessssss e esssss e ess s R 8RR R R RS R R 536

UPDATEvvvuvoeseesssssssessnsssanssssns 536

xi

CONTENTS

WHAE NEXE? ...t ne s nen s 937
RESOUICES. ...ecuririscirrisei st 537
Books on PHP and MySQL for DatabDasesceceruererererererseressersesessesessessssesssessssessessssssessessssessenenes 537

PHP and MySQL INtErNet RESOUICES.......ccecereererrererrerersrrerseresersesersesessesessessssessssessesesssssssessssessssesssnees 538
E-COMMEICE RESOUICESccerciiiiiiiiisiiisssssss s 538
SUMMANY ...eieetetecre e e ss e e s e sn s s s sn s s s s s sn e s e sn e sr s nrsnrsnn e e e nnesnennennennennennnsnnnnnnnnnnnnnan 939
INA@X.ciiieiirerrie s —————————————————————_ 541

xii

About the Authors

Adrian W. West resigned as a chartered design engineer to become the UK director of a correspondence
school. He has been teaching in one form or another since 1982. He introduced computers into his
workplace in 1987 and taught the staff how to use them. For four years, he taught undergraduates computer
skills at a college in Cheshire in the United Kingdom.

Adrian lives in Colyton, a town in Devon, England, and for the last 18 years, he has designed and
produced websites for UK businesses and charities.

Adrian is the author of three books published by Apress: Practical HTML5 Projects, a book of tips and
tricks (now rather out of date); Practical PHP and MySQL Website Databases (the first edition of this book);
and Practical Web Design for Absolute Beginners (published in 2016).

Steve Prettyman earned his Bachelor of Arts degree in secondary education from Oglethorpe University
in 1979. He quickly began his teaching career as a high school mathematics instructor while continuing
his education by earning a master’s degree in business information systems from Georgia State University
(1985). Since then, Steve has spent more than 30 years in the IT industry. The last almost 20 of those he
has been an instructor and professor at Chattahoochee Technical College, Kennesaw State University, and
Southern Polytechnic State University. He is currently the Computer Science Department chairperson

for Florida Keys Community College in Key West, Florida. His primary teaching responsibilities include
programming, web design, and web application development.

xiii

Acknowledgments

I thank my wife, Janice, for her love, support, and encouragement, and for taking over my share of the chores
so that I could concentrate on this edition.

My thanks go to the team at Apress and to all the people in Internet forums who helped me and replied
to my queries.

My special thanks go to my co-author, Steve Prettyman, who converted the first edition code and
instructions to the latest versions of PHP 7 and MySQL/MariaDB for this second edition.

—Adrian W. West

I thank my partner and wife for her love and support for almost 25 years. Her reminders that I needed to

get my head out of the book and take a break to enjoy life were vital in this process. My children also stared

at me when I ignored them for too long to let me know that I should stop writing and coding to take them

outside to swim in the pool. Can we say that Pixee and Buster, our four-legged children, are a little spoiled?
I especially want to thank Adrian W. West and Apress for allowing me to update his successful

first edition to provide a modern-day approach to his logical pattern to teaching interactive database

programming using PHP.

—Steve Prettyman

XV

Introduction

What’s New in This Edition?

The code and instructions in the first edition of this book (written in 2012) were made obsolete by new and
very different versions of XAMPP, EasyPHP, phpMyAdmin, PHP, and MySQL/MariaDB. This second edition
contains new code and instructions to match the latest versions of the software.

With the massive increase in cybercrime and other cyber threats, this new edition has been fortified
with a much stronger emphasis on security. This book takes the approach of sanitizing any data that has
been accepted from any outside source and, additionally, sanitizing any data before it is displayed on a web
page. Most of the examples use prepared statements that ensure that any externally accepted data cannot be
executed and therefore cannot cause security vulnerabilities.

We have chosen Bootstrap to provide responsive web design (RWD) for each of the book’s example
websites. While Bootstrap provides the CSS and JavaScript to format the examples in this book for any size
device, you can easily reformat these examples with your own CSS code if you desire.

This new edition also takes a brieflook at Oracle’s MySQL 8. A comparison is provided of the tools
available in each version. Step-by-step procedures provide you with the ability to upgrade to MySQL 8.

The Teaching Method

This book uses a different way of teaching website database design compared with the majority of manuals.
The usual layout starts with several lessons on PHP followed by snippets of code and may eventually
conclude with a project or two. This book abandons that approach. The primary focus is on fully worked,
practical MySQL/MariaDB database projects built into real-world web pages.

Instead of presenting PHP, SQL, and MySQL/MariaDB as completely separate topics, they are explained
in the context of each project. However, you will find a useful quick reference of PHP syntax in Appendix B.

In this book, practical databases and interactive web pages are presented as early as possible; in fact,
you will create a database and a table in the first chapter. In the second chapter, you will embed a database
into an interactive web page and test it. Each subsequent chapter will introduce you to increasingly
sophisticated and useful database-driven website pages.

We assume that you have little or no knowledge of PHP and databases. This book will demonstrate:

e How to create a free environment for testing database-driven web pages.

e How to embed PHP and interactive databases into real-world web pages. This is the
primary theme throughout the book.

e How PHP, HTML, and MySQL/MariaDB work together for creating and maintaining
a database and its data.

e How to create a user-friendly interface so that an administrator with minimum
computer skills can monitor the database.

xvii

INTRODUCTION

Because databases need to be viewed and tested on a server, the first part of Chapter 1 has instructions
for using a free server that can be downloaded and installed on your computer. This ensures you will have a
safe development platform for learning and testing as you explore the book’s practical projects.

Starting with a separate study of PHP theory and syntax can deter learners and prolong the time until
they get their hands on a practical application. Learners are enthused when they achieve something. This
book jumps into the database driving seat right from the beginning. Essential PHP and MySQL/MariaDB
techniques are presented in context within each tutorial where they are most relevant.

Who Is This Book For?

The book assumes you are thoroughly familiar with HTML5 and CSS3. However, we assume you have no
knowledge of MySQL/MariaDB, PHP, and phpMyAdmin. As the chapters unfold, you will progress from
intermediate level to advanced level.

You do not need to acquire an extensive knowledge of PHP to create interactive databases. We
introduce all the PHP you will need in the appropriate place within each project. Each piece of PHP code
is explained fully in plain English. The step-by-step, fully worked examples will show you what MySQL/
MariaDB and PHP can do and how to do it. This book is for web designers who want to begin developing
database-driven websites.

With this in mind, this book uses a highly motivational step-by-step approach. We recognize fully that
a sense of achievement encourages readers to look forward eagerly to the next step. The book will teach
enough PHP and MySQL/MariaDB to complete all the projects in the book. Web developers who have not
kept up-to-date with MySQL/MariaDB and PHP will also benefit from this approach. College and university
programming instructors will find that this book provides an excellent text, and the projects can form a basis
for students to adapt for their course work.

The “Quick and Easy to Learn” Myth

Books frequently state that PHP and MySQL/MariaDB databases are easily and quickly learned, but
this discourages beginners, because when they are confronted with the inevitable difficulties (and error
messages), they begin to think that they will never grasp even the basic principles.

Beginners should not be discouraged if they remember the following fact: authors claiming that PHP
and MySQL/MariaDB are easily and quickly learned have probably been using PHP and MySQL for more
than a decade, and they have forgotten the difficulties they encountered when they first began.

If you accept that some time and effort are required to learn PHP and MySQL/MariaDB, then as
you work through the book, it will become increasingly apparent that you are learning something very
worthwhile. So, have patience and persevere, and you will then begin to enjoy mastering this valuable
discipline.

The Origin of This Book

Most of the PHP/MySQL/MariaDB books tend to demonstrate the author’s deep and extensive knowledge of
PHP and MySQL/MariaDB instead of teaching how to embed MySQL/MariaDB databases into web pages. In
contrast, this book uses fully worked examples to demonstrate how to integrate databases into a website.

The boatload of PHP/MySQL/MariaDB database books that this book’s authors own (or borrowed)
were unnecessarily complicated. The authors of these books had become used to using neat tricks and
shortcuts that were second nature, but these cluttered the code and made it difficult for beginners to discern
the essential structure.

xviii

INTRODUCTION

This book avoids this mistake; a few useful tricks are introduced gradually and are fully explained in
plain English. This book is based on a quote from the composer Brahms.

It is easy to compose but wonderfully hard to let the superfluous notes fall under the table.

Almost all the PHP/MySQL/MariaDB books were written backward; they grind away for chapter after
chapter with PHP functions and statements (yawn), and then they add the MySQL/MariaDB bit. Practical
PHP and MySQL Website Databases explains the necessary PHP and MySQL/MariaDB topics in context
within each database tutorial.

MySQL/MariaDB books are nearly always written assuming that the web designer will administer the
databases. However, small e-commerce websites, clubs, and societies cannot afford to do this and would
prefer that their membership secretary be able to administer the database using a user-friendly interface.
The majority of the databases created in this book can be administered by both an unskilled membership
secretary and the web designer.

Eventually, Adrian W. Wood concluded that he must write his own manual based on what he could
learn by concatenating snippets of information from multiple resources. He also based the manual on his
own trial-and-error approach as a raw beginner. This automatically ensured that the manual’s content was
presented in simple, logical, and progressive steps without suddenly introducing unexplained items.

The homegrown manual was so useful that he decided that it should be shared with other website
designers; the first edition of this book was the result of that decision.

Computer software and database techniques are constantly improving and updating. Because of this,
we have researched the latest versions of the scripts, tools, and the available software. This ensures that, in
this second edition, the content and illustrations will remain relevant for as long as possible.

Following the tutorials in this book requires an absolute minimum of software. Some manuals ask
readers to download and learn a new piece of software before they can proceed to each new chapter. In
fact, Adrian came across one book that required readers to download MySQL, Apache, PHP, phpMyAdmin,
Prototype 1.5, Scriptaculous, Zend Framework, Smarty Template Engine, FCK editor, jQuery, and Ajax. In
this book, besides a code editor, the software required is limited, as described next.

What Equipment Is Required

The book assumes that, as a web designer, you will already have an HTML editor such as Blue Griffon (free)
or Notepad++ (free).

You will need:

e Anotebook (real or electronic) for recording the passwords and file names for your
databases and table entries. Don’t rely on memory. Write everything down.

You will need to download:
e The sample code from the book’s page, available at www.apress.com
e XAMPP or EasyPHP, which are free, all-in-one packages for testing your work

e The latest browsers (all free): Microsoft Edge, Mozilla Firefox, Safari, Chrome,
and Opera

Xix

http://www.apress.com/

INTRODUCTION

The Conventions Used in This Book

Care has been taken to relate every listing to its screenshot. For instance, Figure 3-6 will be described by
Listing 3-6. If two listings are needed, such as the HTML code and the PHP code, both will relate to the
screenshot by using Listing 3-6a and Listing 3-6b. If Figure 4-6 does not need a listing, the next screenshot
and listing will use Figure 4-7 and Listing 4-7.

Special tips, notes, and warnings are shown in the following format:

Note Security is important when dealing with databases, especially if they contain personal data.
The technique for making your work is secure is woven into each step of the instructions.

All code listings use HTML5 and PHP 7; some meta description and meta keywords have been omitted
from each <head></head> section to save space.
Code listings are shown as follows:

<div id='container'>
<?php include('headexr.php'); ?»><!--include the new header file--»

Code lines are sometimes numbered to help with the explanations as follows:
if (empty($errors)) { // If no problems occurred, register the user in the database #

The line numbers are for explanation only and do not need to be included in your own code.

Interactive vs. Dynamic

Most manuals use the term dynamic web pages when referring to interactive pages. The words dynamic and
interactive both describe pages that provide a live link between a user and a database. For instance, a user
can register for membership and view account details. A membership secretary can view a table of members,
but the table is hidden from ordinary members. Because the word dynamic can have so many connotations
and meanings, we have chosen to use the more precise term interactive in this book.

Source Code

You can access the example code used in this book by navigating to www.apress.com/9781484238424 and
clicking the Download Source Code button.

XX

http://www.apress.com/9781484238424

CHAPTER 1

Create and Test a
Database and Table

This chapter introduces the concept of a database and a practical way of testing it. Using the examples, you
will create a MariaDB or MySQL database and a table. As you work through the examples, you will become
familiar with the database administration interface.

After completing this chapter, the student will be able to

e Define and design a database and table

e Install and use a WAMP package

e Use phpMyAdmin to create a database and table

e Secure phpMyAdmin and databases with a user ID and password
e Delete a database and/or table

Databases can be used to store products, details of customers, records of members of a society or a club,
and much more. They can store names, passwords, addresses, e-mail addresses, registration dates, blog
entries, and telephone numbers. Databases can be regarded as folders containing tables of data. The table
of data has columns and rows; the rows in database tables are called records. Table 1-1 shows a typical
database table.

Table 1-1. A Typical Database

user_id first_name last_name email password phone

1 Kevin Kettle kev@kettle.com K3ttl3fur 3051111111

2 Susan Saucepan sue@kitchen. N@sus5 011112221111
org.uk

3 Oliver Oven oliver@cokker. HOtstOv3 03333 111 4444
co.uk

© Adrian W. West and Steve Prettyman 2018 1

A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,
https://doi.org/10.1007/978-1-4842-3843-1_1

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

Defining Developer, Administrator, and User

In this book, the term developer (aka webmaster) means the person who designs and produces the database;
they will integrate the database into a website. Sometimes the term webmaster or web designer may be used.
When it is used, it usually means the same thing as developer. The words administrator and membership
secretary have the same meaning in some of the book’s tutorials, which are based on building a database for
a club. The word administrator means the person responsible for monitoring and maintaining the content
of the database tables. Clearly, one person can be both a developer and an administrator. However, most
developers will maintain the structure of a database but will not want the hassle of amending and deleting
records; that should be the role of an administrator (such as a club or society’s membership secretary).

The user is any member of the general public viewing and possibly interacting with a website database.
For security reasons, users have extremely limited access to the database; however, they will be allowed to
register for membership, log in to a special section, or change their password.

Caution The organization commissioning a database must conform to the rules and laws of the country
in which the database is developed and resides. In the United Kingdom, the Data Protection Act for the territory
in which the database was developed must be followed. This is especially important if that data is going to be
used for profit. This may require obtaining a license. In addition, the developer and administrator must normally
sign a document confirming that they will never disclose the details of persons recorded in the database.
The UK Information Commissioner’s Office (ICO) requires an annual license fee based on the revenues of the
organization that owns the database. There is no equivalent law in the United States, but privacy laws can differ
between states. It is essential that you understand and obey the data-protection laws for your client’s territory.

Databases that are accessible to multiple countries will need to meet the requirements for each country.
Sometimes this requires the creation of different versions of the database and/or website, when otherwise

it would not be required. Many laws and regulations lag behind the overall need to provide the most secure
database environment possible. The developer should always err on the side of the “most secure” when
designing and using databases. Databases used for educational purposes only (such as the databases shown in
this book) do not have to meet the requirements and regulations (such as licensing).

Defining Interactive Websites

Interactive websites are often called dynamic websites; however, this book uses the word interactive because
dynamic can signify so many things. For instance, it can mean moving, powerful, eye-catching, flashy,
exciting. To a beginner, none of those meanings defines a web page that interacts with a user.

Dynamic is often used to mean exciting, but there is little excitement to be seen in an interactive
registration form. Dynamic is also a musical term meaning changes or variations in loudness or speed. If
dynamic can refer to change, why were dynamic templates designed to provide consistency from one web
page to another? The term interactive has one clear meaning and will be used from now on in this book.

MariaDB and MySQL (with PHP) allow users and administrators to interact with a database using
website pages. For instance, users can register as members of an organization via a registration page
on a website. Users will be able to supply their personal data for the membership tables. The database
management system then enters the users’ input into the administrator’s tables automatically; this lightens
the workload of the administrator. The website’s registration page can be programmed to filter users’ data
input and verify it. From an interactive page, users may even be allowed to update their own records in a
database.

2

CHAPTER 1 * CREATE AND TEST A DATABASE AND TABLE

Interactivity means that the administrator’s workload is greatly reduced, but not completely. For
instance, if the database is for a bookshop, the administrator will still have to enter any new titles and prices.
On the other hand, an interactive database can be programmed to alert the administrator when the stock of
a certain book needs replenishing.

In Chapter 2, you will learn to develop a simple interactive website.

Using MariaDB or MySQL Only for Interactive Database Tables

A noninteractive data table means that only the administrator can enter or amend the table’s information.
A noninteractive data table would be more easily created and administered using a spreadsheet, such as
Microsoft Excel. However, website users cannot interact with such a data table. Employing a MariaDB or
MySQL database management system (DBMS) to create a noninteractive (static) version of the data table
would be like using a sledgehammer to crack a nut. Website users would have no input and cannot search or
update data.

Using MariaDB or MySQL DBMS for a noninteractive version would not reduce the workload of an
administrator; they would have to enter all the members’ data and verify that the data is genuine.

Note A few interactive web pages do not need a database to function. For instance, a Contact Us form can
be regarded as interactive because it takes a user’s input and transmits it to the website’s owner via a PHP form
handler via an e-mail; this can be achieved easily without a database. In this book, the term interactive always
means the user can interact with a database.

Methods for Developing and Maintaining Databases

The four methods for managing databases are as follows (with the easiest method first and hardest last):
e phpMyAdmin (or other administrative tool)
e PHP
e SQL scripts
e Command line

In this book, we will be mainly using the first two methods (phpMyAdmin and PHP). We will use SQL
scripts and the command line to briefly demonstrate how to create, update, and distribute your database.
For interactive databases, you will need some PHP files. You do not need an extensive knowledge of PHP
before you can create interactive databases. We will introduce the PHP syntax you require in the appropriate
place in each project—that is, in context. The step-by-step, fully worked examples will show you what
MariaDB and MySQL can do and how to do it.

Because of their popularity, graphical user interfaces (GUIs) have been developed to facilitate the task
of developing and maintaining databases. These administration tools are part of development packages that
include web servers (Apache), databases (MariaDB or MySQL), and programming languages (PHP). In this
book, we will introduce two of the most popular packages: XAMPP and EasyPHP.

A Brief Look Inside Web Server Communication

Databases need a server, a DBMS, and a PHP processor, as shown in Figure 1-1. These can be downloaded
as an all-in-one, already configured package. The testing and development of the projects in this book are
based on the free XAMPP and EasyPHP packages.

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

Your Computer or an External Host

The Apache Server htdocs or www
Storage area for
your folders that
MySQL will contain your

This stores your PHP files, HTML
databases and tables files, and images

in its dara folder

PHP Processor

phpMyAdmin

Figure 1-1. Web server communication

Figure 1-1 shows the main components built into the XAMPP and EasyPHP development platforms.
They are as follows:

e Apache is the web page server used by the great majority of hosts and for web
development on local hosts (user computers). Web servers determine whether web
pages contain PHP code by looking at the file ending (.php). If PHP code exists,
the code is passed to the PHP interpreter for execution. If the PHP interpreter
determines database-related code or SQL exists within the PHP program, this
information is passed to the MySQL or MariaDB database management system. The
database management system executes the SQL statements and returns the results
to the PHP interpreter. The PHP interpreter completes executing the PHP code and
returns the results to the Apache server. The Apache server gathers the results of the
PHP code, along with any HTML, CSS, and/or JavaScript, and sends this information
to the web browser on the user’s machine. The web browser then executes the
HTML, CSS, and/or JavaScript code.

e MySQL and MariaDB are not just databases; they are also database management
systems. These packages include tools to create, manage, and secure databases.

e The PHP processor interprets and executes any PHP code. It will throw errors or
exceptions if there are syntax (coding errors), logical errors, or system errors (out of
memory).

e phpMyAdmin is a GUI-based administration tool for creating and maintaining
databases and their tables.

A single all-in-one package such as XAMPP or EasyPHP contains the four programs mentioned in
Figure 1-1 and is referred to as a WAMP (Windows, Apache, MySQL/MariaDB, and PHP). In WAMPs, the
main components are preconfigured so that they can talk to each other. The equivalent on an Apple OS is
MAMP, and on a Linux computer it is LAMP.

CHAPTER 1 * CREATE AND TEST A DATABASE AND TABLE

The folder htdocs (or eds-www) is the default storage and executable area for your web pages. Apache,
by default, looks in htdocs (or eds-www) for your web pages. These pages may be designed to allow users
to interact with the database. Other pages will operate unseen by the user to transmit information back
and forth between the browser and database. The pages are usually HTML and PHP files or a combination
of both.

Caution Everything inside Figure 1-1 may be already installed on a remote host, but you should never use
a remote host to create a database while you are learning. For security reasons, do not use a remote host until
you have become proficient. We recommend you learn and develop a database using an all-in-one package on
your own computer. Note that an all-in-one package installed on your own computer is purely a development
tool. The database, when developed and thoroughly tested, can eventually be uploaded to a host to make it
available to users.

A Free Development Platform for Testing

You will not be able to test your work in the normal way—that is, by using a browser to view a database and
the PHP code located on your hard drive. When a web page containing PHP is requested by the browser, the
PHP code is executed in the web server. The results of the executing of the code will display in the browser. If
you view the browser code (right-click the web page and select View Source), you will not see the PHP code.
You will see the results produced by the execution of the code. This confuses beginning developers who are
used to seeing any HTML, CSS, or standard JavaScript code they have created in the browser. Remember,
HTML, CSS, and standard JavaScript are executed in the browser. PHP code is executed in the web server,
even when that server is on your own PC.

Using an all-in-one package on your computer will allow you to see all the code you create and the
results of the execution of this code on your PC. This book assumes that you will use a package on your own
computer while you are learning and for developing future database-driven websites.

Note In the current world of hackers who attempt to corrupt or gather personal, corporate, and government
data, all web pages on Internet-hosted websites must be secured. The earliest projects in this book are
necessarily simple and have some secure features. However, it is not recommended that you upload these
pages to an Internet host. When you have gained experience and confidence, and you are sure that you
understand how to secure websites and databases, you can adapt the book’s later projects for use in your own
websites and then upload them to a remote host.

Using XAMPP on Your Own Computer

The XAMPP package is free and is preconfigured so that the components will talk to each other. This
eliminates the hassle of the usual practice of downloading several individual components and then
configuring them to work together. XAMPP includes packages for Windows (WAMP), Linux (LAMP), and the
Apple (Mac) OS (MAMP). The examples in this book are developed using a WAMP environment. However,
these examples should also work in a LAMP or MAMP environment.

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

At the time of writing, the most recent version of XAMPP is version 7.2.4. This version is used
throughout the book. It has component versions as follows: Apache 2.4.33, MariaDB 10.1.25, PHP 7.2.4, and
phpMyAdmin 4.8.0, along with other tools. The examples in this book are not totally compatible with PHP
versions before 7.0.

Note If you are installing a version that is newer than demonstrated in this book, the installation steps may
be slightly different. You should refer to the XAMPP site (www.apachefriends.org) or search for installation
instructions on the Internet (try youtube. com) for any version not demonstrated in this book. If the newer
version includes a major upgrade (for example, PHP 8), some code changes may be required. Check the Apress
website for code changes related to major version releases.

Before we give you the instructions for downloading XAMPP, we need to settle a question that bothers
every beginner concerning the transferring of a developed database from XAMPP or EasyPHP to the remote
host. If you use one of these packages on your own computer, a question will arise, as stated in the title of the
next section:

Will I Be Able to Transfer the Database from XAMPP or EasyPHP to a
Remote Host?

The main thought that haunts a beginner is this: “If I develop a database on a local WAMP, will I be able to
move it easily to a remote host?” Beginners have every reason to be worried because most manuals rarely
give even a hint on this topic. However, the answer is this: “Yes, you will be able to move the database.”
You will find full instructions later in this book.

Now we will provide the information for downloading and installing XAMPP.

Caution Should you want to install multiple free WAMPs, it is possible to install both EASYPHP and XAMPP
on the same computer. However, make sure one of them is shut down before opening the other; otherwise, they
will fight for the same ports and cause annoying problems.

Downloading and Installing XAMPP

XAMPP needs minimal configuring. To download the package, go to www.apachefriends.org/.

Click Download from the menu at the top, as shown in Figure 1-2, of the main page. The download
page will then display the current versions available. If it’s available, select the 7.2.4 version of XAMPP to
ensure that all examples you use from this book will be compatible. If there is a minor release of version 7
(such as 7.3.0), it probably will still be compatible. If version 7 is not available, download the latest version.
Then check the Apress website to see whether there are any coding changes required to the examples
presented in this book. The download page varies from time to time, so you may have to explore the page to
find the version shown.

http://﻿www.apachefriends.org﻿
http://youtube.com
www.apachefriends.org/

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

Download

XAMPP is an easy o install Apache distribution containing MariaDB, PHP, and Perl. Just =
download and start the installer. It's that easy Documentation/FAQs
There is no real manual or handbook
. for XAMPP. We wrote the
== XAMPP fOr W|nd0w5 5.6.31 s 7.0.21 & ?. 1 .? documentation in the form of FAQs

Have a burning question that's not
answered here? Try the Forums or

Version Checksum Size
Stack Overflow
What's =
Download (32 bit Y
5631/PHPS5631 '1@° mds shat 112 Mb e
What's « Windows FAQs
7021/PHP7021 TE° . mdS shat 123 Mb . 0S X FAQs
) + 0S X XAMPP-VM FAQs
What's .
7a7iPHp747 S mds shat 123 Mb
Add-ons and Themes
Requirements Add-ons More Downloads » AN R P

Figure 1-2. Installing XAMPP

Note The download page will state that you must have the C++ runtime libraries installed. XAMPP and its
related tools are created using C++. If you are using a current version of Windows, you probably already have
the correct version of C++. However, if you receive an error indicating that it is missing, follow the link the error
provides to download the correct version.

Click the Download button next to the most current version. This will begin the download process. The
file will automatically download to the download folder on your PC. Depending on which browser you are
using, you could be asked if you want to run or save the program. Some browsers will automatically save
the program and require you to click the file to run it. If you are unaware of how to find downloaded files for
the browser you are using, search the Internet for directions. Once the file has downloaded, start the setup
process by double-clicking the file (or clicking the Run option if prompted).

The environment will prompt you to ask permission to install the program. Click Yes to continue the
process. The setup program will determine the security settings on your machine. It may provide a warning
that your security might restrict some of the XAMPP options available. You can choose to either continue
the installation or stop the current installation and temporarily turn off your security program. If you turn
off your security, make sure your PC is no longer connected to the Internet. The setup program will also
look at your User Account Control (UAC) settings. These settings limit access to folders and files based
on the user ID in which you are signed into the system. If you are using a computer in which you do not
have administrative rights, the setup routine will provide a warning message prompting you to install your
program in a different location than the default (program files). Do as the prompt suggests and change the
default settings when prompted to a different location, such as c¢:/XAMPP.

A Welcome to XAMPP Setup Wizard screen will appear. Just click Next to continue the setup. The
next screen will display all the options available for installation. If you are a beginner, just accept the items
already checked by clicking the Next button. Intermediate and advanced users might consider removing
items that you are sure you will not use. You can always install them later if you need them. The next screen
will show the installation location. Use c:/XAMPP to avoid any possible security access issues. Click Next.

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

The next screen will try to convince you to also look at installing CMS programs (such as WordPress). For
now, uncheck the Learn More box. You can install it later if you are interested. Click the Next button. The
next screen will indicate the setup is ready. Click Next. The installation will begin. By default, the Start
Control Panel check box will be checked. Leave it checked. Click the Finish button. You may be prompted
with a language selection prompt before the control panel displays.

If you have errors during installation, copy the error message and paste it into a search engine (like
Google). Look at the listing of suggested solutions. Go to a trusted website and follow the directions to
correct your error.

The items on the XAMPP control panel labeled Running usually appear automatically, and you will then
be able to stop the various modules. If they do not start automatically, click the Start buttons on the XAMPP
control panel for Apache and MySQL. If a button says Stop, that module is already running. What next? If you
are asked about running the modules as services, choose to run Apache and MySQL as services, and then those
modules will automatically start when you double-click the XAMPP desktop icon (Figure 1-3).

Figure 1-3. The XAMPP icon

Create a shortcut on your Desktop for XAMPP’s htdocs folder, and place it alongside the XAMPP icon, as
shown in Figure 1-4. Use this shortcut for loading your PHP files into the C:\xampp\htdocs folder.

R .

XAMPP Control htdocs
Panel

Figure 1-4. Time-saving shortcuts

If a desktop icon was not created during the installation, we recommend you go to the C:\xampp folder
and then create a desktop shortcut for the xampp-control.exe file.

For maximum convenience, put the two desktop items side by side, as shown in Figure 1-4.
One icon starts and stops XAMPDP, and the other allows you to create and modify pages directly in the
XAMPP htdocs folder.

One common problem is that Skype and other applications also use port 80, the default port for Apache.
If another application is using this port, Apache won't start. The log (Figure 1-5) will indicate if Apache could
not start because the port was in use. If this occurs, go to the XAMPP control panel and click the Netstat
button. This window will list all applications running on your PC and what ports they are using. Determine
an unused port (such as 8080) and close the Netstat window. Then click the Config button next to Apache.
Select httpd.conf. The configuration file will open in Notepad (or your default text editor). Click Edit, click
Search, and enter 80. Click Find Next until you discover the following line:

Listen 80

CHAPTER 1 * CREATE AND TEST A DATABASE AND TABLE

Change this line to the following:
Listen 8080

Or, change it to whatever port you decided to use.
Now go back to search and click Find Next until you find the following line:

ServerName: localhost: 80
Change this line to the following:
ServerName: localhost: 8080

Or change it to the same port you decided to use.

Save the file, and close Notepad (or your text editor). Go to the XAMPP control panel and click the
Config button at the top-right corner of the page. Click the Services and Port Settings button. Click the tab
Apache. Enter the new port for Apache (8080 or whatever port you decided to use). Click Save. Close the
Config window. Now click the Start button next to Apache in the control panel (Figure 1-5). After a few
seconds, Apache should start. This will be indicated by a green background behind Apache. You will also
need to start MySQL because it could not start without Apache running first.

Starting XAMPP

From here onward, to test your pages in XAMPP, double-click the desktop icon and check that Apache and
MySQL/MariaDB have started. If they have not started, click the Start button for Apache. Once it starts, then
click the Start button for MySQL/MariaDB and then minimize the control panel.

Figure 1-5 shows the XAMPP control panel.

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

[Z) XAMPP Control Panel v3.2.2 [Compiled: Nov 12th 2015] - O X
XAMPP Control Panel v3.2.2 [contg |
Secdcs Moade I PDG) Port(s) Actions @ Hetstat
Apache 2300 43,8080 | Stop || Admn || config || Logs B Shell
RS 1202 306 | sop | [admn | [confg || Logs | | [Eworer |
FieZila " Stat || Admn | confg || Logs & Services |
Mercury | swrt | [Agma | Confg || Logs | [GHep |
Tomcat | Stat || Admn | Config || Logs | i' i cut
13:06:42 PM [Apache] Problem detected! | ~
3:06:42 PM [Apache] Port 80 in use by "Unable to open process™ with PID 4!

3:06:42 PM [Apache] Apache WILL NOT start without the configured ports free!

3:06:42 PM [Apache] You need to uninstall/disable/reconfigure the blocking application
3:06:42 PM [Apache] or reconfigure Apache and the Control Panel to listen on a different port
13:06:42 PV [Apache] Attempting to start Apache app...

3:06:42 PM [Apache] Status change detected: running

31542 PM [mysql] Attempting to stat MySQL app.. |

311545 PM [mysql] Status change detected: running

Figure 1-5. The XAMPP control panel

We suggest you always minimize the control panel so that you have a clear desktop for starting work on
your databases.

After starting Apache and MySQL/MariaDB, you can test your installation and examine all the XAMPP
examples and tools; to do this, enter one of the following addresses in your browser:

http://localhost/
http://127.0.0.1/

If you added a port number, be sure to include the same number in a format like one of the following
examples:

http://127.0.0.1:8080/
http://localhost:8080/

Closing XAMPP

Close XAMPP when you have finished testing your database and PHP files. This will free up memory for
tasks other than database development. To close, click the maximize XAMPP control panel on the taskbar
and then click the Quit button on the control panel, as shown in Figure 1-6. Alternatively, you can right-click
the icon in the Notification area and then click Quit.

10

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

XAMPP Control Panel v3.2.2 [Compiled: Nov 12th 2015] . a X
XAMPP Control Panel v3.2.2 | & conta
Modules = '
Service Module PID(s) Port(s) Actions ‘Q Restn
Gae 1;58:2 80,443 | Stop || Admn || config || Logs | | MEShen |
MySQL 9400 3306 | stop | Config || Logs .l Explorer
FleZila | stat || Admo | config || Logs | | B services |
Mercury Stat | | Admn | Config | Logs [© Hebp
Tomcat | stat || Admn | [config |[Logs | i out
5:09:21 PM [mysql] Problem detected! A
5:09:21 PM [mysql] Port 3306 in use by "C:\EasyPHP-Devserver-17\eds-binaries\dbserverimysql5717x8¢
5:09:21 PM [mysgl] MySQL WILL NOT start without the configured ports free!
5:09:21PM [mysql] You need to uninstall/disable/reconfigure the blocking application
5:09:21 PM [mysql] or reconfigure MySQL and the Control Panel to listen on a different port
5:09:21 PM [mysgl] Attempting to start MySQL app...
5:09:23 PM [mysqgl] Status change detected: running
v
< >

Figure 1-6. Closing the XAMPP program

The security of a database and its data is extremely important. XAMPP provides a method for making
the database and tables on your computer safe from harmful interference, which is described later in this
chapter.

Where Is MariaDB and MySQL 8?

You might be confused at this point about XAMPP and the location of the MariaDB databases. The creators
of XAMPP did switch from using MySQL databases to using MariaDB databases; however, everything we
just explained seems to indicate that MySQL is still part of XAMPP. However, this is not the case. When the
creators decided to switch database systems, they had to make only minor configuration changes to use
MariaDB. Since MariaDB does not operate any differently than the free version of MySQL, the creators
decided to leave everything with the MySQL title. Since you might be new to this environment, this might
be confusing. However, to current users of XAMPP, this allowed an easy transition between database
environments. Just remember, wherever you see MySQL in XAMPP, it is MariaDB.

The title of this book includes MySQL 8. MySQL 8 is a full, professional version with the latest bells and
whistles, including business analytics tools. However, MySQL 8 is not provided with XAMPP or EasyPHP, and
the full version is not free. If you are developing sites for corporations or government agencies, you should
consider using MySQL 8 (or the latest version). Any version of MySQL can be attached to XAMPP. You do
need to read the MySQL documentation to make sure the version you are attaching is compatible with the
Apache and PHP versions you have installed. Adding a new version of MySQL is an intermediate skill. We
have provided directions in the last chapter to help when you are ready to convert.

11

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

Using EasyPHP on Your Own Computer

If you would prefer to use EasyPHP or you are a beginner and your fellow designers have convinced you that
you must use an early version of MySQL (i.e., MariaDB will just not do), you can install EasyPHP, which is
a WAMP package that includes the free version of MySQL. It also includes the MongoDB database system,
which is a non-SQL database. MongoDB is not covered in this book.

There is no reason you need to install both packages. However, if you choose to do so, you may need
to either run one at a time or adjust ports so both can run at the same time. Once installed, you will see that
both packages work in similar ways. All examples have been tested in both environments.

Download and Install EasyPHP

To download the newest version of EasyPHP, go to the following site:
www.easyphp.org

Download a nonbeta version of easyPHP Development Server by clicking the Download button in the
middle of the main page. The version that has been used to test and run the examples in this book is 17.0,
which includes PHP 7.2, Apache 2.4, and MySQL 5.7 (the latest free edition). If you notice a new major
release (such as 18.0), check the Apress website for this book to see whether there are any requirements for
code changes in the examples shown.

The setup program should start up automatically. The Windows environment will require you to allow
the installation to occur by clicking the Yes button. Once you click the button, the setup routine will ask
for your language preference. Next it will allow you to change the location of your installed files. If you do
not have administrative rights to your PC (such as a company-owned PC), you may not be able to install
EasyPHP under Program Files. We suggest changing the location of your installed files to the following:

C:\EasyPHP-DevServer-xx (xx is the version you are installing such as 17)

Click Next. The installation process will then ask if you want a desktop icon created. We suggest you
create one for easy access. Click Next. The current screen will verify the location of your install. Click Install.
When the installation is completed, the last screen will ask if you want to launch the development server.
Launch it by clicking Finish. If you have errors during install, copy the error into a search engine (like
Google) to look for solutions. In the list that is provided, go to a well-known site and attempt to follow the
directions to fix your error.

Starting EasyPHP

Go to the EasyPHP icon in the system tray, right-click, and launch the dashboard. If the dashboard fails to
launch, close the development server (right-click the icon and select Exit), and try launching it from your
desktop shortcut. The dashboard uses port 1111. If you still can’t launch the dashboard, right-click the
development server icon and select Tools and then Open Port Controller. Verify that another process is not
using the same port. If another process is using that port, stop that process and repeat the previous steps.

Within the dashboard (Figure 1-7), click the start button below HTTP SERVER. Clicking this button
should start both Apache and MySQL. The start button will change to a stop button if the server starts
properly. At this point, both the HTTP SERVER and DATABASE SERVER should be displayed with stop
buttons below the titles. If you encounter an error, try stopping the development server (right-click the
system tray icon and select Quit) and restart it (click the icon on the desktop). If you still have errors, copy
and paste the error in a search engine (such as Google) to see a list of possible solutions. Select a suggested
solution from a known site and try to follow the directions.

12

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

EASYPHP DEVSERVER

HTTP SERVER DATABASE SERVER
(> ot Wol=] E=E3enoa

WORKING DIRECTORIES

Organise your working environment by listing your working directories below. All files in your working directories will be interpreted by the server
Warmning: if you use a remd > drive, use the "Portabie Di relow

<+ add directory
If you use a removabie drive, store your files in the directory indicated below

Portable Directory
Figure 1-7. The EasyPHP DevServer

Closing EasyPHP

Anytime you need to close EasyPHP, just close the development server by going to the system tray, right-
clicking the icon, and selecting Quit. This will close all processes related to EasyPHP.

phpMyAdmin Security

The initial installation of phpMyAdmin within XAMPP and EasyPHP has the username root and no
password. If you use those settings on your own computer, there is a security risk when connected to the
Internet. If you are creating databases for more than just personal use or your own education, you should
create a phpMyAdmin password. If you work in the same room with other people, the password will provide
security if the password is not divulged to the other people. As a best practice, you should password-protect
your development environment.

If you are not already in phpMyAdmin, go to the XAMPP control panel or the easyPHP DevServer page.
In XAMPP click admin to the right of MySQL. In EasyPHP, click the open button to the right of the version of
phpMyAdmin displayed on the page (Figure 1-8).

13

CHAPTER 1 * CREATE AND TEST A DATABASE AND TABLE

phpMyAdmin
- T

Recent Favorites

B 7 Server: 127.0.01

4 Databases [} SQL (4 Status =% Useraccounts =4 Export [l Import J* Settings

General settings

@ Change password
[Server connection collation g: | utf8mb4_unicode_ci ¥l

Appearance settings

&’ Language & __Engish ¥
&) Theme: | pmahomme ¥
» Fontsize: | 82% v

& More settings

Figure 1-8. The phpMyAdmin page

Note that if you have changed the port from the default port, you may need to add the port number
when bring up phpMyAdmin. For example, if you changed the port to 8080, the address for phpMyAdmin is

now as follows:

http://localhost:8080/phpMyAdmin/

14

CHAPTER 1 * CREATE AND TEST A DATABASE AND TABLE

Click the User accounts tab in phpMyAdmin (Figure 1-9).

phpMyAdmin
Qe e
Recent Favorites
(=r

g New
(#. ; information_schema
#-3 mysql
#. ; performance_schema
3@ phpmyadmin
CIEE st

B G0 Server 127.00.1

) Databases [SQL (& Status =% Useraccounts =} Export [Import 4* Settings

User accounts overview User groups

User accounts overview

A user account allowing any user from localhost to connect is present. This will prevent other users from connectit

21
L]
User name Host name Password Global privileges ¢ User group Grant Action

O Any % No USAGE No £ Editprivileges =} Export
U Any localhost No USAGE No £ Editprivileges — Export
O pma localhost No USAGE No & Editprivileges =] Export
L} root 127001 No ALL PRIVILEGES Yes g Editprivileges] Export
L root 1 No ALL PRIVILEGES Yes & Edit privileges = Export
L) root locathost Yes ALL PRIVILEGES Yes £ Edit privileges] Export
t__ (O Checkall Withselected: & Export

Figure 1-9. The phpMyAdmin User accounts tab

Click the Edit privileges link to the right of the last entry, root localhost. An Edit privileges page will
display (Figure 1-10). Click the Change password link at the top of the page.

phpMyAdmin
HEloo e
Recent Favorites
e

[New
[#. | information_schema
[+ | performance_schema
.. phpmyadmin
[+ 4 test

M 1 Server 127.0.0.1

) Databases [SQL (§ Status =9 Useraccounts w4 Export [ub Import * Settings

Global Database Change p d

Login Infc

Edit privileges: User account ‘root'@ 'localhost’

/+, Note: You are attempting to edit privileges of the user with which you are currently logged in.

1 Change password
) No Password
Enter: | | Strength: Good
i®) Password: i
Re-type: |

Password Hashing: = Native MySQL authentication ¥

Generate password Genelate

Figure 1-10. phpMyAdmin Edit privileges page

15

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

Enter your password in both boxes. Click the OK button near the bottom of the page. If the password
changed, you will get a notification that it has changed. You now need to tell phpMyAdmin to use the new
password.

In XAMPP, go to your XAMPP folder on your PC. Open the folder phpMyAdmin. Now open the file
config.inc.php in Microsoft Notepad (or another text editor).

In easyPHP, go to the EasyPHP-DevServer-xx folder, go into eds-modules, and open the phyMyAdmin
folder. Now open the file config.inc.php in Microsoft Notepad (or another text editor).

Search for the following:

["auth_type'] = 'config';
Change this line to the following:
['auth_type'] = 'cookie';

Save the file.

If you are using XAMPP, go back to the control panel. Stop and restart MySQL. Go back to the
phpMyAdmin page (http://localhost/phpMyAdmin/ or http://localhost:8080/phpMyAdmin/). The page
should now require that you enter a user ID (root) and password (the one you just created).

If you are using EasyPHP, try going back into the DevServer page and restart the servers. Then click
the open button for phpMyAdmin. Enter the user ID (root) and password (the one you just created). If after
entering the user ID and password an error message indicating that mysql_native_password is missing,
follow the next directions.

Go to the EasyPHP-DevServer-xx folder, go into eds-binaries, then into dbserver, into the MySQL
folder, and finally into the bin folder. This folder contains several applications that can be used to run and
administer MySQL and phpMyAdmin. However, these applications only run in the command-line interface.
To make finding and using them easier, we are going to place this location in the Path variable for your PC.
This allows you to just execute the program you need without entering the complete path name. Go to the
URL line in your browser and double-click the address. The complete address should now be highlighted.
Right-click the highlighted address and select Copy.

Go to the search icon (bottom right of your system tray), click it, and enter system variables. Click
the Edit System Environmental Variables result. The System Properties window will appear. Click the
Environmental Variables button. In the box provided (either the top box for all users of your machine or the
bottom box for the user ID you are signed in with), select the PATH code. Then click the Edit button. Now
click the New button. A space will now be provided in the box to enter the path that you copied. Click in the
box, right-click, and select Paste (or hit Ctrl+V). The path you copied should now be in the box. Make sure it
is a complete path to the bin location. When it is correct, click the OK button. Your bin is now added to the
PATH variable. Click OK for each of the windows to close them and submit the change. Now, you will need to
shut down all your processes and reboot your machine. This will cause Windows to use the new PATH.

Once your machine is rebooted, restart the EasyPHP DevServer and make sure that the HTTP server
and mySQL server are both started. Go to the Window’s search icon and enter cmd. Then hit Enter. This will
open the command-line window. You are now finally ready to add the missing module to phpMyAdmin.

Enter mysql -u root and click the Enter key. You should now see a mysql prompt (mysql>). Enter use
mysql; (don’t forget the semicolon) and click the Enter key. This tells the server to use the MySQL database.
Enter the following line to add the missing plugin:

update user set plugin='mysql native password' where user='root';

16

CHAPTER 1 * CREATE AND TEST A DATABASE AND TABLE

You should see a message “Query OK.” Now also change the password in the command line with the
following line:

update user set Password=PASSWORD('12345') where user='root';

12345 should be replaced with the password you set previously. You should also see a message “Query
OK! All your changes should be complete. Close the mysql prompt by entering exit. Hit the X to close the
command window. Go back into phpMyAdmin and click User accounts. You should now see that the Yes flag
has been set indicating that root now has a password. Note EasyPHP still might automatically let you in to
phpMyAdmin even with the password set.

This password situation occurs with the current (as of the publish date of this book) version of the free
MySQL edition. As you noticed earlier, this does not occur in XAMPP because XAMPP is using MariaDB.

If you have any problems with these steps and want to back out, the easiest way to do so is to uninstall
the package using the uninstall program under the main package folder and then reinstall XAMPP or
EasyPHP. As said earlier, if you get error messages, copy them into a web search engine (Google) to look for
suggested solutions.

Accessing phpMyAdmin Directly

If you have installed XAMPP and the servers have been started, you can access phpMyAdmin directly by
entering the following URL in any browser:

http://localhost/phpMyAdmin/ or http://127.0.0.1/phpMyAdmin/

(Remember to include the final forward slash and the port number if you changed the default port of 80.)
If you have installed easyPHP and the servers have been started, you can access phpMyAdmin directly
by entering one of the following URLSs in any browser:

http://localhost:8080/eds-modules/phpmyadmin470x170718155219/
http://127.0.0.1:8080/eds-modules/phpmyadmin470x170718155219/

(Your actual phpmyadmin version/build might be different, which will create a different phyMyAdmin
folder.)

Be sure to include the http://; otherwise, the browser will look for the location on the Internet instead
of your PC.

Note The sections describing the use of phpMyAdmin apply to any of the development platforms: XAMPP,
WAMPServer, or easyPHP.

You might have set the password in XAMPP or EasyPHP earlier, so whenever you access phpMyAdmin,
you might need to log in using that password. This prevents Internet robots and human beings from
interfering with your database. The latter case is important if you work in an office with others—you could
have a spy or mischievous meddler in the place where you work. If you created a password for phpMyAdmin,
a dialog box will appear, as shown in Figure 1-11.

17

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

phpM yAdmln

Welcome to phpMyAdmin

—[Language }
| English v

Username:
| root]

Password: T ‘

Figure 1-11. Enter the password in the dialog box to access phpMyAdmin

Enter your username (root) and password and then click the Go button. phpMyAdmin loads rather
slowly, but it will eventually appear.

Note that open source programs are continually being improved and upgraded, and you may find that
you have a newer version of phpMyAdmin in your XAMPP or EasyPHP package than that used in this book.
You may also see upgrade messages alerting you to a new version in the phpMyAdmin main window. Where
personal data is concerned, security is paramount, so these incremental updates are a good thing for you,
though they do mean that some of the screenshots in the book might no longer accurately reflect what you
see on the screen. Don’t worry if an interface looks a little different from the ones shown in this book; the
usage will normally be similar.

The phpMyAdmin interface may look a little daunting at first, but we’ll cover the relevant parts of it
when we need to use them. For the moment, you can close the phpMyAdmin window.

You now know how to install and secure XAMPP and easyPHP, and you also learned how to start and
stop the servers. Most of what you have just read will probably be very new, but there are some parts that you
will recognize because they follow the normal Microsoft Windows organization of files and folders.

The Familiar Bits

Within the XAMPP package, the structure of the folders and files will be familiar to Windows users, although
their names may not be recognizable.

18

CHAPTER 1 * CREATE AND TEST A DATABASE AND TABLE

Figure 1-12 shows the XAMPP folders.

—

anonymous LJ apache
cgi-bin L.«J contrib

FleZiaFTP

TUoOU

b’j install l;/l licenses
LJ locale L:j mailoutput
‘;J maittodisk I:;J MercuryMail
-
L\'—J php L;J phpMyAdmin
L—J security L\-J sendmail

Figure 1-12. The folders in the XAMPP package; your list might be slightly different

In Figure 1-12, note the htdocs folder. This is where you will place all your PHP files and the HTML
pages for your website and databases.

Within the XAMPP folder, you will find a folder called MySQL. This folder contains a folder called data
where the databases and tables will reside. A database must have a unique name. A file within the data folder
contains all the information about the database, and it has the file type *.opt.

Tables are files; when you have created any tables, these will also live inside the folder named data, and
they will have the file type * frm.

In easyPHP once you open the EasyPHP--Devserver-xx folder, you will discover an eds-wwuw folder.

This is where you place all your PHP files and HTML pages. The following file path is the location of the
database files:

C:\EasyPHP-Devserver-17\eds-binaries\dbserver\mysql5717x86x170717151041 \data

Intermediate or advanced developers should consider creating virtual directories, which are
other locations for executable files. While this topic is not covered in this book, you can find additional
information on the Internet by searching for XAMPP Virtual Directory or easyPHP Virtual Directory.

Now that you're familiar with the look and feel of the tools you'll be using, you're ready to move ahead.
The next section will take you nearer to creating your first database and table.

19

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

Planning a Database: The Essential First Step

The first and most important stage is to plan the database so that you have something practical to use. Let’s
assume we need to plan a database for the membership of an organization.

First, decide on a name for the database. We will give this database the name simpledb. Remember that
the database is like an empty folder that will eventually contain one or more tables.

Then, assemble the data items into a table. We have given this table the name users.

Next, decide what information you want in the table; your decision is not binding because you can
change any part of the database during development. Let’s suppose we need five pieces of information about
the users. We set out some typical data in Table 1-1 earlier in the chapter and in Table 1-2.

Table 1-2. Draft Plan for the users Table in the simpledb Database

user_id first_name last_name email password registration_date
Kevin Kettle kev@kettle.co.uk K3ttl2fur
Susan Saucepan sue@kitchen.org.uk n@Suss
Oliver Oven oliver@cooker.co.uk HOtstsOv3

Each row in a table is called a record, and each cell is called a field. A database can contain more than
one table. We have used some fictitious names to help plan the table. The first column is labeled user _id,
and this column is additional to the five columns of data. The column user_id will be explained later; just
accept it for the moment and be sure to leave it empty. Also, leave the registration dates empty because this
is an automatic entry; it does not need values entered, nor does it need allocated space.

Now we must allocate some space for the data. Table 1-3 shows the number of characters we have
allocated for each item.

Table 1-3. Number of Characters to Allow for Column in the users Table

user_id first_name last_name email password registration_date

6 30 40 50 60

Write down or print the two tables, and keep them close at hand because you will be referring to them
in the next stages.

Now, decide on a username and password for the database, and enter that information in your
notebook. Four pieces of information are required: the name of the database, the host, the password, and the
username. In this project, these are as follows:

e Name: simpledb
e Host: localhost

e Password: Hmsv1ctOryl (this comes from hmsvictory but with an uppercase first
letter and by replacing I with 1 and o with 0 for a strong password)

° User: horatio

To generate a more secure password, phpMyAdmin includes a password generator.
Next, we will create our first database using phpMyAdmin.

20

CHAPTER 1 * CREATE AND TEST A DATABASE AND TABLE

Creating a Database Using phpMyAdmin

Open phpMyAdmin either directly as mentioned at the beginning of this section or through the XAMPP
administration page or the easyPHP dashboard. Remember, the database server must be running to use
phpMyAdmin.

Click the Databases tab in the top menu. You will then see the interface shown in Figure 1-13.

phngAdmin e Clioenver 12700

aglese) Databases =[] SQL @ Status =° Useraccounts =4 Export
Recent Favorites
— @@
—@ New Databases

4 Create database @

[simpledb| . J Collation v [Create

Figure 1-13. The phpMyAdmin interface for creating the database

Type a name for the database. For this example, it will be simpledb, all in lowercase. You should change
Collation to utf8-general-ci; the default of latin1_swedish_ci causes confusion.

Note Collations determine the type of characters, sorting abilities, performance, and other characteristics
of the data. The collation utf8-general-ci is an older standard that meets the needs of the data examples in this
book. Your data requirements may require a different collation.

Then click the Create button (set the Collation field to utf8-general-ci). After you click the Create
button, the page will switch to the create a table page. However, first we want to change the properties of the
database. Check the left arrow at the top of the page (left side). This will return to the main page. Click the
Databases tab again. Now the previous page will look similar to Figure 1-14.

21

CHAPTER 1

phpMyAdmin
t63-LONORE-
Recent Favorites

(= e

3

éﬁﬁ;«

CREATE AND TEST A DATABASE AND TABLE

™ CiiServer 127001

Databases

_p Create database @

i Database name | | Collation v

Database = Collation Action
[0 simpledb latinl_swedish_ci a7 Check privileges
Total: 1 latinl_swedish ci

Figure 1-14. In the lower part of the page, select the box near the name of your database

() Databases [] SQL (g Status =7 Useraccounts

=} Export |

P e “\
| Create |

When you select the box next to your new database, as shown in Figure 1-14, click Check Privileges, and
you will be taken to a screen where you will see a list of users who have access to the database. To make the
database secure, you must add a username and password. Click Add user account, as shown in Figure 1-15.

phpMyAdmin
@flel s

Recent Favorites

o New
=L | simpledb

rfiServer: 127.0.0.1 » @ Database:

[saL

simpledb

Structure

£ Users having access to "simpledb” I-

User name Host name Type Privileges

4, Search [J Query =} Export [Import

Grant Action

&) Add user account

Figure 1-15. The Add user account icon is at the bottom of this figure

22

[root 127.0.0.1 global ALL PRIVILEGES Yes [y Edit privileges
[J root S0 global ALL PRIVILEGES Yes & Edit privileges
[root localhost global ALL PRIVILEGES Yes g Edit privileges
il [J Checkall With selected: =} Export

1 New |

CHAPTER 1 * CREATE AND TEST A DATABASE AND TABLE

Clicking Add user account will load the Add user account screen, shown next in Figure 1-16.

phpMyAdm,'n R Server 127.0.0.1
oo e J Databases [| SQL & Status =% Useraccounts =4 Export |« Import J* Settings
Recent Favorites
= &
& New Add user account

+_ | simpledb

1 Login Information

User name:
Use text field ~ | | horatio
Host name:
Local ~ | | localhost @
Password:
Use text field: Vv | sssssssssss Strength:] Good

Re-type: |

Authentication Plugin
ug! Native MySQL authentication v

Generate password:
£ Generate

1 Database for user

[Create database with same name and grant all privileges

[J Grant all privileges on wildcard name (_%).
Grant all privileges on database simpledb.

Figure 1-16. This screen enables you to add a user and a password

Caution Adding a username and password is essential; otherwise, your database will be insecure and
vulnerable to attack by unscrupulous individuals or their robots. This is the most important habit to cultivate.
Be sure to record the user and password details in your notebook. Make sure to create a strong password
that includes a combination of lowercase and uppercase, numbers, and special characters. Keeping a detailed
record will save you hours of frustration later.

Using the drop-down menus, accept the default Use text field in the first field and enter the username in
the field to right of it. In the second field labeled Host, select local. The word localhost will appear in the field
on the right. Localhost is the default name for the server on your computer. Enter a password in the third
field, and confirm your password by retyping it in the lower field. The Generate Password button will create a
random strong password if you want something unique and more secure.

Scroll down to Database for user account, and click Grant all privileges on database. Because you are
the webmaster, you need to be able to deal with every aspect of the database; therefore, you need all the
privileges. If you add other users, you need to restrict their privileges by deselecting boxes such as Drop,
Delete, and Shutdown.

23

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

Scroll down to the bottom of the form, and click the OK or Go button. You have now created the
database and secured it against attack. The database can be regarded as an empty folder that will eventually
contain one or more tables.

Note If you get lost when using phpMyAdmin and can’t see what you should do next, always click the little
house at the top of the left panel. Hover over the icon to ensure that it is the Home button.

Now we will create our first table.

Create a Table Using phpMyAdmin

Now let’s work with the phpMyAdmin web page to insert one or more data tables into a database. This page
will give you complete control over your table(s), including troubleshooting and backing up.

Click the name of your new database; you will find it on the left panel. You will then see the screen
shown in Figure 1-17.

phngAdmfn rfiServer: 127.0.0.1 » @ Database: simpledb
aFo&e W Structure [SQL 4 Search [J Query =} Export [Import
Recent Favorites
=le /1, No tables found in database.
& New
-8 simpledb { [d Create table

Name: |users Number of columns: | 6

Figure 1-17. Click the Go button at the bottom of the page to create the table

Enter a name for the table, and specify the number of columns. Then click the Go button at the bottom
of the page. You will be taken to a screen showing the columns flipped 90 degrees so that columns look like
rows; this is shown in Figure 1-18. The fields are empty and waiting for you to define the table.

24

CHAPTER 1 * CREATE AND TEST A DATABASE AND TABLE

Structure | sQL v Search Query =+ Export = Import Operations = Privileges #% Routines (& Events 3 Tnggers ® Tracking 43 Designer % Central colu
| Table name add |1 | wlumas (6o
Structure
| Hame Type 44 Length/Values Default Collabon Aftributes Null index A_l Comments Virtuality
INT ~ Hore e v w D v l:l w
Pk o Cermral Cotumra
NT ~ Hort ~ ~ ~ E] v D ~
Pack om Caetral Colmne
INT ~ Hone ~ ~ ~ D ~ D v
Bacx o Careral Colmrs
INT ~ Nore w w v i b D b
ax o el Coumre
INT ~ Hore ~ ~ ~ E] ~ D ~
Pick Som Cartral Cotrs
e % o [< < [< [<
P om Cara: Conmrs
Table comments. Cellation: Storage Engine:
o InncDB ~
PARTITION definition: 4,
Partitian by L
Fartitizn -]

Figure 1-18. The six rows represent six columns. The column titles will be entered in the fields on the left.

Use the data from Tables 1-2 and 1-3 that we planned earlier, and enter the column name, data type,
and number of characters. The details for creating the users table are given in Table 1-4.

Table 1-4. The Attributes for the users Table

Column name Type Length/Value Default Attributes Null Index Al
user_id MEDIUMINT 6 None Unsigned O PRIMARY
first_name VARCHAR 30 None d d
last_name VARCHAR 40 None d O
email VARCHAR 50 None d d
password CHAR 60 None 0 |
registration_date =~ DATETIME 0 d

Accept all the default settings for each item except for the user_id. Here, you will need to select
UNSIGNED, PRIMARY, and the type; also select the A_I (auto increment) box. If you find entering the values
of 6, UNSIGNED, and PRIMARY cause your version of phpMyAdmin to produce errors (or warnings), you
can leave the default for those items. As mentioned in the later text, when you click A_I, the system will
request you select PRIMARY. MEDIUMINT will default to size 6.

The various categories under the heading Type will be explained later; the heading Length/Value refers
to the maximum number of characters. The Length/Value for the registration_date is left blank because
the length is predetermined. Do not enter anything under the headings Default and NULL. The attribute
UNSIGNED means that the user_id integer cannot be a negative quantity. The Index for the user_id is the
primary index, and A_I refers to Automatic Incrementation of the id number; as each user is registered to the

25

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

database, they are given a unique number. The number is increased by one as each new user is added. When
selecting the A_I check box, a pop-up window may ask you to verify that it is the primary index and will
request the size again. Do not put a size in the pop-up window. If you do, you will get an error. Figure 1-19
shows the screen for specifying the attributes.

Structure
Name Type & Length/values & Default & Collation Attributes Null Index Al
user_id W‘ s "NOI'IO v v unsianee & [0 .pmmmy v =B
friama l—V.nR;Z:.HM.t v] 30 None | " [v, o [--- V,: O
Iname :VARCH“R v| 40 :Nona ': L g [= O 3 ¥ O
i 7 lvarcuar 8) 1 [one v . — a] 3 o
psword M 40 [rone [g C ¥ 0O - ¥ 0O
registration_date [E’G_E;ME__'] [None =) 8 | ¥ O {--- v O

Figure 1-19. This screen allows you to specify column titles and the type of content

The rows represent columns, and they are very wide; you may have to scroll horizontally to enter some
of the information. You will find more options as you scroll right, but we will not need them for this tutorial.
How do you fill out the fields? Enter the six column titles in the fields on the left under the heading
Name. Select the type of column in the second column of fields under the heading Type. Select them from

the drop-down menus. The types used in this table are as follows:

° MEDIUMINT can store integers ranging from minus 8,388,608 to plus 8,388,607. You
could choose the next smallest category SMALLINT if the number of users will never
exceed 65,535.

e VARCHAR specifies a variable-length string of characters from 0 to 255 long.

e CHARIis a string of characters traditionally used for passwords. Be sure to size this
with 60 characters so that your PHP code can hash the passwords. The current PHP
hashing algorithm will convert a password into a hashed string of 60 characters. A
user’s password can be, say, 6 to 12 characters long, but it will still be stored in the
database as a hashed 60-character string. This will be discussed further in Chapter 2.

Note The length of hashed passwords may increase in newer editions of PHP. Make sure to research the
current hashing size before setting the length of this field in the table.

e DATETIME stores the date and time in the format YYYY-MM-DD-HH:MM:SS.

Enter the number of characters in the third column of fields under the heading Length/Values. Refer to
Table 1-4 for these numbers.

Under the heading Default, accept the default None. This field allows you to enter a default value if
you want.

26

CHAPTER 1 * CREATE AND TEST A DATABASE AND TABLE

You might need to scroll to the right to complete filling in the fields. Under the heading Attributes, use
the drop-down menu to select UNSIGNED for user_id. This ensures that the integer range becomes zero to
16,777,215. A negative quantity is not applicable for the user_id.

The next two entries concern only the user_id (Figure 1-20).

Structure
Default ¢ Collation Attributes Null Index A_lI Comments
None v v unsieneo | O | prIMARY v

Figure 1-20. Two extra entries for the user_id column

For the user_id, under the heading Index, click the drop-down menu to select PRIMARY. The user_id
should always be a primary index.

Under the heading A_I, select the topmost check box so that the user_id number is automatically
incremented when each new record is added to the database. As stated earlier, you might see a pop-up
window that will ask you to verify that it is primary and size. Do not enter a size in the pop-up window. Verify
and/or add any missing information and click OK.

Enter the additional information shown in the tables and in Figure 1-20. Once you complete entering
the information, scroll to the bottom and click the SAVE button.

Caution If you forget to select the A_I box for user_id, you will receive an error message when you later try
to enter the second record. The message will say that you are trying to create a duplicate value 0 for user_id.

Some people prefer a blend of a GUI and the command line for programming a table; phpMyAdmin
allows you to do this by using the SQL language. However, this book will mainly use the phpMyAdmin GUIL
The SQL alternative is described next. You can skip this section if you want, but we recommend that you
come back to it at some future date because you will undoubtedly come across SQL in other more advanced
books and tutorials.

The SQL Alternative

The next section describes a slightly quicker way of using phpMyAdmin for creating a database and a table.
SQL stands for Structured Query Language; it is the official language for MySQL, MariaDB, and many other
databases. You will be pleased to see that it uses plain English commands. The only problem is that it is
easier to create typographical errors or spelling mistakes in the SQL window than in the phpMyAdmin
interface shown earlier in Figure 1-19.

Using SQL, a database can be created complete with a password and username. This saves several steps.

We assume you have created the database simpledb, so we cannot use that name again. Let’s assume
that an administrator (Adrian) wants to create a database called members using the following information:

e Database name: members
e Privileges: all
e Username: adrian

e Password: stapler12

27

CHAPTER 1 © CREATE AND TEST A DATABASE AND TABLE

Figure 1-21 shows the code to create the database in the SQL window.

L7 localhost

& Status =7 Users [ud Export .} Import 4° Settings ¥ More

Run SQL query/queries on server “localhost™ &

CREATE DATABASE members;
GRANT ALL

ON members.*

TO 'adrian'

IDENTIFIED BY 'staplerlz';

Clear

Bookmark this SQL query

[Delimiter | .] () Show this query here again [JRetain query box | Go

Figure 1-21. The SQL window

In phpMyAdmin, click New on the database “tree” on the left panel of the window to notify
phpMyAdmin that you are no longer using the simpleDB database. Click the SQL tab (shown circled) to
reveal the SQL window.

The details shown in Figure 1-21 must be entered in the following format:

CREATE DATABASE members;
GRANT ALL

ON members.*

TO ‘'adrian’

IDENTIFIED BY 'stapleri2’;

Enter each item is entered on a separate line by pressing Enter at the end of each line. The SQL
keywords (like CREATE DATABASE) are traditionally in uppercase. Other items are normally entered in
lowercase. Note the semicolons and the single quotes—these are important. When you are satisfied with the
entries, click the Go button.

If you entered the code correctly, two query statements will display indicating that the database was
created and adrian was attached as the user. They will indicate an empty result set. That is OK because
nothing exists in the database.

28

CHAPTER 1 * CREATE AND TEST A DATABASE AND TABLE

Now we will create a table named users in the members database using the SQL window.
Click the members database in the database “tree” on the left panel of phpMyAdmin. If the members
database does not appear, refresh the page so that it does appear. Open the SQL window, and enter this:

CREATE TABLE users (

user_id MEDIUMINT (6) UNSIGNED
AUTO_INCREMENT,

first name VARCHAR(30) NOT NULL,
last _name VARCHAR(40) NOT NULL,
email VARCHAR(50) NOT NULL,
password CHAR(60) NOT NULL,
registration_date DATETIME,
PRIMARY KEY (user id)

);

NOT NULL shown in the previous code will require that data be entered into the field. It is a required
field. In this example, all the fields are actually required because registration_date is automatically
populated.

Figure 1-22 shows the details in the SQL window.

@ o O ﬁ ‘ 127.0.0.1:8080/eds-modules/phpmyadmind70x170718155219/db_sql.php?db=men
phpMyAdm"n rfiServer: 127.0.0.1 » @ Database: members
agleEe 1 Structure L] SQL 4 Search = [J Query =} Export
Recent Favorites
=) e i Run SQL query/queries on database members: &
=_ | members CREATE TABLE users (
New user_id MEDIUMINT (&) UNSIGNED
. AUTO_INCREMENT,
+- 1 users fname VARCHAR(30) NOT NULL,

(=L | simpledb

l__a New

#L 1 users

lname VARCHAR(40) NOT NULL,
email VARCHAR(S0) NOT NULL,
psword CHAR(40) NOT NULL,
reqiatracion_da'l:e DATETIH.E,
PRIMARY KEY (user_id)

10/):

-] Oh N b LW B =

w m

‘Clear, Format | | Getauto-saved query

[J Bind parameters &

Figure 1-22. Creating a table in the SQL window of phpMyAdmin

29

CHAPTER 1 * CREATE AND TEST A DATABASE AND TABLE

Note that the brackets are all normal brackets, not curly brackets. Press the Enter key after each line, and
remember to put the closing bracket and the semicolon at the end of the last line. Each item is separated by
a closing comma (lines 3 through 8); if your table has six columns, you should have six commas. Click the Go
button, and the table will be created.

Tip We encourage you to explore the SQL topic just described. The ability to work with SQL will be a useful
alternative sometime in the future. You can find many free tutorials by searching the Internet.

Deleting Databases and Tables

When learning, beginners often need to start over after creating a database or a table and may want to delete
earlier attempts. When you first use phpMyAdmin, you might get carried away and create several databases
and tables. Then you might decide to clear up the mess and delete some of them.

Let’s look at how to delete a database. If phpMyAdmin is not already open, start it by using one of the
methods previously shown. Select the Databases tab (shown in Figure 1-23) and then select the box next to
the database to be deleted.

phpMyAdmin

HEles e J Databases [SQL (§ Status =7 Useraccounts =} Export
Recent Favorites
(= G
% New Databases
(=L | members
New
L “d 5 Create database @
(+L s users
=L) simpledb Database name Collation v Create |
& New
(#.4 users Database « Collation Action
[0 members latinl swedish ci a7 Check privileges
& i g
[0 simpledb latinl swedish ci a- Check privileges
Total: 2 latinl swedish ci

T O Checkall With selected: (i Drop

v, Note: Enabling the database statistics here might cause heavy traffic between tt

+ Enable statistics

Figure 1-23. Deleting a database

30

CHAPTER 1 * CREATE AND TEST A DATABASE AND TABLE

When you have selected the database to be deleted, click the Drop icon (at the bottom right). You will be
asked if you really want to delete the database; go ahead and complete the deletion. Everything associated
with that database will be deleted, including its tables. If successful, a message will tell you that one database
has been dropped.

You may want to preserve a database but delete all or one of its tables. In phpMyAdmin, select the
database in the “tree” on the left panel. In the next screen, you will see the table(s); select the box next to the
table(s) you want to delete. Figure 1-24 shows the users table of the simpledb database.

phpMyAdmfn 8 flServer 127.0.0.1 » @ Database: simpledb

ofElel e V¥ Structure L] SQL 4 Search) Query =} Export [« Import
Recent Favorites " .
= | Filters i
J g B Containing the word:
|=_ 1 simpledb _
New Table = Action
[+ users [] users ¥ (7] Browse 4 Structure & Search ¢ Insert & Empty @ Drop

1table Sum

1 __ [Checkall With selected: ~

(& Print £ Data dictionary

' | d Create table

Name: Number of columns: | 4

Figure 1-24. Deleting a table in phpMyAdmin

After selecting the table to delete, click the Drop icon (to the right of the table name). You will be asked
if you really want to delete the table(s). You can choose between Drop and Cancel.

Summary

In this chapter, we defined a database and then looked at two free platforms for developing and testing
databases and PHP files. We hope you were successful in downloading and installing XAMPP or easyPHP.
We then explored phpMyAdmin and learned how to use it to create a database and a table. SQL was
investigated as an alternative method for creating databases and tables. We learned about securing both
the phpMyAdmin and databases with a user ID and password. We discovered how to delete databases and
tables using phpMyAdmin. In the next chapter, we will create and test simple interactive web pages.

31

CHAPTER 2

Create Web Pages That

Interact with Users

This chapter will demonstrate how a simple database can be linked to a web page so that the page can
interact with users. The general public will have access to the website but will not have access to the
database structure or the data contained in the tables. They will not be permitted to view the protected
pages, such as a members-only page, because they have no password until they register. However, the web
designer must provide a way for users to interact with the database to register as a member, search the
database, and change a password. The PHP language and SQL code will provide the solution.

After completing this chapter, you will be able to

We will use the simpledb database and the users table from the previous projects for our interactive

Create a database and a template for a website
Understand and use the PHP include function
Understand how a server processes a PHP page

Create an interactive template page

Create mysqli code to connect to the database

Create a registration page for members of an organization
Understand and use the PHP echo() statement

Create sticky forms

Use simple arrays

Create forms that display members’ records

Create code that hashes a password

web pages. Be aware that this tutorial is not practical or secure. It is a stepping stone to the more secure and
ambitious projects described in subsequent chapters. In practice, you would never allow ordinary members

to view a list of members. The interactive elements in this project are as follows:

Users can register as members by inserting their details into a form displayed on the
screen. The registration details would be entered into the database table and could
be used by the administrator to send regular newsletters to members.

Registered users can change their password.

© Adrian W. West and Steve Prettyman 2018

A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,

https://doi.org/10.1007/978-1-4842-3843-1_2

33

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

e Auser can view the list of members (for this project only). In later chapters, this
facility would be available only to the webmaster and (to a limited extent) the
membership secretary.

The features that make this example unsuitable for the real-world are as follows:

e No provision is made for registered members to subsequently log in to access a
special section or page. This will be dealt with in Chapter 3.

e Users should never be able to access a table of members’ details.

e At this early stage, for simplicity, limited filtering of the users’ information is
provided. The table could therefore contain faulty data and bogus e-mail addresses.

e Inthis chapter only, any user who knows a member’s e-mail address and old
password could change the member’s password.

All these security issues will be dealt with in subsequent chapters. Despite the drawbacks, the project
will provide you with valuable practice in coding and testing the pages. You will also learn more database
jargon and some basic PHP code.

Creating the Folder for Holding the Database Pages

Within XAMPP’s htdocs folder or the easyPHP’s eds-www folder, create a new subfolder named simpledb.

All the pages created in this chapter will be placed within the simpledb folder. You have a choice between
hand-coding the files from the listings supplied or loading the book’s code into the simpledb folder. (You can
download the code from Apress.com.) We recommend that you hand-code the programs for this chapter;
the files are small and won’t take too long to create. You will learn more and learn faster if you type and test
the code, especially if you make mistakes and learn to correct them.

Creating the Temporary Template

Obviously, some aspects of an interactive database must be accessible to users. That means incorporating it
into a real-world web page. We will name our web page template.php (shown in Figure 2-1). As you can see,
there is a main header, some body text, a navigation sidebar on the left, an information column on the right,
and a footer at the bottom of the page.

Your Logo | ISl EelE C

This is the Home Page This is the
Page 2 The home page content. The home page content. The home page content. The home page content.]nformatio n
The home page content. The home page content. The home page content. The home page content. column
Page 3 The home page content. The home page content. .
The home page content. The home page content. The home page content. Web dezign by
Page 4 AW West and
Page s Steve Prettyman

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS

Figure 2-1. The template

34

http://apress.com

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

In Listing 2-1, the head section contains the DOCTYPE, a page title, and a link to the Bootstrap style
sheet. The body of the page contains some PHP code, and this will be explained step-by-step at the end of
the listing.

Because the file contains PHP code (no matter how little), the file is saved with the file type .php.

Listing 2-1. Creating a Template for the Project (template.php)

<!DOCTYPE html>

<html lang="en">

<head>
<title>Template for an interactive web page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity="sha384-9gVQ4dYFwwhSjIDZnLEWnXxCjeSWFphliwGPXr1jddIhOegiulFw05qRGVFX0d]Z4"
crossorigin="anonymous">

</head>

<body>
<div class="container" style="margin-top:30px">

<!-- Header Section #1-->

<header class="jumbotron text-center row"

style="margin-bottom:2px; background:linear-gradient(white, #0073e6);padding:20px;">
<?php include('header-for-template.php'); ?>

</header>

<!-- Body Section #2-->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); ?>

</nav>

<!-- Center Column Content Section -->
<div class="col-sm-8">
<h2 class="text-center">This is the Home Page</h2>
<p>The home page content. The home page content. The home page content. The home
page content.

The home page content. The home page content. The home page content. The home page

content.

The home page content. The home page content.

The home page content. The home page content. The home page content. </p>
</div>

35

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

<!-- Right-side Column Content Section #3-->
<aside class="col-sm-2">
<php include('info-col.php'); ?>
</aside>
</div>

<!-- Footer Content Section #4-->
<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;">
<?php include('footer.php'); 2>
</footer>
</div>
</body>
</html>

Note The <?php tag informs the server that PHP code follows. The ?> tag lets the server know where
the PHP code ends. The server will pass any code between these tags to the PHP interpreter to be executed.
Code outside the tags, HTML and JavaScript code, will eventually be sent to the user’s browser without any
processing.

The PHP code shown in Listing 2-1 contains the include() function, which will now be explained.
(Strictly speaking, the include() function is a PHP language construct, but the difference is so small that we
will continue to call it a function for simplicity.)

Introducing the PHP include() Function

You will have noted that there does not seem to be enough code in Listing 2-1 to create the page displayed in
Figure 2-1. Here is the reason why.

The four pieces of PHP code shown between the <?php and ?> tags in Listing 2-1 have each pulled an
additional file into the page. The page is a combination of five files: a main file plus four external files. The
four external files are pulled into the template page using the PHP include() function.

For updating and maintaining a website, the include() function is a wonderful time-saver. Let’s suppose
you have a client website with 40 pages, and each page needs the same block of menu buttons. If your client
asks you to add or delete one menu button, normally you would have to amend 40 pages to add or delete the
button on each page. Using the include() function, you would design the website so that each page included
this line of PHP code: <?php include(‘menu.php’); ?>. This would pull the block of menu buttons into each
web page. You would design the block of buttons in another file named, say, menu.php. To add a new button
to all 40 pages, you would have to add the new button only to the one file called menu.php.

36

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

Note A PHP function is a tiny program that will perform a particular task. The include() function takes
whatever is inside the brackets and pulls it into the page at the place where the include() function is located.
PHP has two similar functions: include() and require(). They both pull a file into a page so that the file is included
in the displayed page. The difference is in the way they react to a missing or faulty file. If the file to be included
is missing or corrupt, include() will not halt the execution of a page. A warning will occur, but the page will
continue to load. In contrast, an error will occur if require() can’t find the file or the file is faulty. In this case,
the page will cease executing. Use include() for anything that is not absolutely necessary for the web page to
process properly. In this example, the page could still function without a proper header. But use require() for
loading the details of a database because the page will be of little use if the database can’t be opened.

In addition, PHP also has include_once() and require_once() functions. Both functions will determine whether
the file has already been included before. include_once() will not execute if the file has been included before,
without complaint. require_once() will not load the file again if it has already been loaded.

The four elements to be pulled into the page are the header, the block of menu buttons, the info panel on
the right side, and the footer. Included files can be any type—for instance, a .txt file, a .php file, or an .html file.
Note, your choice of file type can affect whether the code from a file can be viewed externally. HTML files can
easily be viewed within browsers. However, do not depend on a type of file ending to signal if your file should
be secured. Make sure your code is in a secured folder. An include() statement can be placed anywhere within
an HTML page as long as it is surrounded by the PHP tags; these start with the tag <?php and close with the
tag ?>. The details of the four included external files are explained in the next section.

You might also be wondering why we don’t just use a content management system (CMS), such as
WordPress, to assemble and display our page. First, this is not a CMS book, and second, you are actually
learning about how CMS systems work. They assemble pages in a similar way. Some CMS systems are
created using PHP.

The Included Header File

Figure 2-2 shows a display of the included header file.

Your Logo

Figure 2-2. The header for the template

This header is temporary. When we create an interactive version of the template, the new header will
contain an additional menu so that users can register and thereby insert their details into the simpledb
database.

37

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

Caution Don’t be tempted to create the four noninteractive pages yet (page-2.php, page-3.php, page-4.
php, and page-5.php) because, later in the chapter, these will require a new version of the header.

Listing 2-2a. Header Section of Template File (template.php)

<!-- Header Section #1-->
<header class="jumbotron text-center row"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6); padding:20px;">
<?php include('header-for-template.php'); ?>
</header>

The PHP statement in Listing 2-2a imports the contents of the header-for-template file into the page
(code shown in Listing 2-2b). In addition, Bootstrap CSS code is imported in the head section of the
template file (see the top of Listing 2-1). With Bootstrap we can reduce the amount of CSS we develop and
automatically create pages that adjust to multiple screen sizes (including smartphones). The Bootstrap
jumbotron class produces a large box for displaying important information (such as the header). We have
also centered the text (text-center) and declared the header as a row. Bootstrap rows are controlled by grids.
Each row is divided into cells to help lay out the page. This is similar to the cells and rows in a spreadsheet.
We will determine the amount of cells used for each column of our header in Listing 2-2b. We have made a
few adjustments to the default settings of the jumbotron by reducing the bottom margin (2px), changing the
background to a gradient (white to blue), and changing the padding (20px). Listing 2-2b includes the code
for the temporary header.

Listing 2-2b. Code for the Temporary Header (header-for-template.php)

<div class="col-sm-2">

</div>

<div class="col-sm-8">

<h1 class="font-bold">Header Goes Here</hi>

</div>

In Listing 2-2a, the class row was referenced in the header tag. This allows us to style a Bootstrap row
with columns. In Listing 2-2b. we create two columns: one that holds a logo and one that holds the header
text. The logo column uses two small cells (col-sm-2), and the header text uses eight small cells (col-sm-8).
The img tag also includes an img-fluid class, along with the float-left class, which allows the Bootstrap code
to resize the image on smaller devices. The header text is also bolded (font-bold).

This book assumes you have some CSS and Bootstrap programming knowledge. We will provide some
links in each chapter and in the appendix to provide additional resources. However, a great method to learn
is to adjust existing code to see how it affects the layout. You may want to spend a few minutes adjusting this
example and the following examples to see how they will change the layout of the web page.

38

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

Note We have chosen to use Bootstrap to reduce the amount of CSS code that we have to demonstrate.
Bootstrap is an open source toolkit that includes HTML, CSS, and JavaScript. This toolkit provides a responsive
grid system and prebuilt CSS/JS components. With Bootstrap, the developer can spend less time on HTML, CSS,
and JavaScript coding and more time on programming (with PHP).

In this book we will use Bootstrap classes to provide multiplatform formatting of our web pages. The toolkits
can be directly linked online (as we have done in our examples) or downloaded from the Bootstrap website.
You can adjust the default settings of many of the toolkit components using CSS. If you are not familiar with
Bootstrap, we suggest you review and reference the following sites for more information:

www . getboostrap.com

https://www.w3schools.com/bootstrap/bootstrap get started.asp

The Included Menu File

Figure 2-3 shows the included block of menu buttons.

Your Logo

Home

Page 2

Page 3
Page 4
Page 5
Figure 2-3. The included menu buttons

Listing 2-3a gives the HTML code for the menu within the template page.

39

www.getboostrap.com
https://www.w3schools.com/bootstrap/bootstrap_get_started.asp

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

Listing 2-3a. Navigation Menu of Template File (template.php)

<!-- Body Section #2-->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->

<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); ?>

</nav>

Similar to the header, the body section of the page defines a row. With the row are three columns. The
left column (col-sm-2) reserves two cells for the navigation menu. The menu will display in “pill” format (see
Figure 2-3) and is flexible for different device sizes. The one PHP statement imports the nav.php file, which
includes the actual code listing for the links (see Listing 2-3b).

Listing 2-3b. The Navigation Menu (nav.php)

<li class="nav-item">
Home
</1i>
<1i class="nav-item">
Page 2

<li class="nav-item">
Page 3
</1i>
<1i class="nav-item">
Page 4
</1i>
<li class="nav-item">
Page 5¢
</1i>

The code for the navigation section (menu) includes an unordered list with links to each of the future
pages of the website. This is a common practice to create menus with unordered lists. Each list item is
defined with a class nav-item, which is used by Bootstrap to format the menu. Each link (<a>) is defined with
a class nav-link, which formats each button for the menu. The active class is used to visually indicate which
page is currently displayed (see Figure 2-3). There is also a deactive class that will gray out a menu item.

The Included Information Column

The included information column sits on the right side of the page, as shown in Figure 2-4.

40

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

This is the
information

column

Web design by
A W West and
Steve Prettyman

Figure 2-4. Information column for inclusion in the template

Listing 2-4a gives the HTML code for the information column within the template file.

Listing 2-4a. Information Column in Template File (template.php)

<!-- Right-side Column Content Section #3-->
<aside class="col-sm-2">
<php include('info-col.php'); ?>
</aside>

The information column reserves two small cells for display (col-sm-2). The PHP include statement
pulls in the details of the information column from info-col.php (see Listing 2-4b).

Listing 2-4b. The Information Column Details (info-col.css)

<div>
<h3>This is the information column</h3>
<p>Web design by
A W West and
Steve Prettyman</p>
</div>
Listing 2-4b includes the HTML code that displays information on the right side of the page. The

information moves to the right side because the menu and the main section of the page (discussed soon) are
defined with columns and cells first before the information column is defined.

The Included Footer File

Figure 2-5 shows the included footer.

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid & HTM

Figure 2-5. The footer for inclusion in the template

41

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

Listing 2-5a gives the HTML code for the footer.

Listing 2-5a. Footer code for Template File (.php)

<!-- Footer Content Section #4-->
<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;">
<?php include('footer.php'); ?>
</footer>

The footer is also declared as a jumbotron and a row. The text is centered (text-center). In addition, the
default setting for the jumbotron is adjusted to reduce the block size to be more appropriate for a footer. The
PHP code pulls in the HTML to be displayed (see Listing 2-5b).

Listing 2-5b. The Footer (footer.php)

<p class="h6 col-sm-12">Copyright © Adrian West & Steve Prettyman 2018 Designed by
Adrian West and

Steve Prettyman Valid

CSS &

HTML5</p>

Listing 2-5b uses the Bootstrap class h6 to determine the attributes of the font used to display the text.
The paragraph tag also reserves 12 small columns (the complete width of the page) to display the footer
information.

How Does the Server Process the Page?

When an HTML file is saved as a PHP file, the .php extension alerts the server to processes the HTML as
normal but also looks out for any PHP code. The server is in HTML (copy) mode by default, and any HTML
code is sent to the browser as normal. When it finds a <?php tag, the server switches to PHP (interpret)
mode. Any PHP code is interpreted. The results of executing the interpreted PHP code are returned to the
page, not the actual PHP code itself. It continues in this mode until it encounters the PHP closing tag ?>; it
then switches back to HTML (copy) mode. This cyclic behavior continues until the end of the page of code.

The Interactive Version of the Template

In this version of the template, we will introduce interactivity by creating a new header file with an additional
menu. This menu will allow users to register and enter their details into the simpledb database. It will also
allow users to change their password and view the table of members.

Figure 2-6 shows the new header.

Header Goes Here

Figure 2-6. A registration menu is added to the header

42

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

The interactive element will be embedded in the header; therefore, the previous header is now
modified to include a menu. The new header will be named header.php, and the code is shown in
Listing 2-6.

Listing 2-6. Placing a Registration Menu in the New Header (header.php)

<div class="col-sm-2">

</div>
<div class="col-sm-8">
<h1 class="blue-text mb-4 font-bold">Header Goes Here</h1>
</div>
<nav class="col-sm-2">
<div class="btn-group-vertical btn-group-sm" role="group" aria-label="Button Group">
<button type="button" class="btn btn-secondary" onclick="location.href = 'register-page.php'" >
Register</button>
<button type="button" class="btn btn-secondary" onclick="location.href = 'register-view_
users-page.php'">
View Users</button>
<button type="button" class="btn btn-secondary" onclick="location.href = 'register-password.

php'" >
New Password</button>
</div>

</nav>

In this example, a Bootstrap vertical button group has been created (btn-group-vertical) with small
buttons (btn-group-sm). Each button within the group is defined with the HTML button tag and the
Bootstrap btn and btn-secondary classes. The on-click attribute is used to call the page requested by the
user. In later chapters, we will also see examples of using the Bootstrap navbar to create a horizontal bar of
buttons below a header.

In the template file, we will need to swap the previous included header for the new header. The
new template page will be named index.php, and it will now have two blocks of menu buttons, as shown in
Figure 2-7.

Reqgister

Vit D Header Goes Here

View Users

New Password

This is the Home Page This is the

Page 2 The home page content. The home page content. The home page content. The home page content. |nf0 rmation
The home page content. The home page content. The home page content. The home page content. COIU mn
Page 3 The home page content. The home page content.]
The home page content. The home page content. The home page content. Web design by
Page 4 AW West and
Page 5 Steve Prettyman

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS

Figure 2-7. The new home page template with two menus

43

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

The only difference in the code between the old template and the new index file is the new header
reference. The changes are shown in the following snippet of code in Listing 2-7. The complete code is
contained in the index.php file that can be downloaded from the Apress.com website.

Listing 2-7. Including the New Header in the Home Page (index.php)

<!-- Header Section -->

<header class="jumbotron text-center row"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6); padding:20px;">
<?php include('header-for-template.php'); ?>

</header>

Now you can create the four ordinary website pages, using the new template (index.php); save four
copies of the file, naming the copies page-2.php, page-3.php, page-4.php, and page-5.php. Change the
content of those pages a little so that they differ from index.php and to indicate which page the user is
viewing. You might consider changing the active nav-item (button) to the page that is currently being
viewed. The code shown previously sets the Home page navigation button to active.

Connecting to the Database

Before we can do anything in the database, we must connect to it. This is achieved by creating a connection
file that we will call mysqli_connect.php. The code for the connection file is given in the next snippet.

Listing for the Snippet of Code That Connects to the Database (mysqli_connect.php)

<?php
// This file provides the information for accessing the database.and connecting to MySQOL.
// First, we define the constants: #1

Define ('DB_USER', 'horatio'); // or whatever userid you created

Define ('DB_PASSWORD', 'HmsvictOry'); // or whatever password you created
Define ('DB_HOST', 'localhost');

Define ('DB_NAME', 'simpledb');

// Next we assign the database connection to a variable that we will call $dbcon: #2
try

$dbcon = new mysqli(DB_HOST, DB _USER, DB_PASSWORD, DB NAME);
mysqli set charset($dbcon, 'utf8'); // #4
// more code will go here later

}

catch(Exception $e) // We finally handle any problems here #3
// print "An Exception occurred. Message: " . $e->getMessage();
print "The system is busy please try later";

}

catch(Error $e)

{
//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";

}

>

44

http://apress.com

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

Save the file as mysqli_connect.php, and place it in the XAMPP htdocs or the easyPHP eds-www folder.

Note When a database is set up on a remote host, this file is placed one level above the root folder for
security. Not protecting this file can lead to DOS attacks. Leaving this file located in a public area of the web
server will allow anyone to use the code to access the database. Place the file one level above the program
code, in an area secured by the web server (or in another secured folder). Use a require statement similar to
require('../mysqlconnect.php'); to access your connection information. The examples in this book access the
connection file from the same location as the code files. This is done for easy testing but should not be done in
a live environment on a publicly accessible web server.

In this book the catch messages used are for debugging. Live sites should not display error messages
to the user. A generic message (as shown in the previous listing) should be displayed to the user. Users
will be much more willing to come back to a site that is currently “busy” than a site that is displaying error
messages. These error messages can also be a security breach by possibility displaying code lines that may
cause errors.

Explanation of the Code

The mysqli_connect.php file contains some code conventions that you may not be familiar with, so let’s
briefly run through them here.
Single-line comments begin with a double forward slash or with a hash symbol—for example:

// more code will go here later
more code will go here later

Constants are fixed definitions created by using the keyword DEFINE.
DEFINE ('DB_USER', 'horatio');

Variables like $dbcon are memory storage devices for containing information that can be made to
vary; they are preceded by a dollar symbol. Variables are created using the following format: $var = some_
information. The equal sign is called an assignment operator; it assigns what is on the right side of the equal
sign to the variable on the left side. The example assigns some information to the variable $var.

We will now examine the code using the line numbers as references.

// First, we define the constants: #1
Define ('DB_USER', 'horatio'); // or whatever userid you created

Define ('DB_PASSWORD', 'Hmsvictory'); // or whatever password you created

Define ('DB_HOST', 'localhost');

Define ('DB_NAME', 'simpledb');

As a convention, not a rule, programmers create constant names with all capital letters. This helps to
identify which items are constants (which cannot be changed while the program is running) and which
items are variables (can be changed while the program is running). In PHP, we can also tell that an item is a
variable if it has the dollar sign as the first character. It is good practice to place your DEFINE code lines near
the top of your program code. This makes it easy to find when you must change a value. For example, if you
need to change a tax rate.

45

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

Note If you did not create a user ID and password for the simpledb database, the user ID will be root, and
the password will be "" (two quotes with no spaces in between them).

// Next we assign the database connection to a variable that we will call $dbcon: #2
try
{

$dbcon = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB NAME);

// more code will go here later

The text following the dollar sign can be anything that is relevant to the information held in the
memory. For instance, the variable for connecting to our database in the listing is named $dbcon. This
was chosen to signify a connection to a database; it could be $connect_db or any other text that indicates a
connection to the database. Some programmers prefer to use camel case ($dbCon), where the first word is
lowercase and any words that follow begin with an uppercase letter. Others keep all words lowercase, and
some even use an underscore (_) between the words ($db_con). It does not matter what style you use. Just
be consistent and name your variables in the same style.

We use the host, username, password, and database name that we defined earlier to connect to the
database.

The try block (everything between the { } is considered to be in a block) will “throw” any problems
(errors or exceptions) into a catch block for the program to handle.

catch(Exception $e) // We finally handle any problems here #3
{

//print "An Exception occurred. Message: " . $e->getMessage();
print "The system is busy please try later";

}

catch(Error $e)

{
//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";

}

For testing purposes, sometimes we will display the error and exception messages that may occur. In
production, we would replace the print statements with a generic message to the user, such as “System
currently not available, please try later” Allowing users to see error messages gives them a feeling that the
design of your website is poor, is vulnerable, and can crash frequently. Users who see error messages on
websites usually leave the site and do not return. However, in today’s environment, it is not unusual to see a
generic “System currently busy or not available” type message. Many sites now limit the number of users to
keep from hackers trying to flood and crash the site.

It is also a major security breach to let users see any error messages. These messages may reveal code
that provides actual locations of items, such as the database itself. This information, along with a timestamp,
should be passed to a log file to assist the system administrator.

You may see example code on the Internet or older books with the PHP database code that uses OR die.
This has been a PHP standard since the beginning of time. However, with the release of PHP 7, the designers
are encouraging all developers to use the industry-standard try/catch format. Also, when using OR die,
you cannot capture all exceptions and errors. With try/catch, you can now do so. In PHP 7, the developer is
encouraged to use the mysqli (instead of mysql) method to connect and access databases. It is considered
the most secure method of access.

46

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

We have changed the HTML-encoded language from the default to utf-8 as suggested in Listing 2-8. The
connection to the database must also include code that indicates the correct encoded language. The type of
encoded language used on the HTML page must match the encoded language used in the database table.
Inconsistent matches can cause problems, including invalid search results.

mysqli_set_charset($dbcon, 'utf8'); #4

(Note that the format is different from the code set in an HTML document because it does not include
the hyphen as in utf-8.)

Next, we need some pages for the header’s new menu to call. These pages will contain the interactive
features. The pages will allow users to register, allow users to view a table of the registered persons, and
permit a password to be changed.

The Registration Page

Caution When you finally migrate a database to a remote host, be sure to comply with the Data Protection
Act for your territory or country, and state clearly on the registration page that the user’s personal details will
not be shared or sold to other organizations. The rules covering the protection of data vary from country to
country, and it is essential that you read them and comply with them. Usually, any person within an organization
who can access users’ details must sign a document agreeing never to share personal information. An annual
registration fee might be required to the government organization that regulates the data protection law. These
precautions do not apply to experimental databases using fictitious data such as those described in this book.

The registration page allows users to enter their personal details directly into a table in the database.
Figure 2-8 shows the interface.

Register

Your Logo

View Users

MNew Password

Register T

Page 2 First Name: First Name information
column
Page 3
Last Name: Last Name Web design by
Page 4 AW West and
Page 5 E-mail: E-mail Steve Prettyman
Password: Password

Between 8 and 12 characters.

Confirm Password: Confirm Password

Register

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS

Figure 2-8. The registration page

47

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

When the user clicks the Register menu button on the new header, the page shown in Figure 2-8 is
displayed. If the user fills out the form correctly and then clicks the Register button (below the entry fields),
the user’s entries are entered in the users table in the database. A “thank you” page is then displayed.

Note that the Register and New Password buttons on the registration page are now redundant because
the user has already accessed the registration page. Obviously, the user does not yet have a password to
change. The redundant buttons will be left in place for all the examples in this chapter to avoid complicating
the instructions. The redundant buttons will be removed or changed in the next two chapters.

Now we will examine the code for the entire registration page.

Listing 2-8a. Creating the Registration Page (register-page.php)

<!DOCTYPE html>
<html lang="en">
<head>
<title>Template for an interactive web page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity="sha384-9gV04dYFwwiSjIDZnLEWNXCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<script src="verify.js"></script>
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section -->
<header class="jumbotron text-center row"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6); padding:20px;">
<?php include('header.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); ?>

</nav>

<!-- Validate Input
<?php
if ($_SERVER['REQUEST METHOD'] == 'POST") { //#1
require('process-register-page.php');
} // End of the main Submit conditional.
?>
<div class="col-sm-8">
<h2 class="h2 text-center">Register</h2>

48

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

<form action="register-page.php" method="post" onsubmit="return checked(); > <l--#2 -->
<div class="form-group row">

<label for="first name" class="col-sm-4 col-form-label">First Name:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="first name" name="first name"
placeholder="First Name" maxlength="30" required
value="<?php if (isset($_POST['first name'])) echo $ POST['first name']; ?>" >
</div>
</div>

<div class="form-group row">
<label for="last name" class="col-sm-4 col-form-label">Last Name:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="last name" name="last_name"
placeholder="Last Name" maxlength="40" required
value="<?php if (isset($ POST['last name'])) echo $ POST['last name']; ?>">
</div>
</div>

<div class="form-group row">
<label for="email" class="col-sm-4 col-form-label">E-mail:</label>
<div class="col-sm-8">
<input type="email" class="form-control" id="email" name="email"

placeholder="E-mail" maxlength="60" required
value="<?php if (isset($ POST['email'])) echo $ POST['email']; ?>">

</div>

</div>

<div class="form-group row">
<label for="password1" class="col-sm-4 col-form-label">Password:</label>
<div class="col-sm-8">
<input type="password" class="form-control" id="password1" name="password1"
placeholder="Password" minlength="8" maxlength="12"
required value="<?php if (isset($ POST['passwordi'])) echo $ POST['passwordi']; ?>">
Between 8 and 12 characters.
</div>

<div class="form-group row">
<label for="password2" class="col-sm-4 col-form-label">Confirm Password:</label>
<div class="col-sm-8">
<input type="password" class="form-control" id="password2" name="password2"

placeholder="Confirm Password" minlength="8" maxlength="12" required
value="<?php if (isset($_POST['password2'])) echo $_POST['password2']; ?>">

</div>

</div>

49

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

<div class="form-group row">
<div class="col-sm-12">
<input id="submit" class="btn btn-primary" type="submit" name="submit"
value="Register">
</div>
</div>
</form>
</div>

I-- Right-side Column Content Section #3 -->
<?php
if(lisset($errorstring)) {

echo '<aside class="col-sm-2">";

include('info-col.php');

echo '</aside>';

echo '</div>"';

echo '<footer class="jumbotron text-center row col-sm-14"

style="padding-bottom:1px; padding-top:8px;">";
else

echo '<footer class="jumbotron text-center col-sm-12"

style="padding-bottom:1px; padding-top:8px;">";

include('footer.php');
?>
</div>
</body>
</html>

Explanation of the Code

The basic structure of the code is the same as the index file. The differences occur in the body, specifically in
the center column that now contains the form for the user to register.

<?php

if ($_SERVER['REQUEST METHOD'] == 'POST') { //#1
require('process-register-page.php');

} // End of the main Submit conditional.

>

In PHP, forms can be processed either by the form submit attribute passing the information to a
separate PHP program or by including PHP code within the same file as the form. In this example, we
technically have included the PHP code in the same file, because we are pulling in the code from the
process-register-page file. We also know this because the action attribute of the form is calling the file itself
(form action="register-page.php”) instead of another file (see partial listing next). If the submit button has
been clicked, the PHP code in the process register file is executed. If the user has not clicked the submit
button (probably the first time the page has been displayed), the form is shown. Let’s take a look at the
form itself.

50

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

<form action="register-page.php" method="post" onsubmit="return checked();> <I--#2 -->
<div class="form-group row">

<label for="first name" class="col-sm-4 col-form-label">First Name:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="first name" name="first name"
placeholder="First Name" maxlength="30" required
value="<?php if (isset($_POST['first name'])) echo $ POST['first name']; ?>" >
</div>
</div>

The register-page submits to itself when the user clicks the submit button. When submitted, the form
calls the JavaScript function checked() to verify the passwords. The code for this function is listed here:

function checked() {
if (document.getElementById('passwordl').value ==
document.getElementById('password2').value) {
document.getElementById('message').style.color = 'green’;
document.getElementById('message').innerHTML = 'Passwords match';
return true;
} else {
document.getElementById('message').style.color = 'red';
document.getElementById('message').innerHTML = 'Passwords do not match';
return false;

This code was imported from the verify.js program along with the Bootstrap CSS code. If the passwords
match, the code is submitted. If the passwords do not match, an error message is displayed, allowing the
user to correct the problem.

The PHP code, which we will see next, will verify the information the user has provided and insert it
into the database. There is a lot that happens within each element (such as the first_name textbox) of the
form. The first_name textbox has a label attached that uses four small Boostrap grid cells. The textbox uses
eight small grid cells. The form and textboxes are formatted by Boostrap using the form-control class. The
maximum length of a first name that can be entered by the user is 30 characters. The required attribute tells
HTML that the user must enter information into the textbox before the information will be submitted.

The one line of PHP code, marked as #2, creates a sticky element that saves any entries made by the
user. This allows the page to retain any entries when it is reloaded. Every time the user clicks the submit
button, the page is reloaded. Normally this would wipe out any entries since HTML pages do not retain
information (disconnected data). When the user submits the form, the information is passed to the server
via the POST method. We can retrieve any element that has been passed by the form using the $_POST
method and the name of the element ($_POST['first_name']). The PHP code uses isset to determine whether
there was an entry in the first_name textbox. If there was an entry, the value that was passed is glued
back into the textbox. This allows the user to see what they entered originally and to respond to any error
messages and correct problems without having to completely retype the entries. The other textboxes work in
a similar way.

51

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

Note Displaying information from $_POST directly to a web page can open a risk that hackers can use
to manipulate web pages, attempt CSRF/XSS attacks, and manipulate the data in databases. As the chapters
progress, the data sanitation and security will increase to reduce the chances of security breaches. The code in
this chapter is not meant to be used on a live site.

I-- Right-side Column Content Section #3 -->
<?php
if(lisset($errorstring)) {

echo '<aside class="col-sm-2">";

include('info-col.php');

echo '</aside>';

echo '</div>";

echo '<footer class="jumbotron text-center row col-sm-14"

style="padding-bottom:1px; padding-top:8px;">";

}

else

{
echo '<footer class="jumbotron text-center col-sm-12"
style="padding-bottom:1px; padding-top:8px;">";

}

include('footer.php');

Error message(s) will be produced if the information entered does not validate. As you will see in the
PHP code explained soon, most errors messages are placed in the variable $errorstring. If this variable exists,
one or more errors exist. When this occurs, the right column (see #3 in the previous code) is not displayed to
provide space for the error message(s). The column size of the footer is also slightly adjusted.

Now let’s look at the PHP code that validates the information the user provided.

Listing 2-8b. Validating the Registration Page (process-register-page.php)

<?php
// This script is a query that INSERTs a record in the users table.
// Check that form has been submitted:
$errors = array(); // Initialize an error array. #1
// Check for a first name: #2
$first name = trim($_POST['first name']);
if (empty($first name)) {
$errors[] = 'You forgot to enter your first name.';
}
// Check for a last name:

$last name = trim($_POST['last name']);
if (empty($last name)) {

$errors[] = 'You forgot to enter your last name.';
¥

// Check for an email address:
$email = trim($_POST['email']);
if (empty($email)) {
$errors[] = 'You forgot to enter your email address.';
}

52

try {

//

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

// Check for a password and match against the confirmed password: #3
$passwordl = trim($ _POST['passwordi']);

$password2 = trim($ _POST['password2']);

if (lempty($passwordi)) {

if ($passwordl !== $password2) {
$errors[] = 'Your two passwords did not match.';
}
} else {
$errors[] = 'You forgot to enter your password.';
} if (empty($errors)) { // If everything's OK. #4

// Register the user in the database...
// Hash password current 60 characters but can increase

$hashed_passcode = password_hash($passwordl, PASSWORD DEFAULT); //#5
require ('mysqli_connect.php'); // Connect to the db. /7#6
// Make the query: #7

$query = "INSERT INTO users (userid, first name, last name, email, password,
registration_date) ";

$query .="VALUES(' ', 2, 2, 2, 2, NOW())"; /148
$q = mysqli_stmt_init($dbcon); /7#9
mysqli_stmt_prepare($q, $query);
// use prepared statement to ensure that only text is inserted
// bind fields to SQL Statement
mysqli stmt bind param($q, 'ssss', $first name, $last name, $email, $hashed passcode);

execute query

mysqli stmt_execute($q);

if (mysqli_stmt_affected_rows($q) == 1) { // One record inserted #10
header ("location: register-thanks.php");
exit();

} else { // If it did not run OK.
// Public message:
$errorstring = "<p class="text-center col-sm-8'
style="color:red'>";
$errorstring .= "System Error
You could not be registered due ";
$errorstring .= "to a system error. We apologize for any
inconvenience.</p>";
echo "<p class=" text-center col-sm-2'
style="color:red'>$errorstring</p>";
// Debugging message below do not use in production
//echo '<p>' . mysqli error($dbcon) . '

Query: ' . $query . '</p>';
mysqli close($dbcon); // Close the database connection.
// include footer then close program to stop execution
echo '<footer class="jumbotron text-center col-sm-12"
style="padding-bottom:1px; padding-top:8px;">
include("footer.php");
</footer>';

exit();

53

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

catch(Exception $e) // We finally handle any problems here #11
{

// print "An Exception occurred. Message:
print "The system is busy please try later";

. $e->getMessage();

catch(Error $e)

{

//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";
}
} else { // Report the errors. #12
$errorstring = "Error! The following error(s) occurred:
";
foreach ($errors as $msg) { // Print each error.
$errorstring .= " - $msg
\n";

}

$errorstring .= "Please try again.
";
echo "<p class=" text-center col-sm-2' style='color:red'>$errorstring</p>";
}// End of if (empty($errors)) IF.

>

Note At this point, beginners may be mystified because they are more familiar with code that steps through
a page from top to bottom. In the preceding example of interactive code, the beginner would expect the form
fields to be at the top of the page of code. In fact, they come last in the listing (after the PHP code that has been
imported via the require method). There is a main if statement (if (§_SERVER['REQUEST_METHOD'] == 'POST")
{) that controls the flow of the program. If the user has already been to the page and clicked the submit button,
the if statement is true, and the PHP code is executed (from the included file; process_register_page.php in the
previous example). If this is the first time the user has visited the page, the if statement is false. Thus, the HTML
code within the else part of the statement is executed. HTML5 code will also do some limited verification of
information entered by the user before the form submitted and the PHP code can be executed. In addition, the
PHP code will verify that what was received from the web page is “good,” verified, and sanitized information.

It may seem that we are duplicating effort by verifying the information twice. However, using HTML5 (and
maybe some JavaScript) to do a first attempt to verify information reduces server calls and speeds up the
verification process. We still need to verify the information again on the server because it can be manipulated,
intentionally or not, before it arrives.

Explanation of the Code

Many of the PHP statements were explained by comments in the listings, but some items need further
comment. The PHP code might look horribly complicated, but we will break it apart into smaller pieces to
help you understand it. Let’s begin now.

$errors = array(); // Initialize an error array. #1

54

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

An array is a method to store multiple items of similar information into one storage location. In our
example, we are using the array to store any error messages. The previous line initiates the array and gives
it the name $errors. Technically, $errors is now pointing to an area in memory that has been reserved for
the array. Some additional information on arrays and their use is given at the end of this chapter and in the
appendix.

// Check for a first name: #2
$first name = trim($first name);
if (empty($first name)) {
$errors[] = 'You forgot to enter your first name.';
}

An element in a global variable such as $_POST[‘first_name’] is always enclosed in square brackets. This
is a feature of super global variables. Technically everything that is passed from our form to the PHP code is
passed into a post array (the reason we used square brackets instead of round ones). We then use the POST
super global statements to retrieve what we want from the array.

The code beginning with $first_name = trim is an instruction to trim (remove) any spaces or other
white spaces from the beginning and end of the user’s first_name entry. Spaces at the beginning and end of
input data are unwanted characters. The trimmed first_name is then assigned to the variable $first_name.
We should do additional removal of invalid characters for strong security. However, for now, let’s keep it as
simple as possible. The format shown earlier is also used for the last name and e-mail.

Note Any variable taking the $_POST[] format, such as $_POST['first_name'], is a global variable—it
is accessible to that page on the website. Ordinary variables have the format $first_name, and they can be
accessed only by loading the page in which they appear. $_POST will pull the information passed from the
HTML form via a post array that has been automatically populated when the user clicked the submit button.
The variable name contained in the square brackets (first_name) must match the NAME parameter of the HTML
input statement exactly.

// Check for a password and match against the confirmed password: #3
$passwordl = trim($ POST['passwordi']);
$password2 = trim($ POST['password2']);
if (lempty($password1)) {
if ($passwordi !== $password2) {
$errors[] = 'Your two password did not match.';
}

} else {
$errors[] = 'You forgot to enter your password.';
}

Both of the new passwords are trimmed of unnecessary spaces. If password1 is not empty (lempty),
then the comparison of the two new passwords is performed. The !== (one ! and two =) symbols determine
whether the passwords entered in the form are the same. This format of the not equals ensures that the
uppercase and lowercase are the same. It also ensures that the data types (string compared to integer) are the
same. If the passwords are not the same, an error message is placed in the error array to be displayed later.

if (empty($errors)) { // If everything's OK. #4

55

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

This block of code is in the successful section. This section starts the registration process when all the
fields have been filled out correctly—in which case the $errors array is empty. The line is saying “Because
there are no errors, we can connect to the database and insert the user’s data.”

$hashed_passcode = password_hash($password, PASSWORD DEFAULT); //#5

We must make sure that any passwords are as secure as possible. The previous code uses the PHP
password hashing method to convert the password entered by the user into a secure password. PASSWORD _
DEFAULT will always contain the most current PHP hashing code available. In the database table we have
set the password field to hold 60 characters. In the future, new hashing techniques might require you to
increase the size of this field.

require ('mysqli_connect.php'); // Connect to the db. //#6

In this line, the database connection is made with require() instead of include() so that the script will
run if the connection is made, but it will not run if no connection is available. This is because there is no
point continuing if the database is not accessible because data cannot be inserted into its table. We use
require() when something vital is to be included. We could have used require_once here since we want to
pullin this code only one time to establish the connection to the database.

// Make the query: #7
$query = "INSERT INTO users (userid, first name, last name, email, password,
registration date) ";

If a successful connection to the database is achieved, this line prepares the data for entry into the
table called users. The word query sometimes means “query,” but most often it means “Do something.” In
this case, it means “Insert a new record using the following data...” The line is saying “Insert into the table
named users, under the column headings labeled userid, first_name, and so on...” The query is assigned to
avariable $query. Line #7 and line #8 are, in fact, SQL prepared queries. This demonstrates how well HTML,
PHP, and SQL work together.

$query .="VALUES(' ', 2, ?, 2, 2, NOW())"; //#8

This piece of SQL code provides a holding place for the data to be entered. We are using a prepared
statement because it will never execute data that has been bound to the locations (where the ? marks exist).
This keeps hackers from being able to insert additional SQL statements into our SQL string in an attempt
to destroy our data. Note that the first value is deliberately empty (quotes with an empty space in between)
because it is the field that is automatically incremented and entered by the MySQL or MariaDB database
management system, not by the user. The NOW function automatically places the data and time into the
registration_date column in the database table.

$q = mysqli_stmt_init($dbcon); /7#9
mysqli stmt prepare($q, $query);

// use prepared statement to ensure that only text is inserted

// bind fields to SQL Statement

mysqli stmt bind param($q, 'ssss', $first name, $last name, $email, $hashed passcode);

// param must include four variables to match the four s parameters

// execute query

mysqli stmt execute($q);

56

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

The connection string from the previously included file (mysqli_connect.php) is attached to mysqli and
can be referenced with the $q variable. The $query string is then declared as a prepared statement (which
indicates that variables will be inserted into the code) and is associated with the database connection
string. The variables ($first_name, $last_name, $email, $hashed_passcode) are attached to the prepared
SQL statement. Note the s symbol indicates each individual variable contains a string. To indicate numeric
information, you can use i (integer) or d (double). b is also available for BLOB. The statement is then
executed against the database table.

if (mysqli_stmt_affected rows($q) == 1) { // One record inserted #10
header ("location: register-thanks.php");
exit();

If the operation was a success, the database will be closed. Then the header method will replace the
current registration page with a “thank you” page. The header method produces an HTML Get message to
request the page. The exit command will close down the current page since it is no longer in use.

catch(Exception $e) // We finally handle any problems here #11

// print "An Exception occurred. Message:
print "The system is busy please try later";

. $e->getMessage();

catch(Error $e)

{
//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";

}

If there is an error in executing the SQL commands or some other error or exception, the flow of the
code will jump into the catch blocks to handle the problem. As mentioned, for testing we can display our
errors, but when we switch to production, we will display a generic “System currently not available” message
and log the problems in an error log.

} else { // Report the errors. #12

$errorstring = "Error! The following error(s) occurred:
";

foreach ($errors as $msg) { // Print each error.
$errorstring .= " - $msg
\n";

}

$errorstring .= "Please try again.
";
echo "<p class="text-center col-sm-2' style='color:red'>$errorstring;</p>";
}// End of if (empty($errors)) IF.

If there are user errors (invalid entries), messages will exist in the $error array. The else structure is
implemented when there are entries in the array. The foreach loop cycles through the $errors array, and if it
finds any error messages, it is then displayed (echoed) on the screen (foreach is one word without a space).

The $errorstring variable is checked in the HTML code to determine whether to display the right
column. If there are errors, the right column is not displayed to make room for the error messages.

You might be wondering why we are creating PHP code that does a similar validation to the HTML5
code shown. PHP code is interpreted and executed on the server. HTML code is executed in the browser.
Even if the code is validated in the browser, it might get corrupted on its path to the server PHP program.
You should validate with HTML (and JavaScript) for quicker validation and response to the user. It also cuts
down on server calls.

57

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

The PHP Keyword echo

The keyword echo appears in many places in the previous code. It is the PHP way of telling a browser

to “Display something on the screen.” Some designers use the alternative keyword print, but this book
will usually use echo because we have found that beginners confuse this with the command for sending
something to an inkjet or laser printer; hard-copy printing is something that PHP cannot do.

Note Any HTML code that you want can be placed in an echo statement. The echo writes the content into
the HTML document (virtually, not literally) so that it can be displayed in a browser.

Beginners can be puzzled by the behavior of echo when a line break is required. For instance, the
following code displays no line space:

echo "I found that PHP ";
echo "was much easier to learn than Perl";

Browsers display this as follows:
I found that PHP was much easier to learn than Perl

To push the second line down, you must insert the line-break tag,
, as follows:

echo "I found that PHP
";
echo "was much easier to learn than Perl";

Browsers display this as follows:
I found that PHP was much easier to learn than Perl

The “Thank You” Page

Figure 2-9 shows the “thank you” page.

Register
MNew Password
Thank you for registering This is the
Page 2 On the Home Page, you will now be able to login and add new quates to the message board. information
Pages column
Web design by
Page 4 AW West and

Steve Prettyman
Page 5 o

Copyright & Adrian West 8 Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid CS5 & HTMLS

Figure 2-9. The “thank you” page

58

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

The registration page calls up the “thank you” page with the PHP header statement. You will find this in
the successful section of the registration page’s code. For convenience, we repeat it here:

$dbcon->close();
header ("location: register-thanks.php");
exit();

Listing 2-9 shows the entire “thank you” page code.

Listing 2-9. Creating the “Thank You” Page (register-thanks.php)

<IDOCTYPE html>
<html lang="en">
<head>
<title>Template for an interactive web page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity="sha384-9gv04dYFwwiSjIDZnLEWNXCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section --»>
<header class="jumbotron text-center row"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6); padding:20px;">
<?php include('header.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); ?>

</nav>
<!-- Center Column Content Section -->
<div class="col-sm-8 text-center">
<h2>Thank you for registering</h2>
On the Home Page, you will now be able to login and add new quotes to the message board.
<!-- login does not yet work, nut will in the next chapter -->
</div>
<!-- Right-side Column Content Section -->
<aside class="col-sm-2">
<?php include('info-col.php'); ?>
</aside>
</div>
<!-- Footer Content Section -->
<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;">

59

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

<?php include('footer.php'); ?>
</footer>
</div>
</body>
</html>

Asyou can see, the page was created from the template with just a few changes. This keeps the
consistency that should occur with a website. We will now look at what happens when invalid information is
received at the server. We will use an array to display error messages.

Displaying Error Messages That Are Collected in an Array

If invalid information (empty values) are received in all the fields on the server, multiple errors will be
created. The corresponding error messages are inserted into the errors array. These are then displayed so
that the user is aware of the situation. It would be annoying if only the first error was shown and then, after
clicking the Register button a second time, the second error was displayed, and so on.

Figure 2-10 shows an example of an error that would be displayed if this situation occurs.

Your Logo

= Error! The following "
Home
ENm REGisies

Page 2 - Your two password First Name: John
did not match.
Page 3 Pl .
oS 20, Last Name: Smith
Page 4
Page 5 E-mail: jsmith@outcook.com
Password: sssssnse

Between 8 and 12 characters.

Confirm Password: sssscsse

Register

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid CSS & HTMLS

Figure 2-10. The errors displayed if the user failed to enter any data

The errors are displayed on the Registration page. As mentioned previously, the right column
is removed when user errors occur to provide an area to display the messages. Errors might indicate
that somehow the data was corrupted between the browser and the server. If the user enters incorrect
information and hits the submit button, the HTML5 and JavaScript code will handle most of the validation
situations and display error messages. If you want to test more server error messages, remove the required
attributes from each of the HTML textboxes.

60

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

Hashing the Password

All passwords must be hashed to keep hackers from discovering them. Starting with PHP 5.5, the developers
have created a new password hashing (encoding) method. This method is deemed safe and is one of the best
ways to hash passwords. The format is as follows:

$hashedPassword = password hash($passwordi, PASSWORD DEFAULT);

In this example, $passwordl is the unhashed version of the password. PASSWORD_DEFAULT is a PHP
constant. As security changes, the PHP developers plan to keep the coding format the same and change the
PHP constant to represent any new hashing schemes. The password_hash method will convert the password
entered by the user into a secured hashed password that can then be saved in a database table. We will
discover later that we must use the password_verify method to determine whether a user entered password
will match a hashed password stored in the database.

Viewing Members’ Records

When a user has registered, the website administrator can use phpMyAdmin to view the table and its entries.
Let’s suppose a user registered on April 26, 2018, and they entered the following information:
First name: Steve Last name: Johnson, Email: sjohnson@sjohnson.com, and Password: aaaaaaaa
phpMyAdmin will allow you to view each record in the user table. Access phpMyAdmin, select the
simpledb database, click the users table, and then click the Browse tab. Figure 2-11 shows Steve Johnson’s
entries.

1= w userid first_name last_name email password registration_date
m & Edt §é Copy © Delete 1 Stew Johngon schnson@spohnson com $2y§ 10SIEmRKPYRWNLEE CibmpTY OuiZeZDYuCnZKRMEBAQ6nR . 2018-04-26 15 11 58

Figure 2-11. Viewing a record in phpMyAdmin

Note that the password aaaaaaaa is hashed as $2y$10$IEmRKPYfu/Nb6ECtbmp7YOulZeZDYuCn
ZKRmEBnQ6nRHDKJHdEgMK.

Often website designers and database administrators who do not have access to phpMyAdmin may also
need to view a table of database entries created by all the registered users. The next example provides the
information for doing this.

The View Users Page

When the View Users button is clicked, a table of registered users is displayed, as shown in Figure 2-12.

61

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

Your Logo

These are the registered users This is the

Page 2 information
Name Date Registered

ks column
Johnsan, Steve April 26, 2018 Web design by

Page 4 AW West and

Page 5 Rosolt, Mike April 28, 2018 Steve Prettyman
Dee-Deest, Tweedle April 28, 2018
Versary, Annie April 28, 2018
Farnsbams, Charley April 28, 2018

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS
Figure 2-12. A table of users is displayed

The table is displayed when the user clicks the View Users button on the top-right menu. Listing 2-10
shows the code for displaying the table of users.

Listing 2-12. Displaying a Table of Registered Members on the Screen (register-view-users.php)

<IDOCTYPE html>
<html lang="en">
<head>
<title>Template for an interactive web page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity="sha384-9gVQ4dYFuwhSFIDZnLEWNXCjeSWFphIiwGPXr1jddIhOegiulFwO5qRGVFX0d]Z4"
crossorigin="anonymous">
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section --»>
<header class="jumbotron text-center row"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6); padding:20px;">
<?php include('header.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); ?>

62

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

</nav>
<!-- Center Column Content Section -->

<div class="col-sm-8">

<h2 class="text-center">These are the registered users</h2>
<p>
<?php
try {
// This script retrieves all the records from the users table.
require('mysqli_connect.php'); // Connect to the database.
// Make the query:
// Nothing passed from user safe query #1
$query = "SELECT CONCAT(last name, ', ', first name) AS name, ";
$query .= "DATE_FORMAT(registration date, '%M %d, %Y') AS ";
$query .= "regdat FROM users ORDER BY registration date ASC";
$result = mysqli_query ($dbcon, $query); // Run the query.
if ($result) { // If it ran OK, display the records.
// Table header. #2
echo '<table class="table table-striped">
<tr><th scope="col">Name</th><th scope="col">Date Registered</th></tr>";
// Fetch and print all the records: #3
while ($row = mysqli_fetch_array($result, MYSQLI_ASSOC)) {
echo '<tr><td>' . $row['name'] . '</td><td>' . $row['regdat'] . '</td></tr>'; }

echo '</table>'; // Close the table so that it is ready for displaying.
mysqli free result ($result); // Free up the resources.

} else { // If it did not run OK.
// Error message:
echo '<p class="error">The current users could not be retrieved. We apologize';
echo ' for any inconvenience.</p>';
// Debug message:
// echo '<p>' . mysqli error($dbcon) . '

Query: ' . $q . '</p>';
exit;
} // End of if ($result)
mysqli_close($dbcon); // Close the database connection.

catch(Exception $e) // We finally handle any problems here

// print "An Exception occurred. Message:
print "The system is busy please try later";

. $e->getMessage();

}
catch(Error $e)
{
//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";
}
>
</div>

<!-- Right-side Column Content Section -->
<aside class="col-sm-2">
<?php include('info-col.php'); ?>

63

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

</aside>
</div>
<!-- Footer Content Section -->
<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;">
<?php include('footer.php'); 2>
</footer>
</div>
</body>
</html>

Explanation of the Code

You will have seen most of the code before, but here is an explanation of the new items:

// Make the query:

// Nothing passed from user safe query #1
$query = "SELECT CONCAT(last name, ', ', first name) AS name, ";

$query .= "DATE_FORMAT(registration date, '%M %d, %Y') AS ";

$query .= "regdat FROM users ORDER BY registration_date ASC";

$result = mysqli_query ($dbcon, $query); // Run the query.

if ($result) { // If it ran OK, display the records.

The SQL query selects and strings together (concatenates) the last name, then a comma, then the first
name, as well as selecting the registration data. It sets the temporary headings for these as name and regdat. It
rearranges the registration dates in the format month-day-year. It uses the select query to extract the information
from the users table. Finally, it requests that each row of information be displayed in ascending (ASC) date order
(oldest first). To display the records with the latest registrations first (descending order), you use DESC instead
of ASC. Since the query is not gathering any information from the user, we do not need to create a prepared
statement, passing in variables as shown in the registration page. This query string cannot be hacked.

// Table header. #2
echo '<table class="table table-striped">
<tr><th scope="col">Name</th><th scope="col">Date Registered</th></tr>";

This block of code displays (echoes) the table using the Bootstrap classes table and table-stripped to
format the display. The column headers, Name and Date Registered, are also declared as the first row of the
table displayed.

// Fetch and print all the records: #3
while ($row = mysqli fetch array($result, MYSQLI ASSOC)) {
echo "<tr><td>' . $row['name'] . "</td><td>' . $row['regdat'] . '</td></tr>'; }

This block of code loops through the rows and displays them while row data from the database table
is available. MYSQLI_ASSOC creates an associative array. A PHP associative array uses keys (words) for
indexes. For example, $row['name'] contains the concatenated first name and last name pulled from the
users table (see #1).

Users sometimes want to change their password. The next section demonstrates how this is done.

64

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

The Change Password Page

When the user clicks the New Password button on the menu at the top right of the header, the form shown in
Figure 2-13 appears.

Your Logo

Change Password This is the

Page2 E-mail: jsmith@outcook.com information
column
Page 3
Current Password: ssssssee Web design by
T AW West and
Page 5 New Password: Password Steve Prettyman

Between 8 and 12 characters.

Confirm Password: Confirm Password

Change Password

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid CSS & HTMLS

Figure 2-13. The change password form

The form is suitable only if the user knows their current password and e-mail address. If they have
forgotten their password, a different approach is needed that will be discussed in a later chapter. However,
this “new password” page is useful if the user does not like the password they originally chose. Listing 2-13a
gives the HTML code for the change password form.

Listing 2-13a. Creating a Page to Allow Users to Change a Password (change-password.php)

<!DOCTYPE html>
<html lang="en">
<head>
<title>Template for an interactive web page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity="sha384-9gV04dYFwwhSjIDZnLEWnXxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGvFX0d]Z4"
crossorigin="anonymous">
<script src="verify.js"></script>
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section -->
<header class="jumbotron text-center row col-sm-14"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6); padding:20px;">
<?php include('header.php'); ?>

65

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); ?>

</nav>
<!-- Validate Input -->
<?php
if ($_SERVER['REQUEST METHOD'] == 'POST') {
require('process-change-password.php'); //#1
} // End of the main Submit conditional.

>
<div class="col-sm-8">
<h2 class="h2 text-center">Change Password</h2>
<form action="change-password.php" method="post" name="regform"
id="regform" onsubmit="return checked();">
<div class="form-group row">
<label for="email" class="col-sm-4 col-form-label">E-mail:</label>
<div class="col-sm-8">
<input type="email" class="form-control" id="email" name="email"
placeholder="E-mail" maxlength="60" required
value="<?php if (isset($ POST['email'])) echo $ POST['email']; ?>">
</div>
</div>
<div class="form-group row">
<label for="password" class="col-sm-4 col-form-label">Current Password:</label>
<div class="col-sm-8">
<input type="password" class="form-control" id="password" name="password"
placeholder="Password" minlength="8" maxlength="12"
required value="<?php if (isset($_POST['password'])) echo $ POST['password']; ?>">
</div>
</div>
<div class="form-group row">
<label for="password1" class="col-sm-4 col-form-label">New Password:</label>
<div class="col-sm-8">
<input type="password" class="form-control" id="password1" name="password1i"
placeholder="Password" minlength="8" maxlength="12"
required value="<?php if (isset($_POST['passwordi'])) echo $ POST['passwordi']; ?>">
Between 8 and 12 characters.
</div>
<div class="form-group row">
<label for="password2" class="col-sm-4 col-form-label">Confirm Password:</label>
<div class="col-sm-8">
<input type="password" class="form-control" id="password2" name="password2"
placeholder="Confirm Password" minlength="8" maxlength="12" required
value="<?php if (isset($_POST['password2'])) echo $_POST['password2']; ?>">
</div>
</div>

66

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

<div class="form-group row">
<div class="col-sm-12">
<input id="submit" class="btn btn-primary" type="submit" name="submit"
value="Change Password">
</div>

</div>

</form>

</div>

<!-- Right-side Column Content Section -->

<?php

if(isset($errorstring)) {

echo '<footer class="jumbotron text-center col-sm-12"

style="padding-bottom:1px; padding-top:8px;">";
else

echo '<aside class="col-sm-2">";

include('info-col.php');

echo '</aside>';

echo '</div>";

echo '<footer class="jumbotron text-center row col-sm-14"

style="padding-bottom:1px; padding-top:8px;">";

include('footer.php');
?>
</footer>
</div>
</body>
</html>

Explanation of the Code

This section gives an explanation of the code.

if ($_SERVER['REQUEST_METHOD'] == 'POST") {
require('process-change-password.php'); //#1
} // End of the main Submit conditional.

The HTML for the change password page is similar to the HTML for the register page. The main
difference is the PHP code is now imported from the process-change-password file. Let’s take a look at the
contents of this file in Listing 2-13b.

Listing 2-13b. Processing the Changed Password (process-change-password.php)

<?php

// This script is a query that UPDATES the password in the users table.
// Check that form has been submitted:

if ($_SERVER['REQUEST METHOD'] == 'POST") {

require ('mysqli_connect.php'); // Connect to the db.

$errors = array(); // Initialize an error array.

// Check for an email address:

67

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

$email = trim($_POST['email']);
if (empty($email)) {

$errors[] = 'You forgot to enter your email address.';
}

// Check for a password and match against the confirmed password:
$password = trim($ _POST['password']);
if (empty($password)) {
$errors[] = 'You forgot to enter your old password.';
}

// Prepare and check new password
$new_password = trim($_POST['passwordi']);
$verify password = trim($_POST['password2']);
if (lempty($new password)) {
if (($new_password != $verify password) ||
($password == $new_password))

{
$errors[] = 'Your new password did not match the confirmed password and/or ';
$errors[] = 'Your old password is the same as your new password.';

}
} else {

$errors[] = 'You did not enter a new password.';
}if (empty($errors)) { // If everything's OK.
try {

// Check that the user has entered the right email address/password combination:

$query = "SELECT userid, password FROM users WHERE (email=?)";
$q = mysqli_stmt_init($dbcon);
mysqli_stmt_prepare($q, $query);
// use prepared statement to ensure that only text is inserted
// bind fields to SQL Statement
mysqli stmt bind param($q, 's', $email);
// execute query
mysqli stmt_execute($q);
$result = mysqli stmt get result($q);
$row = mysqli_fetch_array($result, MYSQLI_ASSOC);
if ((mysqli_num rows($result) == 1)
88 (password verify($password, $row['password'])))
{ // Found one record
// Change the password in the database...
// Hash password current 60 characters but can increase
$hashed passcode = password _hash($new_password, PASSWORD DEFAULT);
// Make the query:
$query = "UPDATE users SET password=? WHERE email=?";
$q = mysqli_stmt_init($dbcon);
mysqli_stmt_prepare($q, $query);
// use prepared statement to ensure that only text is inserted
// bind fields to SQL Statement
mysqli stmt bind param($q, 'ss', $hashed passcode, $email);
// execute query
mysqli stmt_execute($q);
if (mysqli_stmt_affected rows($q) == 1) { // one row updated
// Thank you

68

#1

#2

//#3

4

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

header ("location: password-thanks.php");
exit();
} else { // If it did not run OK. #5
// Public message:
$errorstring = "System Error!
 You could not change password due ";
$errorstring .= "to a system error. We apologize for any inconvenience.</p>";
echo "<p class="text-center col-sm-2' style='color:red'>$errorstring</p>";
// Debugging message below do not use in production
//echo '<p>' . mysqli error($dbcon) . '

Query: ' . $query . '</p>';
// include footer then close program to stop execution
echo '<footer class="jumbotron text-center col-sm-12"
style="padding-bottom:1px; padding-top:8px;">
include("footer.php");
</footer>";
exit();
}

} else { // Invalid email address/password combination.

$errorstring = 'Error!
 ';

$errorstring .= 'The email address and/or password do not match those
on file.';
$errorstring .= " Please try again.";
echo "<p class="text-center col-sm-2' style='color:red'>$errorstring</p>";
3
catch(Exception $e) // We finally handle any problems here
{

// print "An Exception occurred. Message:
print "The system is busy please try later";

. $e->getMessage();

catch(Error $e)

{
//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";
}
} else { // Report the errors. #6

//header ("location: register-page.php");
$errorstring = "Error! The following error(s) occurred:
";
foreach ($errors as $msg) { // Print each error.
$errorstring .= " - $msg
\n";
}

$errorstring .= "Please try again.
";
echo "<p class=' text-center col-sm-2' style='color:red'>$errorstring</p>";
}// End of if (empty($errors)) IF.

} // End of the main Submit conditional.

>

Explanation of the Code

This section explains the code.

// Prepare and check new password #1
$new_password = trim($_POST['passwordi']);

69

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

$verify password = trim($_POST['password2']);

if (lempty($new password)) {
if (($new_password != $verify password) ||
($password == $new_password))

{
$errors[] = 'Your new password did not match the confirmed password and/or ';
$errors[] = 'Your old password is the same as your new password.';
}

} else {
$errors[] = 'You did not enter a new password.';

The first two lines of code trim any blank spaces from the strings. In later chapters, we will verify that
the password is in a proper format. However, for now, we are using prepared statements; thus, any coding
the user attempts to insert into the textboxes will not be executed. If the two new passwords match, the new
password is placed in $password. If they do not match, an error is sent back to the web page.

(

// Check that the user has entered the right email address/password combination: #2
$query = "SELECT userid, password FROM users WHERE (email=?)";
$q = mysqli_stmt_init($dbcon);
mysqli_stmt_prepare($q, $query);
// use prepared statement to ensure that only text is inserted
// bind fields to SQL Statement
mysqli stmt bind param($q, 's', $email);
// execute query
mysqli stmt_execute($q);
$result = mysqli stmt_get result($q);
$row = mysqli_fetch_array($result, MYSQLI_ASSOC);

If all verifications are successful, we must make sure that the user provided an existing e-mail and
password. The #2 line in the previous code creates a prepared select statement that pulls the user IS and
password from the users table using the e-mail provided. If the SQL statement returns a result, we have
verified that the e-mail exists in the database.

if ((mysqli_num rows($result) == 1) //#3
88 (password verify($password, $row['password'])))
{ // Found one record

// Change the password in the database...

// Hash password current 60 characters but can increase
$hashed passcode = password _hash($new_password, PASSWORD DEFAULT);
// Make the query:

$query = "UPDATE users SET password=? WHERE email=?";

$q = mysqli_stmt_init($dbcon);

mysqli_stmt_prepare($q, $query);

// use prepared statement to ensure that only text is inserted
// bind fields to SQL Statement

mysqli stmt bind param($q, 'ss', $hashed passcode, $email);

// execute query

mysqli stmt_execute($q);

70

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

If we have gotten a result from the database table, we also need to verify that the password is correct.
The if statement uses the function password_verify to compare the old password with the password in the
table. This is necessary because the password stored in the table is hashed and the password provided by the
user is not hashed. If they match, the new password is hashed. A prepared SQL update query is created to
change the password within the users table. This query is then executed.

if (mysqli_stmt_affected rows($q) == 1) { // one row updated #4
// Thank you
header ("location: password-thanks.php");
exit();

If the SQL update query is successful, the “thank you” page is displayed. The header function calls the
password thanks page using an HTML Get command. The current page is closed using the exit method.

} else { // If it did not run OK. #5
// Public message:
$errorstring = "System Error!
 You could not change password due ";
$errorstring .= "to a system error. We apologize for any inconvenience.</p>";
echo "<p class="text-center col-sm-2' style='color:red'>$errorstring</p>";
// Debugging message below do not use in production
//echo '<p>" . mysqli_error($dbcon) . '

Query: ' . $query . '</p>';
// include footer then close program to stop execution
echo '<footer class="jumbotron text-center col-sm-12"
style="padding-bottom:1px; padding-top:8px;">
include("footer.php");
</footer>";
exit();

If no rows were changed, the query did not execute successfully. The else statement captures this
situation and displays a System Error statement. Since this is a serious error, the page is provided with a
footer and the code is closed (exit()). This will close any access to the database and will not let any other
code execute. Debugging code that will provide more information on the problem is listed in comments.
This code should never be activated in live code. The error information provided might display code and
database connection information, which would be a major security violation.

} else { // Report the errors. #6
//header ("location: register-page.php");
$errorstring = "Error! The following error(s) occurred:
";
foreach ($errors as $msg) { // Print each error.
$errorstring .= " - $msg
\n";
}

$errorstring .= "Please try again.
";
echo "<p class=' text-center col-sm-2' style='color:red'>$errorstring</p>";
}// End of if (empty($errors)) IF.

The last section of code is similar to the registration page. It displays any error messages caused when
the user entered invalid information. These errors are provided on the same page as the form to allow the
user to make corrections and resubmit the information.

71

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

Confirming a Successful Password Change

If the password change is successful, the page shown in Figure 2-14 is displayed.
The page shown in Figure 2-14 is similar to the registration “thank you” page. The code can be viewed
from your downloaded files for this chapter.

Register

Your Logo

View Users

New Password

Thank you for changing your password This is the
Page 2 On the Home Page, you will now be able to login with your new password. !l"lformatlorl
column
Page 3
Web design by
Page:3 AW West and
Page 5 Steve Prettyman

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS

Figure 2-14. The password has been changed

Testing the Tutorial’s Pages

To see the interactive pages working, double-click the XAMPP or easyPHP icon on your desktop. When the
control panel appears, check that Apache and MySQL/MariaDB are running.

Type http://localhost/simpledb/index.php into the address field of a browser and then click the
Register button so that you can enter some users.

To save you time and the effort of dreaming up fictitious people, use the suggestions provided in
Table 2-1.

Table 2-1. Suggestions for Entering Members’ Details

Name E-mail Password
Mike Rosoft miker@myisp.com Willgat3s
Olive Branch obranch@myisp.com.uk AnollyOn3
Frank Insence finsence@myisp.net P3rfum300
Annie Versary aversary@myisp.com Blrthd3yglrl
Terry Fide tfide@myisp.de Scar3dst1ff
Rose Bush rbush@myisp.co.uk R3dbl00ms

Now that you have some more data in your users table, run XAMPP or EasyPHP and use a browser to
click the menu item to display the table of registered users.

Tip No doubt you will encounter error messages as you create code and test it. For help, refer to the
troubleshooting tips in Chapter 12.

72

CHAPTER 2 * CREATE WEB PAGES THAT INTERACT WITH USERS

Earlier in this chapter, we promised more information on the use of PHP arrays. The next section will
help you understand additional aspects of this most useful feature.

More About Arrays

Arrays are used throughout this book, and if you access forums for advice on the use of PHP, you will be
confronted with many arrays.

An array is a holding place in memory for multiple similar items (such as cereals shown next). The
items are grouped together with the same variable name ($cereals). To refer to an individual element in an
array, we must use a key (subscript). In PHP, the subscript can be a number ($cereals[1]) or a string (such as
$row['name']). We will be using both formats throughout the book.

Arrays can be populated with elements in several ways. We create an array named $cereals, as follows:

<?php
$cereals = array();

2>

A few elements can be inserted into the array as follows (note that the first array element is usually zero):

<?php

$cereals = array[];
$cereals[0] = "oats";
$cereals[1] = "barley";
$cereals[2] = "corn";
$cereals[3] = "wheat";
?>

To display the elements of this array, insert the following code just before the closing tag ?>:
echo "$cereals[0] " . "$cereals[1] " . "$cereals[2] " . "$cereals[3]";?>
The display will produce the following:
Oats barley corn wheat
The echo statement concatenates the string together using the concatenation symbol (.). However, in
PHP we can also place program variables (such as $name) within quotations, as shown here:
$first name = "Fred";
$middle_name = "Adam";
$last_name = "Smith";
echo "$first _name $middle name $last _name";

PHP will also allow us to insert items into a numeric array without providing the index number.

$error[] = "One error";
$error[] = "Another error";

PHP will automatically index the first item with 0 and the second with 1. Thus, we can display the values
as follows:

echo "$error[o] $error[1]";

73

CHAPTER 2 © CREATE WEB PAGES THAT INTERACT WITH USERS

There is much more to learn about arrays. However, just this small amount of knowledge should help
you understand how we are using arrays when pulling information from a database table and when we are
loading and displaying error messages.

Caution The data entered into the database tables in this chapter are not completely filtered. They have
been deliberately stripped of most filters and cleaners so that the essential processes are uncluttered and
clearly visible. An increasing number of security and filtering features will be added in later chapters.

Summary

In this chapter, you created your first interactive pages and tested them. You learned a little more about
PHP—in particular, you should have grasped the idea of looking for and recognizing logical patterns in the
code. You learned how to use several PHP functions: include(), required(), and echo(). You also learned
many mysqli functions. You discovered the importance of PHP conditionals for creating interactive database
pages. You also learned how to check whether the user has entered information before sending the data

to the database table. In the next chapter, we will add some extra security and demonstrate how users and
an administrator can log in and log out of private pages on a website. You will also learn how to remove or
replace the redundant links in the header menus.

74

CHAPTER 3

Create Login/Logout Functionality
for Members and an Administrator/

In Chapter 2, we created the first interactive pages using a database and a table. By now, you have probably
realized that what we created was not very practical; however, you learned how to embed interactivity into
areal-world page. A more practical application is to allow registered users to log in and log out of private
pages. When users log in, they should be able to access extra features offered by the website. These could be
a page of special offers for members, or it could be the ability to add a comment in a blog, access the minutes
of meetings, or view the dates of special events for members only.

After completing this chapter, you should be able to

e (Create a new database and table

e Remove or replace menu buttons in headers

e Deal with undesirable characters from HTML textboxes

e Differentiate between two types of membership or user levels
e Create user levels to limit access to private pages

e (Create alogin and a logout page

e (Create a members-only page

e Plan for the administrator’s role

e Test the ability to log in and log out

In the previous tutorial, any user could view a table of members, but the members would not be pleased
to know that their private details are available to everybody. We must now prevent this and allow only the
administrator (such as a membership secretary) and the webmaster to view the table of members.

An administrator is a special category of user: they should be able to view the members’ table and to
amend or delete records. Computer-savvy administrators can use phpMyAdmin, but many administrators
will be membership secretaries with only basic computer skills. They will need a simple interface that
enables them to view, alter, and delete records. This chapter will teach you how to create and implement a
user-friendly interface for the administrator. Chapters 4, 5, and 6 will progressively improve this interface.

To log in to private pages on a website, registered members and the administrator must enter
information known only to them—for instance, the user’s e-mail address and password or a username and a
password. The login page will automatically check that the login details match the user’s information held in
the database. If the login details are verified, the user is admitted to the private web pages.

© Adrian W. West and Steve Prettyman 2018 75
A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,
https://doi.org/10.1007/978-1-4842-3843-1_3

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

Creating the logindb Database and users Table

The tutorials in this chapter are based on the pages created in Chapter 2. We will clarify the file structure by
using a new name for the database and for the folder containing the PHP and HTML pages. This is necessary
because we have found that if students pile modification upon modification, they can get into a terrible
muddle. Therefore, as a general rule, we will continue to use a separate folder and a new database name for
each new chapter in this book. However, a table can have the same name (for example, users) as the previous
tutorial. This is acceptable if the table is in a different database.

Let’s get started. Create a new folder and a new database as follows:

1. Inthe XAMPP htdocs or easyPHP eds-www folder, create a new folder
called login.

2. Download the PHP files for Chapter 3 from the book’s page at Apress.com
and put them in the new login folder in XAMPP htdocs or easyPHP eds-www.
Alternatively, you can practice creating the PHP and HTML listings by typing
each file in your HTML editor as you go through the chapter. Save them in your
login folder so you can run them.

3. Open phpMyAdmin.
4. Click the Databases tab.

5. Create a new database called logindb. Set the encoding, as shown in Chapter 2,
to utf8-general-ci.

6. Follow the directions from Chapter 2 to add a user, user ID, and password for the
database. Use the following attributes:

Username: william
Host: localhost
Password: CatOnlap
Database name: logindb

7. Inthe login folder, create the mysqli_connect.php file so that it connects to
logindb, as shown in the following listing:

Listing for the Snippet of Code Required for Connecting to the New Database (msqli_connect.php)

<?php

// Create a connection to the logindb database.

// Set the encoding and the access details as constants:
Define ('DB_USER', 'william');

Define ('DB_PASSWORD', 'Catonlap');

Define ('DB_HOST', 'localhost');

Define ('DB_NAME', 'logindb');

// Make the connection:

$dbcon = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);
mysqli_set_charset($dbcon, 'utf8');

>

In a live environment, this connection file would be saved in a secure folder.

76

http://apress.com

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

Note Resist the urge to copy and paste the code from PDF versions of the book. During the editing process
some symbol changes can cause the example code not to execute. The best method is to download the code
from the Apress.com website. If you do copy the code from the PDF version, drop it in Microsoft Notepad and
then save it. This does fix some of the quotation characters that maybe invalid for PHP.

8. Inthe database logindb, create a new table named users with six columns. Its
layout and attributes are the same as the users table in Chapter 2. The details are
given in Table 3-1. As stated in Chapter 2, some versions of phpMyAdmin do not
require entering the length (6) and attributes (UNSIGNED) for the primary index
(user_id). The user_id field is an autonum field, in which the database system
generates the numbers. Set up this table the same way you set up the previous
database in Chapter 2.

Table 3-1. The Attributes for the users Table

Column name Type Length/ Value Default Attributes NULL Index Al
user_id MEDIUMINT 6 None Unsigned 0O PRIMARY
first_name VARCHAR 30 None d d
last_name VARCHAR 40 None O O
email VARCHAR 50 None d d
password CHAR 60 None O O
registration_date =~ DATETIME None d d

Remember to adjust the size of the password field to fit the latest hashing standards. You can find the
current PHP hashing standards here:

http://php.net/manual/en/function.password-hash.php

Now we will tidy the header menus.

Removing or Replacing Redundant Menu Buttons in the
Headers

As mentioned in Chapter 2, some header menu buttons have become redundant, and some new buttons

are needed. In this section, the header menus will be amended. We must prevent the public and ordinary
members from viewing the membership table. To achieve this, for now, we will remove the link that displays
the table of members from all the headers except the header on the administration page. We will also soon
require the administrators to log in to access their pages. We also need to remove the login link on the
members page, because the member is already logged in. We must add a logout link. The Register link is also
redundant because the members and the administrator are already registered; therefore, that menu button
will also be removed.

7

http://apress.com

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

Tip Redundant buttons are easily overlooked when you are absorbed in the coding of the database and
the website pages. Try to cultivate the habit of checking the header on each new or revised page to ensure that
there are no redundant or missing buttons.

In a “real-world” website that uses many pages, we might store the actual menu page links in a database
table and use code based on a signed-in user level (such as administrator or user) to determine which links to
provide. However, for smaller websites (like this demonstration), it is just as quick (or quicker) to create the few
extra header menus needed.

Adding a Login Button to the Home Page Header

We will now add a new button to the header menu on the home page so that members can log in. We will also
remove the View Users button because we want to arrange things so that only the administrator is able to view
the table of members (we will provide additional restrictions soon). Figure 3-1 shows the revised header.

Figure 3-1. The revised header for the home page. The New Password button has been removed, and the View
Users button is replaced with a Login button.

The View Users and New Password buttons have been removed, and a Login button is added. The
revised header will automatically be included in the nonprivate pages (page-2, page-3, and so on) because
the header file name is unchanged.

Listing 3-1 shows the code for the new header.

Listing 3-1. Revising the Home Page Header Menu (header.php)

<div class="col-sm-2">

</div>
<div class="col-sm-8">
<h1 class="blue-text mb-4 font-bold">Header Goes Here</h1>
</div>
<nav class="col-sm-2">
<div class="btn-group-vertical btn-group-sm" role="group"
aria-label="Button Group">
<button type="button" class="btn btn-secondary"
onclick="location.href = 'login.php'" >Login</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'register-page.php'"
</div>
</nav>

>Register</button>

With XAMPP or easyPHP running, enter http://localhost/login/index.php into a browser to view
the home page with the new login button, as shown in Figure 3-1.

78

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

Removing Redundant Buttons from the Registration and
New Password Headers

A new header will be required for the registration page and the new password page because the previous
headers had redundant menu buttons.

On the registration page, the user has no password and so cannot log in; therefore, the Login and New
Password buttons will be removed. The Register button is redundant because the user has already accessed
the registration page. We will now remove the redundant buttons from the header for the registration page
and replace them with something more useful. Figure 3-2 shows the new header.

Frase Entries

Cancel

Figure 3-2. The new header for the registration page and the new password page

The redundant buttons are replaced by two meaningful links, Erase Entries and Cancel. The Erase
Entries button reloads the registration page and then displays empty fields. We selected the words Erase
Entries rather than Clear or Erase All after testing the site with users who were not computer savvy. They
were confused by the Clear and Erase All wording, but they immediately understood Erase Entries.

The Cancel button returns the user to the home page. Listing 3-2a gives the revised header code for the
registration and new password pages.

Listing 3-2a. Replacing Redundant Buttons with Meaningful Buttons (register-header.php)

<div class="col-sm-2">

</div>
<div class="col-sm-8">
<h1 class="blue-text mb-4 font-bold">Header Goes Here</h1>
</div>
<nav class="col-sm-2">
<div class="btn-group-vertical btn-group-sm" role="group"
aria-label="Button Group">
<button type="button" class="btn btn-secondary"
onclick="location.href = 'register-page'" >Erase Entries</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = "index.php'">Cancel</button>
</div>
</nav>

The registration page for this chapter and subsequent chapters will be linked to the new header, as

shown in the next snippet of code in Listing 3-2b.

The Revised Registration Page

The rest of the code is the same as the registration page in Chapter 2. The revised code is included in the
downloadable files for Chapter 3.

79

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

Listing 3-2b. Including the New Header in the Registration Page (register-page.php)

<!DOCTYPE html>
<html lang="en">
<head>

<title>Template for an interactive web page</title>

<meta charset="utf-8">

<meta name="viewport"

content="width=device-width, initial-scale=1, shrink-to-fit=no">

<!-- Bootstrap CSS File -->

<link rel="stylesheet"

href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css”

integrity=
"sha384-9gV04dYFwwiSFIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGvFX0dIZ4"

crossorigin="anonymous">

<script src="verify.js"></script>
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section -->
<header class="jumbotron text-center row col-sm-14"
style=

"margin-bottom:2px; background:linear-gradient(white, #0073e6);

padding:20px;">

<?php include('register-header.php'); ?»
</header>
<!-- Body Section -->

<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->

<nav class="col-sm-2">

<ul class="nav nav-pills flex-column">
<?php include('nav.php'); ?>

</nav>

The new header will now be applied to the New Password page.

The New Header for the New Password Page

The same new header will be required for the new password page. (This was shown in Figure 3-2.)

The new password page for this chapter and subsequent chapters will be linked to the new header, as
shown in the next snippet of code in Listing 3-2c.

The Erase Entries button reloads the new password page and displays empty fields. The Cancel button
returns the user to the home page.

Listing 3-2c. Replacing Redundant Buttons with Meaningful Buttons (password-header.php)

<div class="col-sm-2">

</div>

80

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

<div class="col-sm-8">
<h1 class="blue-text mb-4 font-bold">Header Goes Here</h1>
</div>
<nav class="col-sm-2">
<div class="btn-group-vertical btn-group-sm"
role="group" aria-label="Button Group">
<button type="button" class="btn btn-secondary"
onclick="location.href = 'change-password.php'" >
Erase Entries</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'index.php'">Cancel</button>
</div>
</nav>

The included file for the header is amended in the register password file (change-password.php),
as given in the following code snippet:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Template for an interactive web page</title>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwhSjIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<script src="verify.js"></script>
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section --»
<header class="jumbotron text-center row col-sm-14"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6);
padding:20px;">
<?php include('password-header.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); ?>

</nav>

The rest of the code goes here and is unchanged from Chapter 2.

81

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

A New Header Menu for the Members page

For the members page, the Register button and the View Members button have been removed, and a Logout
button has been added, as shown in Figure 3-3.

Your Logo

Figure 3-3. The modified header menu for the members page

Note in Figure 3-3 that when a member is logged into the members page, the Login menu button
changes to a Logout button. There are several clever ways of achieving this, but the least complicated way
isto load a new header into the members page. This is effective because sometimes the special members
page also requires a slightly changed header image or text. Note also that the redundant Register and New
Password buttons have been removed from the header menu.

The new file is named members-header.php. The new Logout button has a link that sends the user to the
page named logout.php. This, in turn, sends the user to the home page. Why does the link not go directly to
the home page? Because the intermediate page logout.php contains some code for closing a session before
it accesses the home page. A session is a device that will be explained in the next section. The logout link is
shown in the following code snippet for the new header.

Listing 3-3 shows the code for the two links that remain.

Listing 3-3. Creating the New Header for the Members page (members-header.php)

<div class="col-sm-2">

</div>
<div class="col-sm-8">
<h1 class="blue-text mb-4 font-bold">Header Goes Here</h1>
</div>
<nav class="col-sm-2">
<div class="btn-group-vertical btn-group-sm" role="group"
aria-label="Button Group">
<button type="button" class="btn btn-secondary"
onclick="location.href = 'logout.php'" >Logout</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'change-password.php
</div>
</nav>

>New Password</button>

If the website has more than one page that is exclusively for members, you could add more buttons with
links to the file members-header.php; alternatively, you could put links in the body of the members page.

Amend the Header for the “Thank You” Page

When a user reaches the “thank you” page, they have registered and no longer require the Register button,
nor do they require any of the other buttons. The “thank you” page header only needs a button that redirects
the user to the home page. Figure 3-4 shows the header with the Home Page button.

82

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

IIIII::;;;::i:IIJIIIIIIIIIIIIIIIIIIIiiIiiIIIiiIIiiiIIIiii'iIIiIIiII

Figure 3-4. The revised header for the “thank you” page

The Home Page menu button in the header redirects the user to the home page (index.php), as shown
in Listing 3-4a.

Listing 3-4a. Creating the Code for the Revised “Thank You” Header (thanks-header.php)

<div class="col-sm-2">

</div>
<div class="col-sm-8">
<h1 class="blue-text mb-4 font-bold">Header Goes Here</h1>
</div>
<nav class="col-sm-2">
<div class="btn-group-vertical btn-group-sm" role="group"
aria-label="Button Group">
<button type="button" class="btn btn-secondary"
onclick="location.href = 'index.php'" >Home Page</button>
</div>
</nav>

The “thank you” page will now be amended to include the revised header. Listing 3-4b shows the
changed include statement in the “thank you” page

Listing 3-4b. Creating the Revised “Thank You” Page (register-thanks.php)

<!DOCTYPE html>
<html lang="en">
<head>
<title>Register Thanks</title>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css”
integrity=
"sha384-9gVQ4dYFuwiiSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiu1FwO5qRGVFX0dIZ4"
crossorigin="anonymous">
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section --»>
<header class="jumbotron text-center row"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6);
padding:20px;">

83

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

<?php include('thanks-header.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); ?>

</nav>

The rest of the code is unchanged from the code in Chapter 2.

The Registration Page and Undesirable Characters

We will now begin to verify that the user provided valid information. Whenever a textbox is used for user
input, it can allow the user to enter undesirable characters, which may be an attempt to provide SQL
injection (a user trying to gain access to your database) or unintended user entry errors. We will use the PHP
input filter function to sanitize the input. An example is shown here:

$first_name = filter var($_POST['first _name'], FILTER_SANITIZE_STRING);
We'll add that function to our registration page now. While we're at it, let’s also add the updated register-

header.php file that includes only the two buttons Erase Entries and Cancel.
Figure 3-5 shows the registration page with its new header.

Erase Entries

Your Logo i
Register This is the

Page 2 First Name: First Name Inflormatlon
Page 3 column

Last Name: Last Name Information area
Page 4
Page 5 E-mail: E-mail

Password: Password

Between 8 and 12 characters.

Confirm Password: Confirm Password

Register

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS

Figure 3-5. The registration page with its new header

Listing 3-5 shows the modified PHP code for filtering entries in process-register-page.php.

84

CHAPTER 3 © CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

Listing 3-5. Creating the Amended Registration Page (process-register-page.php)

<?php
// This script is a query that INSERTs a record in the users table.
// Check that form has been submitted:
try { #1
$errors = array(); // Initialize an error array.
// Check for a first name:
$first_name = filter var($_POST['first_name'], FILTER_SANITIZE_STRING);
if (empty($first name)) {
$errors[] = 'You forgot to enter your first name.';
}

// Check for a last name:
$last_name = filter var($_POST['last_name'], FILTER_SANITIZE_STRING);
if (empty($last name)) {
$errors[] = 'You forgot to enter your last name.';
}

// Check for an email address: #2
$email = filter var($_POST['email'], FILTER SANITIZE EMATIL);

if ((empty($email)) || (!filter var($email, FILTER VALIDATE EMAIL))) {

$errors[] = 'You forgot to enter your email address';

$errors[] = ' or the e-mail format is incorrect.';
}
// Check for a password and match against the confirmed password:
$passwordl = filter var($_POST['passwordl'], FILTER_SANITIZE_STRING);
$password2 = filter var($_POST['password2'], FILTER_SANITIZE_STRING);
if (lempty($password1)) {

if ($passwordi !== $password2) {

$errors[] = 'Your two password did not match.';
}

} else {
$errors[] = 'You forgot to enter your password.';

}
if (empty($errors)) { // If everything's OK.
// Register the user in the database...
// Hash password current 60 characters but can increase
$hashed passcode = password hash($passwordi, PASSWORD DEFAULT);
require ('mysqli connect.php'); // Connect to the db.
// Make the query:
$query = "INSERT INTO users (userid, first name, last name, ";
$query .= "email, password, registration date) ";
$query .="VALUES(' ', ?, 2, 2, 2, NOW())";
$q = mysqli stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// use prepared statement to ensure that only text is inserted
// bind fields to SQL Statement
mysqli stmt bind param($q, 'ssss', $first name, $last name, $email, $hashed passcode);
// execute query
mysqli stmt_execute($q);
if (mysqli_stmt affected rows($q) == 1) { // One record inserted
header ("location: register-thanks.php");
exit();

85

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

} else { // If it did not run OK.
// Public message:

$errorstring =
"<p class="text-center col-sm-8' style='color:red'>";
$errorstring .=
"System Error
You could not be registered due ";
$errorstring .=

"to a system error. We apologize for any inconvenience.</p>";
echo "<p class=" text-center col-sm-2'
style="color:red'>$errorstring</p>";
// Debugging message below do not use in production
//echo '<p>' . mysqli error($dbcon) . '

Query: '
$query . '</p>';
mysqli_close($dbcon); // Close the database connection.
// include footer then close program to stop execution
echo '<footer class="jumbotron text-center col-sm-12"
style="padding-bottom:1px; padding-top:8px;">
include("footer.php");
</footer>';
exit();
}
} else { // Report the errors.
$errorstring =
"Error!
 The following error(s) occurred:
";
foreach ($errors as $msg) { // Print each error.
$errorstring .= " - $msg
\n";
}

$errorstring .= "Please try again.
";
echo "<p class=" text-center col-sm-2'

style="color:red'>$errorstring</p>";
}// End of if (empty($errors)) IF.

}
catch(Exception $e) // We finally handle any problems here

// print "An Exception occurred. Message: " . $e->getMessage();
print "The system is busy please try later";

}

catch(Error $e)

{

//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";

}

2>

Explanation of the Code
This section explains the code.
try { #1

$errors = array(); // Initialize an error array.
// Check for a first name:

86

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

$first name = filter var($ POST['first name'], FILTER SANITIZE STRING);
if (empty($first name)) {

$errors[] = 'You forgot to enter your first name.';
}

The filter_var function with the FILTER_SANITIZE_STRING property will trim extra spaces and HTML tags
from the values entered by the user. This, in addition to the use of prepared statements, will greatly reduce the
ability for the user to use SQL injection to access the database or to enter invalid information in the database. This
code will still allow nonalphabetic characters to be entered. We will remove these characters in a later chapter.

// Check for an email address: #2
$email = filter var($ POST['email'], FILTER SANITIZE EMAIL);
if ((empty($email)) || (!filter var($email, FILTER VALIDATE EMAIL))) {
$errors[] = 'You forgot to enter your email address’;

$errors[] = ' or the e-mail format is incorrect.';

}

The filter_var function has a FILTER_SANITIZE_EMAIL property that will remove any invalid e-mail
characters. In addition, the property FILTER_VALIDATE_EMAIL will return either true or false if the e-mail
entered is in the proper format. In this code, we could have just used this property to validate the e-mail.
However, since we wanted to save the e-mail from the form into $email, we also sanitized it. There are
additional properties that can be used to sanitize and filter user input. For more information, visit this page:

www. php.net/manual/en/function.filter-input.php

Registering Some Members

At this point, you should register a few fictitious people in the database so that you will have something to
play with later in the chapter. To save you time, we have repeated the list of members from Chapter 2, and
they are shown in Table 3-2.

Table 3-2. Register Some Members

Name E-mail Password
Mike Rosoft miker@myisp.com Willgat3s
Olive Branch obranch@myisp.com.uk AnollyOn3
Frank Insence finsence@myisp.net P3rfum300
Annie Versary aversary@myisp.com Blrthd3yglrl
Terry Fide tfide@myisp.de Scar3dst1ff
Rose Bush rbush@myisp.co.uk R3dbl00ms

To maintain the security of private pages, we use a device called sessions. A session usually includes
a complete process (such as a bank transaction). For example, if a person wants to transfer money from
a savings account to a checking account, multiple actions occur. First the money is withdrawn from the
savings account, and then it is deposited in the checking account. What happens if the action does not
deposit the money? If the two actions are not bound together (via a session), the money is lost. However, if a
session exists and the action does not complete, it can be rolled back. The worst that happens is the money
never is withdrawn and deposited. Thus, the money is not lost.

87

www.php.net/manual/en/function.filter-input.php

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

In web pages, sessions can also be used to relate page content together. This allows the user to sign in
once for the whole website. The session can determine that the user already signed in and allocate them the
proper access. If a session did not exist, the user might have to sign in for each page. Other data can also be
stored within a session to allow multiple pages in the same website to share information.

The session is active in the server until the session is closed or times out. It times out after a period
(typically 20 minutes) that is set by the server administrator. The session is also closed if code is provided
to close the session (logging out), if the user browses multiple pages away from the original website, or if
the user closes the browser. However, the developer should not depend on the user closing the browser or
scrolling far enough away from the website. There should always be a way for the session to close.

Differentiating Between Two Types of Membership

The simpledb database in the previous chapter had a security problem; any nonregistered user could view
the table of members by simply accessing the website. We will now ensure that the table of members can
be viewed only by the developer and the membership secretary (the administrator) and not by the whole
world. One solution is to instruct the membership secretary how to install and use phpMyAdmin; however,
we will assume that our membership secretary is not very computer literate and does not want to learn
phpMyAdmin.

Our solution will be to restrict access to the view_table.php page and all other administrator pages so
that only the membership secretary can view them. This will be achieved by using sessions and a different
user_level number for the administrator. The administrator will be provided with a user-friendly interface so
that they can search and amend membership records.

To sum up, our rules for differentiating between types of membership will be as follows:

e Nonmembers will not be able to view private pages because users can’t log in until
they are registered.

e Registered members will be able to access members pages because they can log in.
Doing so initiates a session that allows them to open members pages.

e The administrator is the only person able to access administration pages. When they
login, the act of logging in starts a session that checks the user_level before they can
open an administrator’s page. The user_level is different from ordinary members’
user levels.

Before designing a login page, we must also create a means of differentiating between an ordinary
registered member and a member who is also the administrator. The administrator will have extra privileges.
In the next tutorial, you will learn how to add a new column with the title user_level to an existing database
table. This new column will enable us to differentiate between types of membership.

Creating User Levels to Limit Access to Private Pages

To limit access to the view table page, we will add a column to the users table called user_level. In this
column, we will give the administrator a user level number of 1. Note: If you provide the ability to set this
value via a web page, we suggest you use a less obvious value (like 999) to indicate an administrative level.
The number relates to the membership secretary’s login details and to no other person.

Access phpMyAdmin and click the database logindb. Then click the users table. Click the Structure tab.
Look below the records to find the Add symbol, next to the words Add 1 column, as illustrated in Figure 3-6.

88

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

] Browse 4 Structure [] SQL 4 Search ¥t Insert =} Export [Import = Privileges #° Operations ® Tracking

¥ Table structure 42 Relation view

MName Type Collation Attributes Null Default Comments Extra Action
B userid > mediumint(6) unsighes No None AUTO_INCREMENT 7 Change @ Drop 4% Primary [Unique
[] 2 first_ name varchar(30) utf8_general ci No None &’ Change @ Drop 0> Primary [y Unigue
] 3 last_name varchar(40) utf8_general_ci No None &7 Change @ Drop > Primary [Unique
[] 4 email varchar(60) utf8_general_ci No None & Change @ Drop > Primary [y Unique
[l 5 password char(60) utfB_general_ci No Nene &7 Change @ Drop 2 Primary [Unique
[] & registration_date datetime No None & Change @ Drop > Primary [y Unique

t [Check all With selected. |[] Browse o7 Change @ Drop 5 Primary (i Unique {Z]Index %3 Add to central columns (S5 Ren

& Print 5 Propose table structure @ @ Tracktable [Move columns j# Improve table structure

& Add |1 | column(s) | after registrat:‘on_dateB Go

Figure 3-6. The Add symbol appears at the bottom of this screen

Next, to the right of the words Add 1 column, use the drop-down menu to select registration_date.
Alternatively, select the radio button labeled At end of table and then click the Go button.
You will be taken to the screen shown in Figure 3-7.

Add columns x
Structure &
Name Type o Length/Values ¢ Default g Collation Attributes MNu
user_level | TINYINT 3| [1 | | None = | v| |unsieneo | O
LSaxsy

Figure 3-7. Creating the title and attributes for the new user_level column

Insert the new column name and its attributes as follows:
e Name: user_level
e Type: TINYINT
o Length/Value: 1
e Default: None
e Attributes: UNSIGNED

When you are satisfied with the attributes, click the Save button. The new column will be created.

89

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

The next step is to launch XAMPP or easyPHP and access the page by entering http://1localhost/
login/index.php into the address field of a browser. When the index page appears, click the Register button
on the header menu and register this user as an ordinary member, as shown here:

e First name: James

e Last name: Smith

e E-mail: jsmith@myisp.co.uk
e Password: Blacksm1th

When using the proper e-mail address and password, James Smith can view the members’ special pages
but cannot view or amend a list of members.

We will now appoint James Smith to be the membership secretary, with the right to administer the
membership list. For security, there needs a second name and a pseudo e-mail address and password to
access the administration section; therefore, we need an additional registration identity. The second e-mail
address is important because the office colleagues probably know James’ personal e-mail address. Every
effort must be made to keep the administrator’s login details secret. The e-mail address should be fictitious,
but it must conform to the accepted format for e-mails. Now register the membership secretary a second
time using the pseudonym (“Jack”), the new e-mail address, and the new password as follows:

e First name: Jack

e Last name: Smith

e E-mail: jsmith@outcook.com
e Password: DOgsb0dy

Now use phpMyAdmin to access the database logindb and the users table. Click the Browse tab, and
find the administrator Jack Smith’s record, as shown in Figure 3-8. If you click the Edit link, you will be able
to change his user_level field from 0 to 1. Click the Go button to save the change

] Browse & Structure [SQL 4 Search ¥ Insert =} Export [l Import =9 Privileges ° Operations ®

Column Type Function Null Value
usernd mediumint(6) unsigned B 18
first_name varchar(30) B Jack
last_name varchar(40) B Smith
email varchar(60) E] jsmith@outcook.com
password char{60) E] 52y5105f/absVtVFAWOCIbZ6ark0.6GT 7Ffg/T3Xobi4YrAgMc/XtiCG! |
registration_date datetime E] .2013-05-16 11:12:07 | &)
user_level tinyint(1) B 0

Figure 3-8. Find Jack Smith’s record and change user_level to 1

90

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

When James Smith logs in with the personal e-mail address and original password, the members page
will display just like any other member. This is because the original password has a user_level of zero, the same
as all other registered members. However, when James logs in the Jack e-mail address and the administrator’s
password, the administer page will be displayed because the Jack e-mail address’s user_level is 1.

A real-world administrator would ensure that nobody could ever discover the alternative e-mail address
and the new password. People contacting the administrator would use the original name and personal
e-mail address.

Tip If James Smith resigns and a new administrator is appointed, the webmaster will delete Jack Smith’s
record. A new administrator pseudonym and new password will then be assigned to James’ replacement. The
new membership secretary would be assigned an alternative (fake) e-mail address as the administrator login
with a new password. The webmaster would then set the membership secretary’s user level to 1.

Now we will create the login page and introduce some new PHP statements.

Log In

From a user’s point of view, the ability to log in or log out of a website is pointless unless it leads to some
advantage, such as a special page for members or permission to post comments in a blog. In the following
sections, we will create new pages that will interact with registered users. These will be a login page, a
members-only page, and an administrator’s page. The same login page is used for logging into either

the members pages or the administrator’s pages. You would be forgiven for thinking that the admin and
members pages are fully protected by the login process. However, imagine the following scenario.

A member has logged in to a private page and is then called away to take a telephone call. Someone
could look at the member’s computer and read the URL of the private page in the address field of the
browser. If that person then entered the URLs on their own computer, they could access the private page.
Clearly, this must be prevented. This is achieved by means of the sessions described later in this chapter.

First, we must create a header for the login page.

The Header for the Login Page

Figure 3-9 shows the login header with three menu buttons.

Your Logo Header Goes Here

Figure 3-9. The login page header

Listing 3-6 shows the code for the login header.

Listing 3-6. Creating the Header for the Login Page (login-header.php)

<div class="col-sm-2">

</div>

91

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

<div class="col-sm-8">
<h1 class="blue-text mb-4 font-bold">Header Goes Here</h1>
</div>
<nav class="col-sm-2">
<div class="btn-group-vertical btn-group-sm" role="group" aria-label="Button Group">
<button type="button" class="btn btn-secondary"
onclick="location.href = 'login.php'" >Erase Entries</button>
<button type="button" class="btn btn-secondary"

onclick="location.href = 'register-page.php'">Register</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'index.php'">Cancel</button>
</div>
</nav>

Now we need to look at a procedure for limiting access to the table of members. We will prevent general
users and registered members from viewing the table, but we will allow the administrator to view the table
and amend records.

Figure 3-10 shows the appearance of the login page.

Erase Entries

Your Logo

Cancel

Login This is the

Page 2 Email Address: Email Inflormatlon
column
Page 3
Password: Password Information area
Page4 Between 8 and 12 characters.

Page 5

Copyright © Adrian West 8 Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS
Figure 3-10. The login page

Note that the redundant buttons have been removed from the heading on this page.

The Login Page

Now that we have a user_level column, we can create the login page to include two conditionals. The
conditionals will recognize the user_level of the administrator (user_level 1) and the ordinary member
(user_level 0). When the genuine administrator logs in, they will see the administration page complete with
new menu buttons. When registered members log in, they will be redirected to the members page. The
HTML code is shown in Listing 3-7a.

Listing 3-7a. Creating the Login Page (login.php)

<IDOCTYPE html>
<html lang="en">
<head>
<title>Template for an interactive web page</title>

92

CHAPTER 3 © CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

<meta charset="utf-8">
<meta name="viewport" content=
"width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css”
integrity=
"sha3849gVQ4dYFwwWSFIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<script src="verify.js"></script>
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section --»
<header class="jumbotron text-center row col-sm-14"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6);
padding:20px;">
<?php include('login-header.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); 2>

</nav>
<!-- Validate Input -->
<?php
if ($_SERVER['REQUEST METHOD'] == 'POST') { //#1

require('process-login.php');
} // End of the main Submit conditional.
>
<div class="col-sm-8">
<h2 class="h2 text-center">Login</h2>
<form action="login.php" method="post" name="loginform" id="loginform">
<div class="form-group row">
<label for="email" class="col-sm-4 col-form-label">Email Address:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="email" name="email"
placeholder="Email" maxlength="30" required
value="<?php if (isset($ POST['email'])) echo $ POST['email']; 2>" >
</div>
</div>
<div class="form-group row">
<label for="password" class="col-sm-4 col-form-label">Password:</label>
<div class="col-sm-8">
<input type="password" class="form-control" id="password" name="password"
placeholder="Password" maxlength="40" required
value=
"<?php if (isset($_POST['password'])) echo $ POST['password']; ?>">

93

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

Between 8 and 12 characters.</p>
</div>
</div>
<div class="form-group row">
<div class="col-sm-12">
<input id="submit" class="btn btn-primary" type="submit" name="submit"
value="Login">
</div>
</div>
</form>
</div>
<!-- Right-side Column Content Section -->
<?php
if(lisset($errorstring)) {
echo '<aside class="col-sm-2">";
include('info-col.php');
echo '</aside>';
echo '</div>";
echo '<footer class="jumbotron text-center row col-sm-14"

style="padding-bottom:1px; padding-top:8px;">";
else

echo '<footer class="jumbotron text-center col-sm-12"
style="padding-bottom:1px; padding-top:8px;">";
}
include('footer.php');
?>
</footer>
</div>
</body>
</html>

Explanation of the Code

Most of the code will by now be familiar to you. Some code is explained by comments within the listing.

if ($_SERVER['REQUEST METHOD'] == 'POST') { /141
require('process-login.php');
} // End of the main Submit conditional.

One difference is that the login file pulls in the process-login code for verification of the information
entered by the user. Listing 3-7b provides the PHP login verification code.

The form is sticky—that is, the user entries are retained and redisplayed by PHP if the user makes a
mistake that triggers an error message. With the register page, the entries made by the user are verified
before being submitted to the server. If there is a problem, HTMLS5 requires the user to correct it before the
page is submitted. Thus, the data is correct before it is sent to the server. The PHP code on the server will
return error messages if the code was corrupted between the browser and server.

94

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

When someone logs in, the e-mail and password can be verified as correct only by using PHP code on
the server. The PHP server code must first retrieve the e-mail, password, and other information from the
database table. Then compare the user-entered e-mail and password with those retrieved. The PHP code
on the server (not the HTML5 code) will decide whether it is valid. If it is not valid, the code will return an
error message to the browser. Because the error message is sent back by the server, we can also return the
user-entered values of the e-mail and password to the form at the same time. This allows a more user-
friendly response, without causing any additional server calls. Listing 3-7b shows the e-mail and password
verification code.

Listing 3-7b. Verifying the Login (process-login.php)

<?php
// This section processes submissions from the login form
// Check if the form has been submitted:
if ($_SERVER['REQUEST METHOD'] == 'POST') {

//connect to database
try {

require ('mysqli_connect.php');

// Validate the email address
// Check for an email address:

$email = filter var($ POST['email'], FILTER SANITIZE EMAIL);
if ((empty($email)) || (!filter var($email, FILTER VALIDATE EMAIL))) {

$errors[] = 'You forgot to enter your email address';
$errors[] = ' or the e-mail format is incorrect.';
}
// Validate the password
$password =

filter var($_POST['password'], FILTER SANITIZE STRING);
if (empty($password)) {
$errors[] = 'You forgot to enter your password.';

}
if (empty($errors)) { // If everything's OK. #1
// Retrieve the user id, psword, first name and user level for that
// email/password combination
$query =
"SELECT userid, password, first name, user level FROM users WHERE email=?";
$q = mysqli stmt_init($dbcon);
mysqli stmt prepare($q, $query);

// bind $id to SQL Statement
mysqli stmt bind param($q, "s", $email);
// execute query
mysqli_stmt_execute($q);
$result = mysqli stmt get result($q);
$row = mysqli fetch array($result, MYSOLI NUM);
if (mysqli_num rows($result) == 1) {
//if one database row (record) matches the input:-
// Start the session, fetch the record and insert the
// values in an array
if (password verify($password, $row[1])) { //#2
session_start();
// Ensure that the user level is an integer.

95

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

$ SESSION['user level'] = (int) $row[3];
// Use a ternary operation to set the URL #3

$url = ($_SESSION['user level'] === 1) ? 'admin-page.php' :

'members-page.php';

header('Location: ' . $url);

// Make the browser load either the members or the admin page

} else { // No password match was made. #4
$errors[] = 'E-mail/Password entered does not match our records. ';
$errors[] = 'Perhaps you need to register, just click the Register ';
$errors[] = 'button on the header menu';

}

} else { // No e-mail match was made.
$errors[] = 'E-mail/Password entered does not match our records. ';
$errors[] = 'Perhaps you need to register, just click the Register ';
$errors[] = 'button on the header menu';
}
}
if (lempty($errors)) {

$errorstring =

"Error!
 The following error(s) occurred:
";

foreach ($errors as $msg) { // Print each error.
$errorstring .= " $msg
\n";

}

$errorstring .= "Please try again.
";

echo "<p class=" text-center col-sm-2' style='color:red'>$errorstring</p>";

}// End of if (lempty($errors)) IF.
mysqli_stmt_free result($q);
mysqli_stmt_close($q);

catch(Exception $e) // We finally handle any problems here

{
// print "An Exception occurred. Message:
print "The system is busy please try later";

. $e->getMessage();

catch(Error $e)

{

//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";

}

} // no else to allow user to enter values

2>

Explanation of the Code

This section explains the code.

if

(empty($errors)) { // If everything's OK #1
// Retrieve the user id, psword, first name and user level for that

// email/password combination
$query =

96

"SELECT user_id, password, first name, user_level FROM users WHERE email=?";

CHAPTER 3 © CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

$q = mysqli stmt_init($dbcon);

mysqli stmt_prepare($q, $query);

// bind $id to SQL Statement
mysqli_stmt_bind_param($q, "s", $email);

// execute query

mysqli stmt execute($q);

$result = mysqli_stmt_get result($q);

$row = mysqli fetch array($result, MYSQLI NUM);

if (mysqli num_rows($result) == 1) {

If no problems are encountered (that is, if $email and $password have been entered properly by the
user), the e-mail is used to retrieve the record from the database. It is assumed that the e-mail is unique.

if (password verify($password, $row[1])) { /1#2
session_start();
// Ensure that the user level is an integer.
$ SESSION['user level'] = $row[3];

The password_verify function must be used to compare passwords since the password stored in the
database table has been hashed. If the password from the database matches the password from the user, a
session is started. It is used to check the authorization of the person logging in. The user_level is stored in a
session variable (which is really a session array) to allow us to access it whenever we need to verify the level
of access needed. Sessions will be explained fully at the end of this explanatory section.

/ Use a ternary operation to set the URL #3
$url = ($ SESSION['user level'] === 1) ? 'admin-page.php’
'members-page.php';

header('Location: ' . $url);

// Make the browser load either the members' or the admin page

At this point, we will break the rule we set for this book: we are introducing a clever piece of shorthand
code. It is a common PHP device for choosing between two outcomes and is therefore particularly useful
and not too difficult to understand.

The word fernary has nothing to do with a reserve for seabirds of the family laridae. It is a mathematical
term used by programmers and website developers. It is the third operator in the series “unary, binary,
ternary.” In other words, ternary has three parts. The ternary operator is often called a ternary conditional
because it is a concise way of setting a conditional (if-then expression). The operator uses the symbols ?
and :. The format we are using redirects the user to either the URL for the admin page or the URL for the
members page. The code is as follows:

$url = ($_SESSION['user level'] === 1) ? 'admin-page.php’
'members-page.php';

The first part of the statement on the right (enclosed in brackets) looks at the user_level in the session array
and asks if it is identical to 1. The three equal signs mean “identical to.” If it is identical to 1, the question mark
turns the next two items into a conditional statement. It is saying “If the user_level is identical to 1, then assign
the admin-page.php to the variable named $url” The colon is the equivalent of else; therefore, if the user_level is
notidentical to 1, the $url is set to members-page.php. Remember, registered members have a user_level of 0.

The variable $url, therefore, is set to a page, and the user is redirected to that page using the familiar
header statement.

header('Location: ' . $url);

97

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

The longhand equivalent of the ternary statement is as follows:

if ($_SESSION['user level'] === 1) {
header('location: admin-page.php');
telse{

header('location: members-page.php');

}

If the user's login data does not match the data in the database table, messages are stored in the error
array as shown below.

} else { // No password match was made. #4
$errors[] = 'E-mail/Password entered does not match our records. ';
$errors[] = 'Perhaps you need to register, just click the Register ';
$errors[] = 'button on the header menu';

}

} else { // No e-mail match was made.
$errors[] = 'E-mail/Password entered does not match our records. ';
$errors[] = 'Perhaps you need to register, just click the Register ';
$errors[] = 'button on the header menu';

}

Figure 3-11 shows the error messages that are displayed.

Erase Entries

Your Logo

Register

Cancel

Error! .
Home
_ The following errar(s) Log n

Page 2 occurred: Email Address: jsmith@outlock.com
E-mail/Password

entered does not

match our records.
Perhaps you need to
Page 5 register, just click the

g
Login
button on the header

menu

Page 3
Password: esesssee

Page 4
age Between 8 and 12 characters.

Please try again.

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS
Figure 3-11. One of the error messages displayed when the login is unsuccessful

No hint is given as to which of the two entries (e-mail or password) was incorrect; this is a security
feature. For instance, if the error message stated that the e-mail address was incorrect but the password
was acceptable, a hacker would be able to concentrate on trying possible e-mail addresses. We should also
limit the number of invalid attempts to reduce the chance that a hacker can guess the right combination.
However, for now, let’s just verify the e-mail and password.

The new database logindb will allow registered members to log in and log out of a members page.
Nonregistered users will therefore be prevented from accessing the member’s page. This is not completely
secure because someone could look over the member’s shoulder and discover the file name of the member’s
page in the browser’s address field. Using that name, they could then access the member’s page, as
previously mentioned. This security loophole will be dealt with by using sessions.

98

CHAPTER 3 © CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

Sessions

Pages that need to be kept private will use a feature called sessions; therefore, sessions and their application
will now be explained. Registered members should be able to log in once per visit to the website. They
should not have to log in several times to access several private pages. The login state should persist while
the user is logged in. The period between login and logout is called a session. Additional information (such
as the user_level) can be stored as a session variable. These variables, by default, are actually stored in a
session array. These variables will no longer be available after the session is closed. If a session exists, the
web page can use these variables to provide extra features for the logged-in user.

Tip Think of a session as a sort of security pass. When a user has successfully logged in, a security pass
(a session and/or session variable) for that person is stored. A security guard is stationed at the door of each
private page. When the user tries to open a private page, the security guard on that page checks the security
pass (the session and/or session variable). If the pass confirms that the person is authorized to access the page,
the private page is opened. When a user logs out, the session and its array (containing the session variables) are
destroyed. Sessions carry with them several pieces of useful information about the user that can be accessed
and used in the private pages.

The process when using sessions is as follows:
1. Ifauserisauthorized to log in and logs in successfully, a session is created.

2. When a user tries to access a private page, the private page checks to see whether
a session for that user exists.

3. Ifthe session exists, the private page is opened.
4. Ifthe session does not exist, the user is directed back to the login page.

5. By using sessions, the server can be made to differentiate between types of users,
such as nonmembers, registered members, and administrators.

6. Logged-in users can either move to other private pages or log out. When they log
out, the session and its session array are destroyed.

A session is started as follows:

// Set the session data:
session_start();

A session is closed as follows:

}else{ //cancel the session

$ SESSION = array[]; // Destroy the variables
$params = session get cookie params();
// Destroy the cookie
Setcookie(session name(), ", time() - 42000,

$params["path"], $params["domain"],

$params["secure"], $params["httponly"]);
if (session status() == PHP_SESSION ACTIVE) { session destroy(); } // Destroy the
session itself
header("location:index.php");
}

99

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

Setting $_SESSION to array() will technically point $_SESSION to a new empty array. The old array
(containing the session variables) will no longer be associated with the current session. This will cause the
system to destroy the original array. More simply, we can say that any session variables that were created
during the session are now wiped out. Optionally session information can be stored in a cookie (not
recommended). If this option is chosen, the session_get_cookie_params function provides access to the
parameters for the active session cookie. The Setcookie function uses the time parameter to set a negative
expire time (a time that has already passed). This causes the cookie to immediate expire. The session_
destroy function destroys the session, which would also delete the session array. Some developers using
PHP 7.1+ have reported that warnings may occur if the session is already inactive. The if statement checks
the status of the session before attempting to destroy it.

The act of logging in creates a session that saves variables in an array named $_SESSION. When the user
has logged in and tries to open a private page, the PHP code checks that a session has been set up for that
user. If it has, the private page will be opened in the user’s browser.

In the following statements extracted from the code for process-login.php, the data is selected from the
database, and then a session is created if the password is correct (the e-mail is also verified because a record
would not be returned if the e-mail was not in the table). The user_level is saved into a temporary session
variable on the server for use in private pages.

$query =
"SELECT userid, password, first name, user level FROM users WHERE email=?";
$q = mysqli stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// bind $id to SQL Statement
mysqli stmt bind param($q, "s", $email);
// execute query
mysqli stmt execute($q);
$result = mysqli stmt get result($q);
$row = mysqli fetch array($result, MYSQLI NUM);
if (mysqli_num_rows($result) == 1) {
//if one database row (record) matches the input:-
// Start the session, fetch the record and insert the
// values in an array
if (password verify($password, $row[1])) {
session_start();
// Ensure that the user level is an integer.
$ SESSION['user level'] = (int) $row[3];

Tip The session_start() function and the statements checking the session must appear at the top of the
page before the HTML tag. Beginners are often puzzled by the session_start() function appearing on every
private page: why does it not start a new session to replace the existing session? The answer is that if a session
exists, the function does not start another session; instead, it checks the user’s credentials, and if they are
satisfactory, it allows the private page to load. If a session does not exist, it will start one; however, that session
is not effective, and a conditional statement sends the user back to the login page.

100

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

Sessions create a unique session ID (SID). The first time the <?php session_start(); ?> statement
is used, it establishes an SID. It registers the SID on the server and saves the information for use on any
private pages. The following is an example of the code at the start of a private page accessible only to the
administrator with a user_level number 1):

<?php
session_start();
if (lisset($ SESSION['user level']) or ($ SESSION['user level'] != 1))
{ header("Location: login.php");
exit();
}

>
<!doctype html>

The code must be at the top of the page. The code can be translated as follows: “If the session does not
exist or if the user level is not equal to 1, then the user will be sent back to the login page.”
Our next step is to create a members-only page protected by this login session.

A Members-Only Page

Download the members-page.php file from Apress.com or create the page by hand-coding it using
Listing 3-8. Figure 3-12 shows the members page created for this tutorial.

Your Logo

New Password

This is the Member's Page This is the

Page 2 The members page content. The members page content. The members page content. |nf0rmat|on
The members page content. The members page content. The members page content. colum n

The members page content. The members page content. The members page content.
The members page content. The members page content. The members page content.

Page 2

Information area
Page 4

Page Special offers to members only.
T-Shirts 10,00

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid CSS & HTMLS

Figure 3-12. The members-only page

Note the revised members’ header in Figure 3-12.
Also note the session, the redirection to the login page, and the included file for the new header are
shown in Listing 3-8.

101

http://apress.com

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

Listing 3-8. Creating the Members Page (members-page.php)

<?php
session_start(); //#1
if (!isset($_SESSION['user level']) or ($ SESSION['user level'] != 0))
{ header("Location: login.php");
exit();
}
>
<IDOCTYPE html>
<html lang="en">
<head>
<title>Template for an interactive web page</title>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFuwwhSjIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section -->
<header class="jumbotron text-center row"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6);
padding:20px;">
<?php include('header-members.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); ?>

</nav>
<!-- Center Column Content Section -->
<div class="col-sm-8">
<h2 class="text-center">This is the Member's Page</h2>
<p>The members page content. The members page content. The members page content.

The members page content. The members page content. The members page content.

The members page content. The members page content. The members page content.

The members page content. The members page content. The members page content.
</p>
<p class="h3 text-center">Special offers to members only.</p>
<p class="text-center">T-Shirts 10.00</p>
 <!--#2-->

102

CHAPTER 3 © CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

</div>
<!-- Right-side Column Content Section -->
<aside class="col-sm-2">
<?php include('info-col.php'); 7>
</aside>
</div>
<!-- Footer Content Section -->
<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;">
<?php include('footer.php'); 2>
</footer>
</div>
</body>
</html>

Explanation of the Code

This section explains the code.

<?php
session_start(); //#1
if (lisset($ SESSION['user level']) or ($ SESSION['user level'] != 0))
{ header("Location: login.php");
exit();
}

2>

The PHP session_start statement must appear immediately at the top of the code (just after the <?php
line). There should be no extra spacing (no spaces before the <?php, and the first command after it should
be the session_start()) because this can cause errors with the creation of the HTTP header for the page.
Don’t confuse this discussion of the “header” with the head section and header tag in HTML code as we
have already discussed. The header we are referring to here is created to provide information to HTTP about
the page itself. This code is generated for us, and in this situation we don’t normally have to be concerned
with it.

All private pages will begin with the session_start() function. The header redirection statement
(header()) ensures that if no session was started or the user_level was not zero, the user would be redirected
using the header command to the login page. This command creates an HTTP Get message to retrieve the
login page. The exit() function also adds to the security by ending the execution of the page immediately.
This ensures that no access is allowed to the rest of the page unless the user is properly signed in.

Optionally we could be more personal and provide a greeting specific to the user on our private pages.

$ SESSION['first name'] = (int) $row[2];

If we add this line of code right after the similar line in the login program, we can also store the user’s
first name. Remember, we don’t want to simply store all the values we retrieved because we returned the
password and do not want to store the password to be as secure as possible.

<?php

echo '<h2>Welcome to the Admin Page ';
if (isset($_SESSION['first name'])){
echo "{$ SESSION['first name']}";

103

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

}
echo '</h2>";
?>

We can modify the welcome code in the members page, as shown previously, to provide a more
personal greeting to the members page (or any other private page).

<p class="h3 text-center">Special offers to members only.</p>
<p class="text-center">T-Shirts 10.00</p>
 <!--#2-->

To provide some extra content for members, they are provided with an opportunity to purchase a polo.
The display of the h3 header is controlled by the Bootstrap h3 and text-center classes. The display of the
image is controlled by the Bootstrap mx-auto and d-block classes. These classes work together to center the
image within the column.

The next section demonstrates the importance of planning. Hasty decisions at this stage can cause
major headaches later.

Planning the Administrator’s Role

We now need to plan very carefully by considering what the membership secretary might want to do with
the website and the database.
Let’s assume the membership secretary will want to do the following:

e View the members-only page using the original member’s password
e View the table of members using the administrator’s e-mail and password
e Change the administrator’s password occasionally for extra security
To achieve these aims, we need to complete the following tasks:
e Create a new header for the administration page
e Create the administration page

The administrator’s requirements will dictate the content of the menu in the header of the
administration page.
Later, in Chapters 4 and 5, we will add extra features to incorporate the following requirements:

e Search for and edit members’ details using the administrator’s password (for
example, changing a name due to marriage). The Search button is added to the
header; this button will be functional in future chapters.

e Delete records using the administrator’s password (necessary when a member has
resigned or died).

e The administrator will also need to know the total number of members—someone
is bound to ask for them. This will be automatically displayed below the table of
members.

We will now create the administrator’s header and a private administrator’s page.

104

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

A New Header for the Administration Page

Based on the first part of the preceding plan, the header for the administration page needs five buttons:
Logout, View Members, Search, Search by Address, and New Password. Figure 3-13 shows the new header
embedded in the administrator’s page.

Vibgings Header Goes Here

This is the Administration Page This is the

e . information
Page2 You have permission to: |
Page 3 MEdit and Delete a record column
Information area
Page 4 MUse the View Members button to page through all the members
Page 5 MUse the Search button to locate a particular member

HMUse the Mew Password button to change your password.

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid CSS & HTMLS

Figure 3-13. The new header is shown embedded in the administrator’s page

The header now has five buttons. Listing 3-9a shows the new buttons.

Listing 3-9a. Creating the Administration Page Header (admin-header.php)

<div class="col-sm-2">

</div>
<div class="col-sm-8">
<h1 class="blue-text mb-4 font-bold">Header Goes Here</h1>
</div>
<nav class="col-sm-2">
<div class="btn-group-vertical btn-group-sm" role="group"
aria-label="Button Group">
<button type="button" class="btn btn-secondary"
onclick="location.href = 'logout.php'" >Logout</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'admin_view_users.php
</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = '#'">Search</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = '#'">Address</button>
<button type="button" class="btn btn-secondary"”
onclick="location.href = 'register-password.php
</button>
</div>
</nav>

>View Members

>New Password

105

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

Note The search buttons do not work because we have not yet created the search pages. We will create
the search pages in Chapter 4.

In the next step, we will add the new header and session details to the administration page. Listing 3-9b
shows the code.

The Administrator’s Page

Listing 3-9b shows the code for the administration page.

Listing 3-9b. Creating an Administration Page (admin-page.php)

<?php
session_start(); //#1
if (lisset($ SESSION['user level']) or ($ SESSION['user level'] != 1))
{ header("Location: login.php");
exit();
}
>
<!DOCTYPE html>
<html lang="en">
<head>
<title>Administration Page/title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1,
shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css”
integrity=
"sha384-9gVQ4dYFwwWSFIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section -->
<header class="jumbotron text-center row"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6);
padding:20px;">
<?php include('header-admin.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); ?>

</nav>

106

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

<!-- Center Column Content Section -->
<div class="col-sm-8">
<h2 class="text-center">This is the Administration Page</h2>
<h3>You have permission to:</h3>
<p>Edit and Delete a record</p>
<p>Use the View Members button to page through all the members</p>
<p>Use the Search button to locate a particular member</p>
<p>Use the New Password button to change your password.
</p>
</div>
<!-- Right-side Column Content Section -->
<aside class="col-sm-2">
<?php include('info-col.php'); ?>
</aside>

</div>
<!-- Footer Content Section -->
<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;">

<?php include('footer.php'); ?>
</footer>
</div>
</body>
</html>

Explanation of the Code

This section explains the code.

<?php //#1
session start();
if (lisset($ SESSION['user level']) or ($_SESSION['user level'] != 1))
{ header("Location: login.php");
exit();
}

>

Again, session_start is a security guard and is included at the top of the code to allow only those who
are properly signed in with the correct user_level (1) access to the page. If they are not properly signed in or
do not have user_level 1 clearance, they will be redirected to the login page. exit() assures that they cannot
proceed further in the page.

The Logout Page

The next page enables users to log out. The code destroys the session when it is no longer required.
This is not a page that is visible to users. It acts as an intermediary page between the login page and the
home page. Listing 3-9c shows the code.

107

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

Listing 3-9c. Creating the Logout Code (logout.php)

<?php

session_start();//access the current session. #1
// if no session variable exists then redirect the user

if (lisset($_SESSION['user id'])) { /1#2
header("location:index.php");

exit();

//cancel the session and redirect the user:

}else{ //cancel the session //#3

$ _SESSION = array(); // Destroy the variables
$params = session_get cookie params();
// Destroy the cookie
Setcookie(session name(), ", time() - 42000,
$params["path"], $params["domain"],
$params["secure"], $params["httponly"]);

if (session status() == PHP_SESSION ACTIVE) {
session_destroy(); } // Destroy the session itself
header("location:index.php");

}

Explanation of the Code

This section explains the code.
session_start();//access the current session. #1

The code allows the logged-in user to access the information in the memory of the session that was
initiated in the login page. Line #1 links the new page to the information stored in that session.

//if no session variable then redirect the user

if (lisset($_SESSION['user id'])) { /1#2
header("location:index.php");

exit();

If the session variable user_id does not exist, the user is redirected to the home page. This would be an
indication that they never signed in.

telse{ //cancel the session #3
$ SESSION = array(); // Destroy the variables
$params = session get cookie params();
// Destroy the cookie
Setcookie(session name(), ", time() - 42000,
$params["path"], $params[“domain"],
$params["secure"], $params["httponly"]);
if (session status() == PHP_SESSION ACTIVE) {
session_destroy(); } // Destroy the session itself
header("location:index.php");

}

108

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

If the session exists and if a cookie was created, the user logs out by expiring the cookie (setting the time
to a negative value). The session is destroyed, and the user is redirected to the home page.

Testing the Login/Logout Function

The web designer or a database administrator can access a table of members using phpMyAdmin.
Normally an administrator/membership secretary will view a table of members through a web page. The
administrator/membership secretary should only be able to view, edit, or delete a record. This is covered in
the next section.

Start XAMPP or easyPHP, and use a browser to test the login facility. Enter the following URL into the
browser’s address field:

http://localhost/login/login.php

You should now be able to load the members page for ordinary members. You will also be able to load
the administrator’s page when the administrator logs in. The only buttons that do not yet function are the
search buttons. These will be dealt with in Chapter 4. Concerning the administrator’s page, the table view
is not very helpful yet because the administrator cannot delete or amend a record. This will be achieved in
Chapter 4 by the addition of delete and edit links.

Amending and deleting individual records is easy in phpMyAdmin, but the term delete is used instead
of the term drop. Drop is used to delete whole tables and databases.

Amending and Deleting Individual Records
The webmaster/developer can amend and delete records as follows:

1. Access phpMyAdmin by entering the following into the address field of a
browser:

http://localhost/phpmyadmin/
2. Access the logindb database and then the users table.

3. Select the Browse tab, which displays a list of registered members. This is shown
in Figure 3-14.

109

CHAPTER 3 * CREATE LOGIN/LOGOUT FUNCTIONALITY FOR MEMBERS AND AN ADMINISTRATOR

phpMyAdmin

|
|
) | [7] Browse | 4 Structure L] sQL 4 Search %t Insert [id Export
S HE B0 ¢ | L - =

apaeiie

—] ¥ user_id title foname Iname email
{Recent tal ¥ ‘ [0 & Edit 3¢ Copy @ Delete 1/Mr |Jack |Smith |jsmith@outlook.com
|ﬁnalpcst VI —
| OO & Edit %€ Copy @ Delete 2 Mr James Smith | jsmith@myisp.co.uk
|| users
= [0 & Edit %2 Copy @ Delete 3|Mr |Mike |Rosoft |miker@myisp.com
| © Create table
[0 & Edit € Copy @ Delete 4 Ms Olive Branch | obranch@myisp.co.uk
O & Edit %< Copy @ Delete 5 Mr | Frank | Incense |fincense@myisp.net

[o Edit ¥ Copy @ Delete

Mre Annie Versary aversary@myisp.com

< « Edit)#¢ Copy @ Delete Terry Fide tforide@myisp.co.uk

£ JRET IR
ES

[0 & Edit ¥€ Copy © Delete Mrs Annie Mossity amossity@myisp.org.uk

Figure 3-14. Edit or delete an individual record

Find the member’s record to be amended or deleted and select its check box (shown circled in
Figure 3-14). Then click Edit; you will be presented with a screen that will enable you to change the
information about the user. You can also click Delete to remove the member. You will be asked if you really
mean it. You can then decline or accept.

Note We have increased security in this chapter. However, we will be adding additional security in future
chapters. The code in this chapter is more secure than in Chapter 2. However, it’s not yet ready for the “real world.”

Summary

In this chapter, we amended various headers to give them more meaningful menu buttons, and we also
removed redundant buttons. We discovered how to log in to private pages and how to log out of those
special pages. We discovered a way of differentiating between different types of members by using sessions.
We created a members-only page and learned how to use sessions to protect private pages. We also learned
how to use a session so that only the administrator could access the administrator’s page.

In each tutorial, explanations were provided for the PHP and SQL code. We added a little more security
by removing the ability of ordinary members to view the table of members. We prevented unauthorized
people from using a browser to enter the URLSs of private pages. We also discovered how a developer could
amend or delete individual records.

In the next chapter, we will learn how the membership secretary/administrator can search, amend, and
delete records.

110

CHAPTER 4

Create an Administration Interface/

In this chapter, we will present a user-friendly set of pages for an administrator who has moderate computer
skills. We assume the administrator is not capable of using phpMyAdmin but that they know enough to
be able to log in, access easy-to-use displays, and use simple editing facilities. We will make the table of
members interactive so that the administrator can search, edit, delete, and re-order records. Only the
administrator is permitted to access these facilities for deleting and amending records.

After completing this chapter, you will be able to create web pages that do the following:

e Administer a database
e Delete and edit records
e Paginate the displaying of records

e Search for an individual record

Caution When we talk about tables in this book, try not to confuse tables displayed on the screen with the
database tables. These types of tables are two distinct entities. For instance, Table 4-1 is a database table and
is not visible to the user. Figure 4-2 is a table displayed on the user’s screen.

The Administration Database

The tutorials in this chapter are based on the templates used in previous chapters. We will keep things
separate from previous tutorials by using new names for the database and its folder. However, a table can
have the same name as earlier tutorials if the table lives in a different database. The table will therefore
continue to be called users.

Let’s begin by creating the database and the ability to access it.

Create a new folder and a new database as follows:

1. Inthe XAMPP htdocs folder or the easyPHP eds-wwuw folder, create a new folder
called admintable.

2. Either download the PHP files from the book’s web page at www.apress.com
(recommended) or type in the code as shown in this chapter and the previous
chapter and place it in the new admintable folder.

© Adrian W. West and Steve Prettyman 2018 111
A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,
https://doi.org/10.1007/978-1-4842-3843-1_4

http://www.apress.com

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

Note If you copy paste code from the e-book, some of the quotes may not copy correctly. You can easily
avoid problems by first copying the code into a basic text editor (like Microsoft Notepad). The editor will convert
any incorrect quotes to standard quotes automatically. Then save the file and open it in a PHP editor (such as
Notepad-++).

If you are creating your own files, copy all the files from Chapter 3 and paste
them into your new folder admintable. In the new folder, modify the file mysqli_
connect.php as listed on the next page. Rename the file admin-header.php as
header-admin.

Now open phpMyAdmin.
Create a new database called admintable.
Select the check box next to admintable and click Check Privileges.

Click the Add User button.

N o a >~ v

Enter a new user and password as follows:

User: webmaster

Password: COffeepOt

Host: localhost

8. Besure to record the new user and password details in your notebook.

9. Scroll down to Global privileges (Check All/Uncheck All), and click Check All.

10. Scroll down to the bottom of the form and click the Add User button (or the Go
button on some versions).

To connect to the administration database, you use the code shown in Listing 4-1.

Listing 4-1. Creating the Code for Connecting to the admintable Database (mysqli_connect.php)

<?php

// Create a connection to the admintable database and set the encoding
Define ('DB_USER', 'webmaster');

Define ('DB_PASSWORD', 'Coffeepot');

Define ('DB_HOST', 'localhost');

Define ('DB_NAME', 'admintable');

// Make the connection:

$dbcon = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);
mysqli_set_charset($dbcon, 'utf8'); // Set the encoding...

Make sure to test your access to the database before attempting to run any other programs. Once
you are sure that your user ID and password does access the database correctly, then continue with the
procedures shown in the following sections. To test the connection, type http://localhost/admintable/
mysqi_connect.php in your browser. If you get no errors and see a blank page, the test was successful.

112

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

The Users Table

In phpMyAdmin, make sure you click the new database admintable and then create this users table with
seven columns. Set the encoding to utf8-general-ci. Give the columns the titles and attributes shown in
Table 4-1.

Remember, when selecting the A_I check box in phpMyAdmin, a pop-up window may ask you to verify
that userid is the primary index and will request the size again. Do not put a size in the pop-up window.
If you do, you will get an error.

Table 4-1. The Attributes for the users Table

Column name Type Length/Values Default Attributes NULL Index Al
userid MEDIUMINT 6 None UNSIGNED [J PRIMARY
first_name VARCHAR 30 None 0 d
last_name VARCHAR 40 None O O
email VARCHAR 50 None 0 d
password CHAR 60 None O d
registration_date = DATETIME None 0 O
user_level TINYINT 1 None UNSIGNED O O

The password column size will be determined by the latest hashing standards for PHP. Please visit
www . php.net and adjust the size as required.

Use the register-page.php file (included in the downloadable files for Chapter 4 from Apress.com) to
register the administrator as an ordinary member using the following data:

e First name: James

e Last name: Smith

e E-mail: jsmith@myisp.co.uk
e Password: Blacksm1th

The registered member James Smith will be appointed as the membership secretary using the
pseudonym Jack Smith. We can safely assume that James Smith (alias Jack Smith) would like to view the
members page occasionally as well as viewing the administration page. He will use his membership e-mail
and password to view the members page, but he needs a different e-mail and password to access the
administration section. Now register the membership secretary a second time with his pseudonym and a
new password as follows:

e First name: Jack
e Last name: Smith
e E-mail: jsmith@outcook.com

e Password: DOgsb0dy

Important Use phpMyAdmin to change Jack Smith’s user level to 1.

113

www.php.net
http://apress.com

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

Note To change the user_level, in phpMyAdmin click the database name (in the column listing) and then
click the users table listed below the database name. Click the edit icon to the left of Jack Smith. Change the
level to 1 and click Go (or Save).

Now register these members so that we have something to play with. Use the details in Table 4-2.

Table 4-2. Suggested Details for Members

First Name Last Name Email Password
Mike Rosoft miker@myisp.com Willg@t3s
Olive Branch obranch@myisp.co.uk AnOlyon@
Frank Incense fincense@myisp.net P@rfum3
Terry Fide tfide@myisp.de Scar@dst1ff
Rose Bush rbush@myisp.co.uk R@dbl00ms
Annie Versary aversary@myisp.com H8ppy#d8y

You will now have a total of eight records.

Note Now that we are using sessions together with the member’s user_level, you will not be able to access
any of the administration pages without first logging in as the administrator (user_level = 1). If you attempt to
access the pages directly, they will redirect you to the login page.

We will be using the administrator’s page from Chapter 3 (Figure 4-1) to access the new features in this
chapter. The following section will explain these changes.

Logout

VAU Header Goes Here

View Members

This is the Administration Page This is the
Page 2 You have permission to: mflormat:on
Page 3 MEdit and Delete a record coiumn

Information area
Page 4 MUse the View Members button to page through all the members
Page 5 MUse the Search button to locate a particular member

MUse the New Password button to change your password.

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS

Figure 4-1. The admin page

114

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

We will display an extended table of data using a revised page named view_users.php. The next section
demonstrates this concept.

Revising the View Users Page to Include Editing and
Deleting

The display table needs two extra columns for links that will enable the administrator to edit and delete
records. In Chapter 3, we concatenated (joined) the first and last names so that they appeared in one
column. To be able to re-order the records, the first and last names are displayed in separate columns.
Passwords must always be secured and never displayed within a table. Administrators usually have abilities
to reset passwords but not the ability to see current passwords. The revised display for the administrator will
have six columns, as shown in Table 4-3. Remember that this is not the user’s database table but the table
that will be displayed on the screen for the administrator; the two tables are quite different.

Table 4-3. The Format of the New Table As It Will Be Displayed for the Administrator Only
Edit

Delete Last Name First Name Email Date Registered

Edit Delete Rosoft Mike miker@myisp.com October 30, 2018

Two of the new columns now have links to enable the administrator to interact with the records. Most
importantly, this page is only for the administrator; therefore, it needs a security guard, in other words, a session.
Figure 4-2 shows the appearance of this interactive table

Your Logo

Login

Register

These are the registered users This is the
Page 2 information
Edit Delete Last Name First Name Email Date Registered co | umn
Page 3
TR Edit Delete Smith James jsmith@myisp.co.uk November 28, 2017 Information area
age
Page 5 Edit Delete Smith Jack Jjsmith@outcook.com November 28, 2017
Edit Delete Rosoft Mike miker@myisp.com November 28, 2017
Edit Delete Branch Olive obranch@myisp.co.uk 28, 2017
Edit Delete Incense Frank fincense@myisp.net No ber 28, 2017
Edit Delete Fide Terry tfide@myisp.de May 31, 2018
Edit Delete Bush Rose rbush@myisp.co.uk May 31, 2018
Edit Delete Versary Annie aversary@myisp.com May 31, 2018

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS

Figure 4-2. The interactive table for an administrator

115

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

Note You can view the table using XAMPP or easyPHP and a browser, but the Edit and Delete links will not
work until we create the pages for deleting and editing a record. These pages are described later in the chapter.

Listing 4-2 shows the amendments to create the new View Users page.
The administrator’s page begins with session code for security.

Listing 4-2. Amending the Table View to Include Two Links (admin-view-users.php)

<?php //#1
session_start();
if (lisset($_SESSION['user level']) || ($_SESSION['user_ level'] != 1))
{
header("Location: login.php");
exit();
}
>
<!DOCTYPE html>
<html lang="en">
<head>
<title>Template for an interactive web page</title>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwhSIDZnLEWNXCjeSWFphIiwGPXr1jddIhOegiulFwO5qRGVFX0d]Z4"
crossorigin="anonymous">
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section -->
<header class="jumbotron text-center row"
style="margin-bottom:2px; background: linear-gradient(white, #0073e6); padding:20px;">
<?php include('header.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); ?>

</nav>
<!-- Center Column Content Section -->
<div class="col-sm-8">
<h2 class="text-center">These are the registered users</h2>
<p>

116

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

<?php
try {
// This script retrieves all the records from the users table. #2
require('mysqli_connect.php'); // Connect to the database.
// Make the query:
// Nothing passed from user safe query
$query = "SELECT last name, first name, email, ";
$query .= "DATE_FORMAT(registration date, '%M %d, %Y')";
$query .=
" AS regdat, userid FROM users ORDER BY registration_date ASC";
// Prepared statement not needed since hardcoded
$result = mysqli_query ($dbcon, $query); // Run the query.
if ($result) { // If it ran OK, display the records.
// Table header. #3
echo '<table class="table table-striped">
<tr>
<th scope="col">Edit</th>
<th scope="col">Delete</th>
<th scope="col">Last Name</th>
<th scope="col">First Name</th>
<th scope="col">Email</th>
<th scope="col">Date Registered</th>
</tr>';
// Fetch and print all the records: #4
while ($row = mysqli fetch array($result, MYSQLI ASSOC)) {
// Remove special characters that might already be in table to #5
// reduce the chance of XSS exploits
$user id = htmlspecialchars($row['userid'], ENT QUOTES);
$last _name = htmlspecialchars($row['last name'], ENT QUOTES);
$first name = htmlspecialchars($row['first name'], ENT QUOTES);
$email = htmlspecialchars($row['email'], ENT_QUOTES);
$registration_date =

htmlspecialchars($row['regdat'], ENT QUOTES); //#6
echo '<tr>
<td><a href="edit _user.php?id=" . $user id .
"">Edit</td>
<td><a href="delete user.php?id=" . $user id .
"">Delete</td>’; /1#7

echo '<td>' . $last_name . '</td>
<td>' . $first name . '</td>
<td>' . $email . '</td>
<td>' . $registration date . '</td>
</tr>';
}
echo '</table>'; // Close the table. #8
mysqli free result ($result); // Free up the resources.
}
else { // If it did not run OK.
// Error message:
echo
'<p class="text-center">The current users could not be retrieved. ';
echo 'We apologize for any inconvenience.</p>";

117

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

// Debug message:

// echo '<p>' . mysqli error($dbcon) . '

Query: ' . $q . '</p>';
exit;

} // End of if ($result)

mysqli close($dbcon); // Close the database connection.

catch(Exception $e) // We finally handle any problems here

// print "An Exception occurred. Message:
print "The system is busy please try later";

. $e->getMessage();

}

catch(Error $e)

{
//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";

>

</div>

<!-- Right-side Column Content Section -->
<aside class="col-sm-2">
<?php include('info-col.php'); ?>

</aside>
</div>
<!-- Footer Content Section -->
<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;">

<?php include('footer.php'); 2>
</footer>
</div>
</body>
</html>

Explanation of the Code

This section explains the code.

<?php
session_start();
/7 #1
if (lisset($ _SESSION['user level']) or ($_SESSION['user level'] != 1))
{
header("Location: login.php");
exit();

This session code secures the page and returns any unauthorized users to the login page. No one can
access the page unless they are an administrator (user_level = 1).

<?php
try {
// This script retrieves all the records from the users table. #2

118

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

require('mysqli_connect.php'); // Connect to the database.

// Make the query:
// Nothing passed from user safe query

$query =
"SELECT last_name, first name, email, DATE_FORMAT(registration date, '%M %d, %Y')";

$query .=
" AS regdat, userid FROM users ORDER BY registration_date ASC";

// Prepared statement not needed since hardcoded
$result = mysqli_query ($dbcon, $query); // Run the query.

if ($result) { // If it ran OK, display the records.

The previous code selects the items from the users table that will populate the columns in the displayed
table. The DATE_FORMAT function will format the registration_date retrieved from the table in month,
day, year format. The AS statement will allow us to retrieve this formatted date using the regdat name. If we
retrieved the date using the registration_date name, it would still be in whatever format exists in the table.
The table records are displayed in ascending order (ASC) by registration date. To display the records in
descending order, use DESC.

// Table header. #3
echo '<table class="table table-striped">
<tr>

<th scope="col">Edit</th>

<th scope="col">Delete</th>

<th scope="col">Last Name</th>

<th scope="col">First Name</th>

<th scope="col">Email</th>

<th scope="col">Date Registered</th>
</tr>';

This code displays an HTML table with six headings in the title row. Each row will have alternating colors.

// Fetch and print all the records: #4
while ($row = mysqli fetch array($result, MYSQLI ASSOC)) {

The code loops through the user's table’s data (contained in $result) until all the data has been
displayed. This is achieved by the while() function. The data is placed into an associative array named $row.
An associative array uses a key (such as user_id) instead of an index (number) to determine what column to
use. For example, in the following code, the associate array $row includes a column with a key of userid. The
keys are automatically created using the column names from the table in the database.

// Remove special characters that might already be in table to #5

// reduce the chance of XSS exploits
$user_id = htmlspecialchars($row['userid'], ENT QUOTES);
$last _name = htmlspecialchars($row['last name'], ENT QUOTES);
$first_name = htmlspecialchars($row['first_name'], ENT_QUOTES);
$email = htmlspecialchars($row['email'], ENT_QUOTES);
$registration_date =

htmlspecialchars($row['regdat'], ENT_QUOTES);

119

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

We are making every effort to insert good valid data in the database table. So, can’t we assume we just
pulled good data from the database? No! There are two reasons why; the first is that the data in the table
could contain harmful code that can be executed, and the second is that our program could get tricked
into believing that data came from the table, when it actually came from someplace else. So, we must make
sure that what we have code that can’t be executable. The easiest way to do this is to convert all executable
characters (like quotes, commas, brackets) into escaped characters (" -> /"). This will not clean the data,
but it will keep it from being executable. The ENT_QUOTES parameter insists that both single and double
quotes are escaped. All code in this chapter and the remaining chapters will use this format to ensure any
data displayed is not executable.

/7 #6
echo '<tr>

<td>Edit</td>

<td>Delete</td>’;

The previous code creates a link in the first two cells in each row. The links connect to the pages
edit_user.php and delete_user.php. The URL link created includes an id parameter, which is given the value
in the $user_id variable (which came from the table). As the code loops through the data in the users table, it
stores the corresponding user_id for each row.

The user_id for the row is “passed” to the page that will handle the deletion or editing through the URL
address of the PHP program. Here'’s an example:

<td>Delete</td>

The ID (user_id) is the actual row number in the database table. The PHP program will use this number
to determine which row to edit or delete. The whole line of code is a link that, when clicked, will edit or delete
the identified row. For clarification, Figure 4-3 shows a fragment of the interactive table and the two links.

These are the registered users

Edit Delete Last Name First Name Email Date Registered

Edit Delete Smith James jsmith@myisp.co.uk November 28, 2017

Figure 4-3. Showing one record and the two links in the first two cells

// #7
echo '<td>' . $last name . '</td>
<td>' . $first_name . '</td>
<td>' . $email . '</td>
<td>' . $registration_date . '</td>
</tr>';

In the previous block of code, the values contained in $last_name, $first_ name, $email, and
$registration_date are displayed in the related columns of the table.

echo '</table>'; // Close the table. #8
mysqli_free result ($result); // Free up the resources.

120

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

The table’s closing tag completes the display of the table, and memory resources are freed up. The
program itself will free up resources when it stops, but we can also do so when the statement shown. The rest
of the code deals with error messages and adds the footer to the displayed page. Before we create the pages
for searching, editing, and deleting, we need to pause for a useful diversion.

The next section describes a method of displaying tables one page at a time.

Displaying Pages of Records (Pagination)

The table display created by the file view_users.php is fine for up to 30 records. A greater number of records
will cause the table to extend beyond the viewing size of most monitors. This will force the administrator to
scroll down the page to view additional records. Imagine what would happen if the database contained 1,000
records or more. Creating the ability to view the table data one screen at a time would provide a solution;
however, even this would be inconvenient for a large database. Later in this chapter, we will examine a
slicker way of selecting and viewing one particular record in a large database; meanwhile, we will learn how
to display a table so that the administrator can see one page at a time. The process is called pagination.

A page length of 20 to 25 rows would be a sensible choice; however, for the purposes of this tutorial, let’s
test this ability without having to enter lots of records in the database. We will set the number of rows per
displayed page to four, so we need to enter only a few more members for the demonstration. This will give us
four pages to display.

Table 4-4 suggests another ten members to register.

Table 4-4. Details for Registering Members

First Name Last Name E-mail Password
Percy Veer pveer@myisp.com K@@pgling
Stan Dard sdard@myisp.net B@ttl3fl@g
Nora Bone nbone@myisp.com Llk@t@rrl @r
Barry Cade bcade@myisp.co.uk Blockth@m
Dee Jected djected@myisp.ork.uk GI00mnd0Om#
Lynn Steed Iseed@myisp.com Palnt@rs01
Barry Tone btone@myisp.net Nlc@v01lc3
Helen Back hback@myisp.net AgrimsOrtl@
Justin Case jcase@myisp.co.uk CautlOu@
Jerry Attrik jattrik@myisp.com Eld@rlyman

The database will now have 18 records. When we divide this by four (rows per page), we will have four-

and-a-half pages. Following this explanation, in Listing 4-3a for admin_view_users.php, you will see that the
number of rows per page is set by the variable $pagerows as follows:

$pagerows = 4;
Experiment with this value by giving the variable a value of, say, 9 or 15 to see the effect of the display in
the web page.

Figure 4-4 shows the display of four records per page and the links for displaying the contents of the
table by moving back and forward. The page also displays the total number of members.

121

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

Your Logo Header GOGS Here ; L”_'[-!Wl

These are the registered users This is the

— information
Edit Delete LastName First Name Email Date Registered column
Page 3
Page 4 Edit Delete Incense Frank fincense@myisp.net Movember 28, 2017 Informaticn area
Page 5 Edit Delete Fide Terry tfide@myisp.de May 31, 2018
Edit Delete Bush Rose rbush@myisp.co.uk May 31, 2018
Edit Delete Versary Annie aversary@myisp.com May 31, 2018

Total membership: 18

Previous Next

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid CSS & HTMLS
Figure 4-4. The display now shows four records per page and indicates the total membership

The page named process_admin_view_users.php contains the pagination code.

In Figure 4-4, the links Previous and Next, displayed below the table, enable movement through the
table. Instead of those links, we could have used clickable page numbers or buttons. However, if you do not
know what is on each page, a page number is not much use. The ability to browse through the pages and
have the total membership displayed will be useful to the administrator. The pagination will also enable the
administrator to print each page. This will be described in Chapter 7. For displaying a particular member’s
record, we will use the new Search menu button shown later in this chapter.

Listing 4-3a incorporates the code to enable pagination. A required statement has been placed in the file
admin_view_users.php to separate the PHP code from the other code. The admin_view_users.php file is not
listed since it is similar to other files already shown. You can view it in the downloaded files for this chapter.

Listing 4-3a. Creating a Table Display That Will Paginate (process_admin_view_users.php)

<?php
try {
// This script retrieves all the records from the users table.
require('mysqli_connect.php'); // Connect to the database.
//set the number of rows per display page
$pagerows = 4; // #1
// Has the total number of pages already been calculated?
if ((isset($ GET['p']) 8& is numeric($ _GET['p']))) {
//already been calculated
$pages = htmlspecialchars($ GET['p'], ENT QUOTES);
// make sure it is not executable XSS
yelse{//use the next block of code to calculate the number of pages #2
//First, check for the total number of records
$q = "SELECT COUNT(userid) FROM users";
$result = mysqli_query ($dbcon, $q);
$row = mysqli fetch array ($result, MYSQLI NUM);

122

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

$records = htmlspecialchars($row[0], ENT_QUOTES);
// make sure it is not executable XSS
//Now calculate the number of pages
if ($records > $pagerows){ // #3
//if the number of records will fill more than one page
//Calculate the number of pages and round the result up to the
// nearest integer
$pages = ceil ($records/$pagerows); //
telse{
$pages = 1;

}//page check finished

//Declare which record to start with #4
if ((isset($ GET['s'])) &&(is_numeric($ GET['s'])))

{

$start = htmlspecialchars($ GET['s'], ENT_QUOTES);
// make sure it is not executable XSS

telse{
$start = 0;
}
$query = "SELECT last_name, first_name, email, "; // #5
$query .= "DATE_FORMAT(registration date, '%M %d, %Y')";
$query .=

" AS regdat, userid FROM users ORDER BY registration date ASC";
$query .=" LIMIT ?, ?";
$q = mysqli_stmt_init($dbcon);
mysqli_stmt_prepare($q, $query);
// bind start and pagerows to SQL Statement
mysqli stmt bind param($q, "ii", $start, $pagerows);
// execute query
mysqli stmt_execute($q);
$result = mysqli stmt get result($q);
if ($result) {
// If it ran OK (records were returned), display the records.
// Table header.
echo '<table class="table table-striped">
<tr>
<th scope="col">Edit</th>
<th scope="col">Delete</th>
<th scope="col">Last Name</th>
<th scope="col">First Name</th>
<th scope="col">Email</th>
<th scope="col">Date Registered</th>
<Jtr>';
// Fetch and print all the records:
while ($row = mysqli fetch array($result, MYSQLI ASSOC)) {
// Remove special characters that might already be in table to
// reduce the chance of XSS exploits
$user_id = htmlspecialchars($row['userid'], ENT _QUOTES);
$last_name =
htmlspecialchars($row['last name'], ENT_QUOTES);
$first name =

123

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

124

htmlspecialchars($row['first name'], ENT_QUOTES);
$email = htmlspecialchars($row['email'], ENT_QUOTES);

$registration_date =

htmlspecialchars($row['regdat'], ENT_QUOTES);

echo '<tr>

<td><a href="edit _user.php?id=" . $user id .
"">Edit</td>

<td><a href="delete user.php?id=" . $user_id
"">Delete</td>

<td>' . $last_name . '</td>

<td>' . $first _name . '</td>

<td>' . $email . '</td>

<td>' . $registration_date . '</td>
</tr>';

}
echo '</table>'; // Close the table.

mysqli_free result ($result); // Free up the resources.

else { // If it did not run OK.
// Error message:

echo '<p class="text-center">The current users could not be

echo 'retrieved. We apologize for any inconvenience.</p>';
// Debug message:

// echo '<p>' . mysqli error($dbcon) . '

Query:
exit;

} // End of else ($result)

// Now display the total number of records/members.

$q = "SELECT COUNT(userid) FROM users";

$result = mysqli_query ($dbcon, $q);

$row = mysqli fetch array ($result, MYSQLI NUM);

$members = htmlspecialchars($row[0], ENT_QUOTES);

mysqli close($dbcon); // Close the database connection.

"o %q .

</p>';

$echostring = "<p class="text-center'>Total membership: $members </p>";

$echostring .= "<p class="text-center'>";

if ($pages > 1) { //
//What number is the current page?
$current_page = ($start/$pagerows) + 1;

//If the page is not the first page then create a Previous link

if ($current page != 1) {
$echostring .=

'<a href="admin_view users.php?s=" . ($start - $pagerows) .

"8p=" . $pages . '">Previous ';

}
//Create a Next link

if ($current page != $pages) {

$echostring .=
' <a href="admin_view_users.php?s=" . ($start + $pagerows) .
"8p=" . $pages . '">Next ';

}
$echostring .= '</p>';
echo $echostring;

}

#6

#7

#8

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

} //end of try
catch(Exception $e) // We finally handle any problems here

{

// print "An Exception occurred. Message: " . $e->getMessage();

print "The system is busy please try later";

catch(Error $e)

{
//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";

}

>

Explanation of the Code

This section explains the code.
$pagerows = 4; // #1

$pagerows controls the amount of lines to display per page. The display is set to four records per page.
(You would set this to about 20 in a real-world page.)

}else{//use the next block of code to calculate the number of pages #2
//First, check for the total number of records
$q = "SELECT COUNT(userid) FROM users";
$result = mysqli query ($dbcon, $q);
$row = mysqli_fetch_array ($result, MYSQLI_NUM);
$records = htmlspecialchars($row[0], ENT_QUOTES);
// make sure it is not executable XSS
//Now calculate the number of pages

The previous code will count the number of records (COUNT (user_id)) in the users table of the
database. A numerical array (indicated by the user of MYSQLI_NUM) $row is created, and the number of
rows is placed into it. The only contents of this array are the number of records. This value is copied from the
zero position of array, sanitized, and placed into the variable $records.

The following code checks to see whether the number of records is greater than the number of records
displayed per page ($pagerows).

if ($records > $pagerows){ // #3
//if the number of records will fill more than one page
//Calculate the number of pages and round the result up to the nearest integer
$pages = ceil ($records/$pagerows); //
Yelse{

$pages = 1;

If the number of records is greater than the number of records displayed per page, the PHP function
ceil() will round up the number of pages needed (as determined by dividing the number of records by the
number of records per page). In the tutorial, we have 18 records, resulting in four-and-a-half pages (18
divided by 4). This is rounded up to five pages. The fifth page will display only two records. If the number of
records is not greater than the number of rows per display, there will be only one page. The function ceil()
means set the ceiling or set to an integer above the actual count; in this case, 4.5 becomes 5.

125

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

//Declare which record to start with #4
if ((isset($ GET['s'])) 8&&(is_numeric($ GET['s'])))
{

$start = htmlspecialchars($ GET['s'], ENT_QUOTES);
// make sure it is not executable XSS
telse{

}

$start = 0;

The value in s is passed when the user clicks the Previous or Next link on the web page (that code will be
explained soon). If the user does click one of these links, it will contain a start point (such as record number
5) for the records to be displayed, and the value will be placed in $start. If no value has been passed (s is
not set), it is assumed that the first set of the records is to be displayed, and the value of $start is set to 0. If
somehow a non-numerical value exists in s, $start will also be set to 0.

$query = "SELECT last_name, first name, email, "; // #5
$query .= "DATE_FORMAT(registration date, '%M %d, %Y')";
$query .=

" AS regdat, userid FROM users ORDER BY registration_date ASC";
$query .=" LIMIT ?, ?";

$q = mysqli stmt_init($dbcon);

mysqli stmt prepare($q, $query);

// bind start abd pagerows to SQL Statement
mysqli_stmt_bind_param($q, "ii", $start, $pagerows);

// execute query

mysqli stmt execute($q);

$result = mysqli_stmt_get result($q);

The query selects the columns to be displayed (last_name, first_name, email, reg_dat) from the users
table. The information retrieved from the table is limited to only the records required to be displayed on the
current page. For example, on the first page, $start will be set to 0, and $pagerows will be set to 4. Only the
rows from 0 to 4 will be retrieved. The records retrieved will also be sorted in ascending order. Even though
we sanitized $start and $pagerows before, we will use a prepared statement just to be extra secure.

Some programmers may choose to retrieve all records from the database at one time and place them
into an array. This is a common practice. However, because we must send a request to the server every time
we want to display another page, we can just pull the next set of records directly from the database. This is
efficient for smaller tables of information.

// Now display the total number of records/members. #6
$q = "SELECT COUNT(userid) FROM users";

$result = mysqli query ($dbcon, $q);

$row = mysqli fetch array ($result, MYSQLI NUM);

$members = htmlspecialchars($row[0], ENT_QUOTES);

mysqli_close($dbcon); // Close the database connection.

$echostring = "<p class="text-center'>Total membership: $members </p>";

$echostring .= "<p class="text-center'>";

As explained earlier, this code counts the total number of rows in the table. The value returned will be
placed into $row[0]. The value is sanitized and placed into $members, which will be displayed on the page.

if ($pages > 1) { // #7
//What number is the current page?
$current page = ($start/$pagerows) + 1;

126

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

//1f the page is not the first page then create a Previous link
if ($current page != 1) {
$echostring .= '<a href="admin_view_users.php?s="
($start - $pagerows) .
"%p=" . $pages . '">Previous ';

}

The link named Previous is created that calls the admin_view_users.php program. As previously
mentioned, s (start position) will contain the first record (such as record 0 or record 4) to be displayed on
the page. This is calculated by subtracting the total number of rows to display in a page ($pagerow) from the
previous start position ($start). For example, if the current start position is 20 and we subtract 4 from this
position, the new start position (placed in s) is now 16. $pages contains the required number of pages as
previously calculated. If the $current_page is 1, no previous link will be displayed.

//Create a Next link #8
if ($current_page != $pages) {
$echostring .=
' <a href="admin_view_users.php?s=" . ($start + $pagerows) .
‘&p=" . $pages . '"
}

$echostring .= '</p>';
echo $echostring;

}

>Next ';

The Next link is created in a similar way as the Previous link. The only difference is the calculation. The
start position ($start) is added to the number of rows to display on the page ($pagerow) to determine the
value of s (the start position). If the current start position is zero and the number of rows to display on a page
is 4, the next start position (s) is 4. When the link is clicked, the page will display records 4-7. If the current
page is the last page ($current_page == $pages), the Next link will not be displayed. The completed string is
now displayed on the page.

Fire up XAMPP or easyPHP and then log in as the administrator to view the pagination. Adjust the value
of $pagerows to see how it changes the behavior of the pages.

While this was a good exercise, it is more common that we just want to search for one record and
not display all records (especially if there are hundreds of them). Let’s determine how to search for one
particular record and then display it.

You may have noticed that the header for the admin_view_users.php page is changed so that the View
Members button is a link to the admin_view_users.php page. Also, a new button links to the search page
search.php. Listing 4-3b shows the changes.

Listing 4-3b. Creating the Revised Administration Header (header-admin.php)

<div class="col-sm-2">

</div>
<div class="col-sm-8">
<h1 class="blue-text mb-4 font-bold">Header Goes Here</h1>
</div>
<nav class="col-sm-2">
<div class="btn-group-vertical btn-group-sm" role="group"
aria-label="Button Group">
<button type="button" class="btn btn-secondary"”
onclick="location.href = 'logout.php'" >Logout</button>

127

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

<button type="button" class="btn btn-secondary"
onclick="location.href = 'admin_view_users.php

<button type="button" class="btn btn-secondary"
onclick="location.href = 'search.php'">Search</button>

<button type="button" class="btn btn-secondary"
onclick="location.href = 'register-password.php

>View Members</button>

>New Password</button>
</div>
</nav>

Planning the Search Criteria

The administrator needs a search facility that does not require scrolling through scores of records to edit or
delete one. The importance of forward planning cannot be over-emphasized; deciding how to organize the
search facility requires careful thought.

The administrator can edit and delete records. So, what events would require them to use these
facilities? For editing, the event would typically be caused by members requesting the administrator to
change an e-mail address or a name. Deletions would occur if a member resigns or dies.

Some names are common—for instance, we may have five people named James Smith. In our example,
we would need to display all five and then use their e-mail addresses to distinguish them so that we don’t
delete the wrong James Smith.

Note It is also common to create a unique key to identify which record is affected. In our example, e-mail
can be used to accomplish this. More commonly, a unique member ID would be created. Some organizations
in the United States use the Social Security number. However, this is not a good choice because this number is
tied to many personal financial records (such as retirement, medical, and checking accounts).

The next tutorial describes the creation of a page that displays the results of a search. For this, you will
need to register four more members named James Smith. Table 4-5 offers some suggestions.

Table 4-5. Some Identical Common Names

First Name Last Name E-mail Password
James Smith jimsmith@myisp.org.uk Ch@vrOnl
James Smith James.smith@myisp.com Inclln3d

James Smith Jimmy.smith@myisp.co.uk P@d@stal
James Smith jims@myisp.net Tungst@n

When you have registered them, there will be a total of five members named James Smith, and the total
number of records in our database will be 22.

A Temporary Search Page for Displaying Specified Members

We will eventually create a search facility, but first we must create a page that will produce a table of members
named James Smith. The target or end result of a search for James Smith will be a table, as shown in Figure 4-5.

128

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

Your Logo H e_a\dF.‘f G_OQS H ere Logout

View Members

These are found users This is the

Page 2 If no record is shown, this is because you had an incorrect or missing entry in the search form. |nf0 rmation
Page 3 Click the back button on the browser and try again COl umn
Information area

Page 4 Edit Delete LastName First Name Email Date Registered
Page 5 : Z e 2

Edit Delete Smith James Jsmith@myisp.co.uk November 28, 2017

Edit Delete Smith James Jimsmith@myisp.org.uk June 01, 2018

Edit Delete Smith James lames smith@myisp.com June 01, 2018

Edit Delete Smith James Jimmy.smith@myisp.couk June 01, 2018

Edit Delete Smith James Jims@myisp.net June 01, 2018

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid CSS & HTMLS

Figure 4-5. The five James Smiths have been located and are now displayed

To ensure that we can display the table shown in Figure 4-5, we need to create a page that we will call
temp_view_found_record.php. Because we have not created a search page, we will enter the names James
and Smith directly into SQL query in the code as a temporary expedient. The PHP code is in the file process_
temp_view_found_record.php and is shown in Listing 4-4.

Note These are temporary versions of the page. It is a helpful stage before producing the final version.
It demonstrates an important principle and is a useful exercise for proving that a table will be displayed. The
temporary versions are included in the downloadable files for this chapter as temp_view_found_record.php and
process_temp_view_found_record.php.

Listing 4-4. Creating a Temporary Page for Displaying the Results of a Search (process_temp_view_found_
record.php)

<?php
try
{

// This script retrieves records from the users table. #1
require ('mysqli_connect.php'); // Connect to the db.

echo '<p class="text-center">If no record is shown, ';

echo '"this is because you had an incorrect ';

echo ' or missing entry in the search form.';

echo '
Click the back button on the browser and try again</p>';

$query = "SELECT last_name, first name, email, ";

129

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

130

$query .= "DATE_FORMAT(registration date, '%M %d, %Y')";
$query .=" AS regdat, userid FROM users WHERE ";
$query .= "last_name='Smith' AND first name='James' ";
$query .="ORDER BY registration_date ASC ";
// Prepared statement not needed because string is hard coded
$result = mysqli_query ($dbcon, $query); // Run the query.
if ($result) { // If it ran, display the records.
// Table header.
echo '<table class="table table-striped">
<tr>
<th scope="col">Edit</th>
<th scope="col">Delete</th>
<th scope="col">Last Name</th>
<th scope="col">First Name</th>
<th scope="col">Email</th>
<th scope="col">Date Registered</th>
</tr>';
// Fetch and display the records:
while ($row = mysqli fetch array($result, MYSQLI ASSOC)) {
// Remove special characters that might already be in table to
// reduce the chance of XSS exploits
$user id = htmlspecialchars($row['userid'], ENT QUOTES);
$last _name =
htmlspecialchars($row['last name'], ENT _QUOTES);
$first name =
htmlspecialchars($row['first name'], ENT_QUOTES);
$email = htmlspecialchars($row['email'], ENT_QUOTES);
$registration_date =
htmlspecialchars($row['regdat'], ENT_QUOTES);

echo '<tr>
<td><a href="edit_user.php?id=" . $user id .
"">Edit</td>
<td><a href="delete user.php?id=" . $user id .
"">Delete</td>

<td>' . $last_name . '</td>
<td>' . $first_name . '</td>
<td>' . $email . '</td>
<td>' . $registration_date . '</td>
</’
}
echo '</table>'; // Close the table.
mysqli free result ($result); // Free up the resources.
} else { // If it did not run OK.
// Public message:
echo '<p class="error">The current users could not be retrieved.';
echo 'We apologize for any inconvenience.</p>";
// Debugging message:
//echo '<p>' . mysqli_error($dbcon) . '

Query: ' . $q . '</p>';
//Show $q is debug mode only
}

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

// End of if ($result). Now display the total number of records/members.
mysqli_close($dbcon); // Close the database connection.

}
catch(Exception $e)

print "The system is currently busy. Please try later.";
//print "An Exception occurred.Message: " . $e->getMessage();

}
catch(Error $e)
{
print "The system us busy. Please try later.";
//print "An Error occurred. Message: " . $e->getMessage();
}
>

Explanation of the Code

This section explains the code.

// This script retrieves records from the users table. #1
require ('mysqli_connect.php'); // Connect to the db.

echo '<p class="text-center">If no record is shown, ';

echo 'this is because you had an incorrect ';

echo ' or missing entry in the search form.';

echo '
Click the back button on the browser and try again</p>';
$query = "SELECT last name, first name, email, ";

$query .= "DATE_FORMAT(registration date, '%M %d, %Y')";
$query .=" AS regdat, userid FROM users WHERE ";

$query .= "last_name='Smith' AND first name='James' ";
$query .="ORDER BY registration date ASC ";

This select statement will pull all James Smith records from the users table and place them in ascending
order by registration date.

This SQL query is almost the same as the one in process_admin_view_users.php except that the LIMIT
on the number of rows has been removed and a new keyword, WHERE, has been introduced. Removing the
limit on the number of rows ensures that all the James Smith records will be displayed no matter how many
there are. The WHERE clause specifies exactly which records to display. We entered names as a temporary
expedient so that we can test the page and ensure that it works as expected. This is a common technique and
is known as hard-coding. The resulting table display was shown in Figure 4-5.

Remember, this is a temporary version of the search page. We would not code the actual first and last
names in our select statement in a regular search.

To view this table, fire up your server and log in as administrator. In the address field of your browser,
enter http://localhost/admintable/temp_view_found_record.php.

Note Now that we are using sessions, you will not be able to access any of the administration pages
without logging in as the administrator.

131

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

We now have a page that will display a table of specified records. With that working correctly, the next
step is to provide a search form so that the administrator can request a table showing any specified members
rather than only James Smith.

This example was fine for testing but not very practical. Let’s adjust our logic to make this more useful.

The Search Form

When the administrator clicks the Search button on the header menu, the search.php page will appear.

This page has a form containing two fields where search criteria can be entered. Planning is needed to
decide what the search criteria should be. While the e-mail address would provide the administrator with

a unique identifier for finding a member, it might not be known. The member’s registration date is a poor
choice for locating the member because members will inevitably forget the exact date they registered. The
administrator needs to know some unique but obvious information to display the member’s record. The
obvious criteria are the member’s first and last names; therefore, that is what we will use. The first and last
names might not be unique, but as we did with James Smith, we can display all users with the same first and
last names and then decide which is the correct member information to be modified.

Note: It is beneficial to provide more than one way to search for a member record. You could enhance
this example to allow the administrator to search either on the e-mail address or on the first and last names.
By providing both, you allow the ability to pull up the unique record only, if the e-mail is known. Otherwise,
all members with the same first and last names can be searched for the correct record.

Figure 4-6 shows the search form.

Logout

Your Logo HeadEI' GOES Here

View Members

Search

New Passwod

Search for a record This is the

Page 2 Both names are required items infO rmation

Page 3 First Name: First Name cO I umn

Information area

Page4 Last Name: Last Name

Page §

Copyright & Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid CSS & HTMLS

Figure 4-6. The search form

The search form enables the administrator to search for a particular record. If the search is successful,
the form will call the view_found_record.php page. This page will display the user (or users). If several people
have the same first and last names, the table will display all of them.

Don't try entering a search just yet. We will need to adjust our view found page, which currently always
show James Smith'’s records. This temporary page will be changed to accept values from the search form
described in Listing 4-5a.

132

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

Listing 4-5a. Creating the Search Form (search.php)

<?php
session start();
if (!isset($_SESSION['user level']) or ($ SESSION['user level'] != 1))
{
header("Location: login.php");
exit();
}
>

<IDOCTYPE html>
<html lang="en">
<head>
<title>Search Page</title>
<meta charset="utf-8">
<meta name="viewport" content=
"width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css”
integrity=
"sha384-9gV04dYFwwWSFIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section --»
<header class="jumbotron text-center row col-sm-14"
style=

"margin-bottom:2px; background:linear-gradient(white, #0073e6);padding:20px;">

<?php include('header-admin.php'); 2>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); ?>

</nav>
<div class="col-sm-8">
<h2 class="h2 text-center">Search for a record</h2>
<h6 class="text-center">Both names are required items</h6>
<form action="view found_record.php" method="post">
<div class="form-group row">

<label for="first name" class="col-sm-4 col-form-label">First Name:</label>

<div class="col-sm-8">
<input type="text" class="form-control" id="first name" name="first name"
placeholder="First Name" maxlength="30" required
value=
"<?php if (isset($_POST['first name']))

/1 #1

<I--#2 -->

133

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

echo htmlspecialchars($ _POST['first name'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="last name" class="col-sm-4 col-form-label">Last Name:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="last name" name="last name"
placeholder="Last Name" maxlength="40" required
value=
"<?php if (isset($_POST['last_name']))
echo htmlspecialchars($ POST['last name'], ENT QUOTES); ?>">
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<input id="submit" class="btn btn-primary" type="submit"
name="submit" value="Search">
</div>
</div>
</form>
</div>
<!-- Right-side Column Content Section -->
<?php
if(lisset($errorstring)) {
echo '<aside class="col-sm-2">";
include('info-col.php');
echo '</aside>';
echo '</div>";
echo '<footer class="jumbotron text-center row col-sm-14

style="padding-bottom:1px; padding-top:8px;">";

echo '<footer class="jumbotron text-center col-sm-12"

style="padding-bottom:1px; padding-top:8px;">";

include('footer.php');
>
</footer>
</div>
</body>
</html>

Explanation of the Code

This section explains the code.

<?php
session_start();
if (lisset($ SESSION['user level']) or ($ SESSION['user level'] != 1))
{

134

/1 #1

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

header("Location: login.php");
exit();

>

All of our admin HTML pages include this code. The session is our security guard; unauthorized people
(anyone who is not an administrator) will be redirected to the login page.

<div class="form-group row"> <l--#2 -
<label for="first name" class="col-sm-4 col-form-label">First Name:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="first name" name="first name"
placeholder="First Name" maxlength="30" required
value=
"<?php if (isset($_POST['first name']))
echo htmlspecialchars($_POST['first name'], ENT QUOTES); ?>" >
</div>
</div>

The code supplies a sticky form. A sticky form is one that retains the user’s entries when an error is
flagged. Users can become annoyed if they have to fill out the entire form each time they need to correct
an error such as failing to fill out one field. The sticky component is the PHP code following the value, for
example:

value=
"<?php if (isset($_POST['first name']))
echo htmlspecialchars($ POST['first name'], ENT QUOTES); 2>" >

The form will use POST to submit all form data. We would hope that our form data does not get
modified by some outside force. However, it is possible that the data could be modified to attack our
system, database, or network. Therefore, we are using the htmlspecialchars function to sanitize the data. As
mentioned, all symbols that could be included in executable code are now escaped (" ->\"). This ensures
that the information is not executable. It does not clean the data, but at least it is less likely to be harmful.

We will add some human detection ability later, which will reduce the ability for a program to use
our forms.

We will now make the form handler temp_view_found_record.php more versatile.

The Final Form Handler for Receiving Search Form Input

The following code (process_view_found_record.php) shows what has been added or modified in the PHP
code. These items enable the file to receive the first name and the last name sent from the search.php page.
The first and last names are assigned to variables, and these variables are used to search the database so that
they can be verified. The variables are then used to display the record(s).

Listing 4-5b shows the code to eliminate the hard-coding and allow searches for any registered
member’s record.

Listing 4-5b. The Code for Displaying the Search Results (process_view_found_record.php)

<?php
try
{

// This script retrieves records from the users table.

135

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

136

require ('./mysqli connect.php'); // Connect to the db.

echo '<p class="text-center">If no record is shown, ';

echo 'this is because you had an incorrect ';

echo ' or missing entry in the search form.';

echo '
Click the back button on the browser and try again</p>';

// #1
$first name = htmlspecialchars($ POST['first name'], ENT QUOTES);

$last_name = htmlspecialchars($ POST['last name'], ENT_QUOTES);

// Since it's a prepared statement below this sanitizing is not needed

// However, to consistently retrieve than sanitize is a good habit

/7 #2
$query = "SELECT last_name, first name, email, ";

$query .= "DATE_FORMAT(registration_date, '%M %d, %Y')";
$query .=" AS regdat, userid FROM users WHERE ";

$query .= "last _name=? AND first name=? ";

$query .="ORDER BY registration_date ASC ";

$q = mysqli_stmt_init($dbcon);

mysqli stmt prepare($q, $query);

// bind values to SQL Statement
mysqli_stmt_bind_param($q, 'ss', $last_name, $first_name);

// execute query
mysqli stmt_execute($q);

$result = mysqli stmt get result($q);

if ($result) { // If it ran, display the records.
// Table header.
echo '<table class="table table-striped">
<tr>
<th scope="col">Edit</th>
<th scope="col">Delete</th>
<th scope="col">Last Name</th>
<th scope="col">First Name</th>
<th scope="col">Email</th>
<th scope="col">Date Registered</th>
</tr>';
// Fetch and display the records:
while ($row = mysqli fetch array($result, MYSQLI ASSOC)) {
// Remove special characters that might already be in table to
// reduce the chance of XSS exploits
$user_id = htmlspecialchars($row['userid'], ENT QUOTES);
$last_name =
htmlspecialchars($row['last name'], ENT_QUOTES);
$first_name =
htmlspecialchars($row['first name'], ENT _QUOTES);
$email =
htmlspecialchars($row['email'], ENT_QUOTES);
$registration_date =
htmlspecialchars($row['regdat'], ENT QUOTES);
echo '<tr>

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

<td><a href="edit _user.php?id=" . $user id .

"">Edit</td>

<td><a href="delete user.php?id=" . $user_id .
"">Delete</td>

<td>' . $last_name . '</td>

<td>' . $first _name . '</td>

<td>' . $email . '</td>

<td>' . $registration date . '</td>

<Jtr>';
}
echo '</table>'; // Close the table.
//

mysqli free result ($result); // Free up the resources.

} else { // If it did not run OK.
// Public message:

echo '<p class="text-center">The current users could not be retrieved.';
echo 'We apologize for any inconvenience.</p>';
// Debugging message:
//echo '<p>' . mysqli_error($dbcon) . '

Query: ' . $q . '</p>';

//Show $q is debug mode only

}

// End of if ($result). Now display the total number of records/members.
mysqli close($dbcon); // Close the database connection.
}

catch(Exception $e)

print "The system is currently busy. Please try later.";
//print "An Exception occurred. Message: " . $e->getMessage();

}
catch(Error $e)
{
print "The system us busy. Please try later.";
//print "An Error occurred. Message: " . $e->getMessage();
}

>

Explanation of the Code

This section explains the code.

/7 #1
$first name = htmlspecialchars($ POST['first name'], ENT QUOTES);

$last_name = htmlspecialchars($_POST['last name'], ENT QUOTES);

// Since it's a prepared statement below this sanitizing is not needed

// However, to consistently retrieve than sanitize is a good habit

We should stay in a flow of always sanitizing data received from outside the current program. The

previous two statements could be removed, and the data would still not execute because of the prepared
statement. But if we always remember “input then sanitize,” we are creating a more secure program.

137

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

/7 #2
$query = "SELECT last_name, first name, email, ";

$query .= "DATE_FORMAT(registration date, '%M %d, %Y')";
$query .=" AS regdat, userid FROM users WHERE ";

$query .= "last name=? AND first name=? ";

$query .="ORDER BY registration date ASC ";

$q = mysqli stmt_init($dbcon);

mysqli stmt prepare($q, $query);

// bind values to SQL Statement
mysqli_stmt_bind_param($q, 'ss', $last_name, $first_name);

// execute query
mysqli_stmt_execute($q);

$result = mysqli stmt get result($q);
if ($result) { // If it ran, display the records.

The query has been adjusted to accept the last name and first name to search for matching records.
Since this information is received from the user, a prepared statement has been created. Using this format,
any values entered by the user cannot be executed. The user cannot attempt to use SQL injection to access
information that should not be accessible.

The SQL statement includes two question marks. The first question mark is bound to the value in $last_
name. The second question mark is bound to $first_name. The statement expects each to be a string (ss) .
The query is then executed, and the results are placed in $result.

Atlast, you can test the search facility. Run XAMPP or easyPHP, and type the following into the address
field of a browser:

http://localhost/admintable/login.php

Use the administrator’s e-mail address and password to log in. The e-mail is jsmith@outlook.com, and
the password is dOgsb0dy. Then click the search button on the header menu. In the search form, try entering
Jack Smith to see a single record displayed.

The result should be the record shown in Figure 4-7.

_— Header Goes Here

MNew Passwod

These are found users This is the

Page 2 If no record is shown, this is because you had an incorrect or missing entry in the search form. |nf0 rmation
Page 3 Click the back button on the browser and try again COI umn
Information area
Page 4 Edit Delete LastMame First Name Email Date Registered
Page 5 i ; Y
Edit Delete Smith Jack jsmith@outcook.com November 28, 2017

Copyright € Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid CSS & HTMLS

Figure 4-7. Showing a single record selected by using the search page

138

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

Try entering James Smith to see a group of records that have the same first and last names.
Now we have reached the stage where we can demonstrate how the administrator deletes and edits the
records.

Editing Records

When the administrator clicks the Edit link on the record displayed, the edit_user.php page is displayed. The
page displays the fields and the data currently held in the database table. This is illustrated in Figure 4-8.

Logout

Your Logo Header GOES Hel'e

View Meml

New Passwod

Edit Record This is the

Page 2 First Name: Mike information
column
Page 3
Last Name: Rosoft Information area
Page 4
Page E-mail: miker@myisp.com

Copyright € Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid CSS & HTMLS

Figure 4-8. The Edit a User screen showing the existing data

The administrator can amend the details and then click the Edit button to complete the editing process.
Listing 4-6 shows the PHP code for process_edit_record.php. The edit_user.php file contains the same
HTML format as previously shown. You can view this code from the downloaded files.

Listing 4-6. Creating the Editing Interface (process_edit_record.php)

<?php
try
{
// After clicking the Edit link in the found_record.php page.
// This code is executed #1
// The code looks for a valid user ID, either through GET or POST:
if ((isset($ GET['id'])) & (is_numeric($ GET['id']))) {
// From view_users.php
$id = htmlspecialchars($ GET['id'], ENT_QUOTES);
} elseif ((isset($_POST['id'])) && (is_numeric($ POST['id']))) {
// Form submission.
$id = htmlspecialchars($_POST['id'], ENT_QUOTES);
} else { // No valid ID, kill the script.
echo '<p class="text-center">This page has been accessed in error.</p>';
include ('footer.php');
exit();

139

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

require ('./mysqli_connect.php');
// Has the form been submitted?
if ($_SERVER['REQUEST METHOD'] == 'POST') {
$errors = array();
// Look for the first name:
$first_name =
filter var($ POST['first name'], FILTER SANITIZE STRING);
if (empty($first name)) {
$errors[] = 'You forgot to enter your first name.';
}

// Look for the last name:
$last _name = filter var($ POST['last name'], FILTER _SANITIZE STRING);
if (empty($last name)) {
$errors[] = 'You forgot to enter your last name.';
}

// Look for the email address:

$email = filter var($_POST['email'], FILTER SANITIZE EMAIL);

if ((empty($email)) || (!filter var($email, FILTER VALIDATE EMAIL))) {
$errors[] = 'You forgot to enter your email address';

$errors[] = ' or the e-mail format is incorrect.';

}
if (empty($errors)) { // If everything's OK.

$q = mysqli_stmt_init($dbcon);

$query = 'SELECT userid FROM users WHERE email=? AND userid !=?';

mysqli stmt prepare($q, $query);

// bind $id to SQL Statement

mysqli_stmt_bind_param($q, 'si', $email, $id);

// execute query

mysqli stmt_execute($q);

$result = mysqli_stmt get result($q);

if (mysqli_num_rows($result) == 0) {
// e-mail does not exist in another record
$query = 'UPDATE users SET first name=?, last name=?, email=?";
$query .= ' WHERE userid=? LIMIT 1';
$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// bind values to SQL Statement
mysqli_stmt_bind_param($q, 'sssi', $first_name, $last_name, $email, $id);
// execute query
mysqli stmt_execute($q);
if (mysqli_stmt_affected rows($q) == 1) { // Update OK
// Echo a message if the edit was satisfactory:
echo '<h3 class="text-center">The user has been edited.</h3>";
} else { // Echo a message if the query failed.
echo '<p class="text-center">The user could not be edited due ';
echo 'to a system error.';
echo ' We apologize for any inconvenience.</p>'; // Public message.
//echo '<p>' . mysqli error($dbcon) . '
Query: ' . $q . '</p>';
// Debugging message.
// Message above is only for debug and should not display SOL in live //mode

140

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

} else { // Already registered.
echo '<p class="text-center">The email address has ';
echo 'already been registered.</p>";

}
} else { // Display the errors.

echo '<p class="text-center">The following error(s) occurred:
';

foreach ($errors as $msg) { // Echo each error.
echo " - $msg
\n";
}

echo '</p><p>Please try again.</p>';
} // End of if (empty($errors))section.
} // End of the conditionals
// Select the user's information to display in textboxes:
$q = mysqli_stmt_init($dbcon);
$query = "SELECT first name, last name, email FROM users WHERE userid=?";
mysqli stmt prepare($q, $query);
// bind $id to SQL Statement
mysqli stmt bind param($q, 'i', $id);
// execute query
mysqli stmt_execute($q);
$result = mysqli stmt get result($q);
$row = mysqli_fetch_array($result, MYSQLI_NUM);

if (mysqli_num_rows($result) == 1) { // Valid user ID, display the form.
// Get the user's information:
// Create the form:
>
<h2 class="h2 text-center">Edit Record</h2>
<form action="edit_record.php" method="post"
name="editform" id="editform">
<div class="form-group row">
<label for="first name" class="col-sm-4 col-form-label">
First Name:</label>

<div class="col-sm-8">

<input type="text" class="form-control" id="first name" name="first name"

placeholder="First Name" maxlength="30" required
value="<?php echo htmlspecialchars($row[0], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="last name" class="col-sm-4 col-form-label">
Last Name:</label>

<div class="col-sm-8">

<input type="text" class="form-control" id="last_name" name="last_name"

placeholder="Last Name" maxlength="40" required
value="<?php echo htmlspecialchars($row[1], ENT QUOTES); ?>">
</div>
</div>
<div class="form-group row">
<label for="email" class="col-sm-4 col-form-label">E-mail:</label>

<div class="col-sm-8">

<input type="email" class="form-control" id="email" name="email"

#5

141

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

placeholder="E-mail" maxlength="60" required
value="<?php echo htmlspecialchars($row[2], ENT QUOTES); ?>">
</div>
</div>
<input type="hidden" name="id" value=" <?php echo $id ?>" /> <I-- #6 -->
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<input id="submit" class="btn btn-primary" type="submit" name="submit"
value="Register">
</div>
</div>
</form>
<?php
} else { // The user could not be validated
echo '<p class="text-center">This page has been accessed in error.</p>';
}
mysqli stmt free result($q);
mysqli close($dbcon);

catch(Exception $e)

print "The system is busy. Please try later";

//print "An Exception occurred. Message: " . $e->getMessage();

}
catch(Error $e)
{
print "The system is currently buys. Please try later";
//print "An Error occurred. Message: " . $e->getMessage();
}

>

Explanation of the Code

Most of the code has been explained already, but we will now examine some code that is new to this chapter.

// After clicking the Edit link in the found_record.php page.
//This code is executed #1
// The code looks for a valid user ID, either through GET or POST:

if ((isset($_GET['id'])) 8& (is_numeric($ GET['id']))) {
// From view users.php

$id = htmlspecialchars($ GET['id'], ENT_QUOTES);

} elseif ((isset($_POST['id'])) 8& (is_numeric($ POST['id']))) {
// Form submission.

$id = htmlspecialchars($_POST['id'], ENT_QUOTES);

} else { // No valid ID, kill the script.

142

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

echo '<p class="text-center">This page has been accessed in error.</p>';
include ('footer.php');
exit();

We must be sure we are editing the right record, and this is achieved by checking the ID of the selected user.
If the user’s details were entered incorrectly or the user did not exist in the database table, an error message is
shown. Note the is_numeric() function that ensures that the ID is a number and not a string. If the ID is numeric,
it is sanitized and assigned to the variable $id ready for the next step. The sanitizing is not required because we
will be using a prepared statement. However, we want to be consistent and sanitize all input.

Note: The number received might still not be valid; for example, someone could try to skip the search
form and pass the program a number. However, once the search is complete, if the number is not found, an
error message will display.

// Look for the first name: #2
$first name = filter var($ POST['first name'], FILTER SANITIZE STRING);
if (empty($first name)) {
$errors[] = 'You forgot to enter your first name.';
}

Each entry in the form is sanitized. If the user did not enter a value for the first name, an error message
is stored in the error array. This is the same code we used in the register program.

if (empty($errors)) { // If everything's OK. #3
$q = mysqli_stmt_init($dbcon);
$query = 'SELECT userid FROM users WHERE email=? AND userid !=?';
mysqli stmt prepare($q, $query);
// bind $id to SQL Statement
mysqli stmt bind param($q, 'si', $email, $id);
// execute query
mysqli stmt_execute($q);
$result = mysqli stmt get result($q);

if (mysqli_num_rows($result) == 0) {
// e-mail does not exist in another record

If there are no verification errors, determine whether the new e-mail is in the database and is related to
a different user ID. If it is not related to a different ID, we can then update the record.

// e-mail does not exist in another record #4
$query = 'UPDATE users SET first name=?, last name=?, email=?';
$query .= ' WHERE userid=? LIMIT 1';

$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);

// bind values to SQL Statement
mysqli stmt bind param($q, 'sssi', $first name, $last name, $email, $id);

// execute query
mysqli_stmt_execute($q);

143

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

if (mysqli_stmt_affected rows($q) == 1) { // Update OK
// Echo a message if the edit was satisfactory:
echo '<h3 class="text-center">The user has been edited.</h3>";

If the error array contains no error messages and the e-mail is not associated with another record, the
query will run. Using the keyword UPDATE, the query updates the record in the users table for the record
that has the correct user ID. Using the keyword LIMIT with 1 ensures that only one record is updated. Once
completed successfully, a message is displayed to the user.

// Select the user's information to display in textboxes: #5
$q = mysqli_stmt_init($dbcon);

$query = "SELECT first name, last_name, email FROM users WHERE userid=?";
mysqli stmt prepare($q, $query);

// bind $id to SQL Statement
mysqli stmt bind param($q, 'i', $id);

// execute query

mysqli stmt_execute($q);

$result = mysqli stmt get result($q);

$row = mysqli_fetch_array($result, MYSQLI_NUM);

if (mysqli_num_rows($result) == 1) { // Valid user ID, display the form.
// Get the user's information:
// Create the form:
?>
<h2 class="h2 text-center">Edit Record</h2>
<form action="edit_record.php" method="post"
name="editform" id="editform">
<div class="form-group row">
<label for="first name" class="col-sm-4 col-form-label">First Name:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="first name" name="first name"
placeholder="First Name" maxlength="30" required
value="<?php echo htmlspecialchars($row[0], ENT QUOTES); ?>" >
</div>
</div>

The user ID passed from the admin_view_users.php page is used to pull the user information from the
users table to display in the form. The form containing the selected user’s data is displayed. The user can
then edit any information displayed on the form and click the submit button to return the changes to the
table in the database.

<input type="hidden" name="id" value=" <?php echo $id ?>" /> <I-- #6 -->

The hidden input value (id) ensures that no field for the user ID is displayed in the form unless an ID
has been passed either from the admin_view_users.php page (via GET) or from the edit_user.php (via POST).

144

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

Deleting Records

If the administrator deletes the wrong record, the delete cannot be undone; therefore, the program will verify
with the administrator that the record should be deleted. When the administrator clicks the Delete link on a
displayed record, the delete_user.php page is displayed. The Delete a Record screen displays the name of the
person the administrator is about to delete. The administrator can then click either the Yes button or the No
button, as shown in Figure 4-9.

i Lo Header Goes Here

Are you sure you want to permanently delete This is the
Page 2 Phyllis Tine? information
column
i E i Information area
Page 4 T
Page 5

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS

Figure 4-9. The screen for deleting a record

The page displays the name of the member to be deleted and gives the administrator the chance to
verify the correct record is being removed. Before we describe the listing for the delete page, a few more
names are suggested in Table 4-6. Register them so that you can try deleting them.

Table 4-6. Some Names You Can Register and Then Try Deleting

First Name Last Name E-mail Password
Phyllis Tine ptine@myisp.co.uk Vulg@rl@n
Des Cant dcant@myisp.com POlyphOn1c#
Bill Board bboard@myisp.net HoOard1ng#
Eva Nescent enescent@myisp.de Fl@@tlng

In the next step, we will create a page for the administrator so records can safely be deleted. The HTML
code is similar to previous code. You can view it from the downloaded files. Listing 4-7 shows the PHP code.

Listing 4-7. Creating a Page for Deleting Records (process_delete_record.php)

<?php
try {
// Check for a valid user ID, through GET or POST: #1
if ((isset($_GET['id'])) 8& (is_numeric($ GET['id']))) {
// From view users.php
$id = htmlspecialchars($ _GET['id'], ENT_QUOTES);
} else

145

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

if ((isset($_POST['id'])) && (is_numeric($ POST['id']))) {
// Form submission.
$id = htmlspecialchars($_POST['id'], ENT_QUOTES);
} else { // No valid ID, kill the script.
// return to login page
header("Location: login.php");
exit();
}
require ('./mysqli_connect.php');
// Check if the form has been submitted:
if ($_SERVER['REQUEST METHOD'] == 'POST') {
$sure = htmlspecialchars($ POST['sure'], ENT QUOTES);
if ($sure == 'Yes') { // Delete the record.
// Make the query:
// Use prepare statement to remove security problems
$q = mysqli stmt_init($dbcon);
mysqli_stmt_prepare($q, 'DELETE FROM users WHERE userid=? LIMIT 1');

// bind $id to SQL Statement
mysqli stmt_bind param($q, "s", $id);

// execute query
mysqli stmt_execute($q);

if (mysqli_stmt affected rows($q) == 1) { // It ran OK

// Print a message:

echo '<h3 class="text-center">The record has been deleted.</h3>';
} else { // If the query did not run OK display public message

echo '<p class="text-center">The record could not be deleted.';
echo '
Either it does not exist or due to a system error.</p>';
// echo '<p>' . mysqli error($dbcon) . '
Query: ' . $q . '</p>';
// Debugging message. When live comment out because this displays SOL

}

} else { // User did not confirm deletion.
echo '<h3 class="text-center">The user has NOT been deleted as ';
echo 'you requested</h3>’;
}
} else { // Show the form.
$q = mysqli stmt_init($dbcon);
$query = "SELECT CONCAT(first name, ' ', last name) FROM ";
$query .= "users WHERE userid=?";
mysqli_stmt_prepare($q, $query);

// bind $id to SQL Statement
mysqli stmt bind param($q, "s", $id);

// execute query
mysqli_stmt_execute($q);

146

#2

#3

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

$result = mysqli_stmt_get result($q);
$row = mysqli_fetch_array($result, MYSQLI_NUM); // get user info

if (mysqli num rows($result) == 1) {
// Valid user ID, display the form.

// Display the record being deleted: #4
$user = htmlspecialchars($row[0], ENT QUOTES);
>
<h2 class="h2 text-center">
Are you sure you want to permanently delete <?php echo $user; ?>?</h2>
<form action="delete user.php" method="post"
name="deleteform" id="deleteform">
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8" style="padding-left: 70px;">
<input type="hidden" name="id" value="<?php echo $id; ?>">
<input id="submit-yes" class="btn btn-primary" type="submit" name="sure"
value="Yes"> -
<input id="submit-no" class="btn btn-primary" type="submit" name="sure" value="No">
</div>
</div>
</form>
<?php
} else { // Not a valid user ID.
echo '<p class="text-center">This page has been accessed in error.</p>';
}
} // End of the main submission conditional.
mysqli stmt close($q);
mysqli close($dbcon);
}
catch(Exception $e)

print "The system is busy. Please try again.";
//print "An Exception occurred. Message: " . $e->getMessage();

}

catch(Error $e)

{
print "The system is currently busy. Please try again soon.";
//print "An Error occurred. Message: " . $e->getMessage();

}

2>

147

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

Explanation of the Code

This section explains the code.

// Check for a valid user ID, through GET or POST: #1
if ((isset($ _GET['id'])) && (is_numeric($ GET['id']))) {
// From view_users.php
$id = htmlspecialchars($ GET['id'], ENT_QUOTES);
} else
if ((isset($_POST['id'])) 8& (is_numeric($_POST['id']))) {
// Form submission.

$id = htmlspecialchars($ POST['id"], ENT_QUOTES);

} else { // No valid ID, kill the script.
// return to login page

header("Location: login.php");
exit();

}

If the ID has not been passed, do not continue; go to login page.

// Check if the form has been submitted: #2
if ($_SERVER['REQUEST METHOD'] == 'POST") {

$sure = htmlspecialchars($_POST['sure'], ENT_QUOTES);

if ($sure == 'Yes') { // Delete the record.

// Make the query:

// Use prepare statement to remove security problems

$q = mysqli_stmt _init($dbcon);
mysqli_stmt_prepare($q, 'DELETE FROM users WHERE userid=? LIMIT 1');

// bind $id to SQL Statement
mysqli stmt bind param($q, "s", $id);

// execute query
mysqli_stmt_execute($q);

if (mysqli_stmt_affected rows($q) == 1) { // It ran OK
// Print a message:

echo '<h3 class="text-center">The record has been deleted.</h3>";

A checkis made to see whether the Yes button has been clicked. If it has, the SQL code for deleting a
record is run; if it is successful, a message is displayed.

148

CHAPTER 4 * CREATE AN ADMINISTRATION INTERFACE

} else { // Show the form.
$q = mysqli_stmt_init($dbcon);
$query =
"SELECT CONCAT(first name, ' ', last name) FROM users WHERE userid=?";

mysqli stmt prepare($q, $query);

// bind $id to SQL Statement
mysqli stmt bind param($q, "s", $id);

// execute query
mysqli stmt execute($q);

$result = mysqli stmt get result($q);
$row = mysqli fetch array($result, MYSQLI NUM); // get user info

if (mysqli_num rows($result) == 1) {
// Valid user ID, display the form.

This code formats the name selected to be displayed:

// Display the record being deleted:
$user = htmlspecialchars($row[0], ENT QUOTES);

>
<h2 class="h2 text-center">
Are you sure you want to permanently delete <?php echo $user; ?>?</h2>
<form action="delete user.php" method="post"

name="deleteform" id="deleteform">
<div class="form-group row">

<label for="" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8" style="padding-left: 70px;">

<input type="hidden" name="id" value="<?php echo $id; ?>">

<input id="submit-yes" class="btn btn-primary" type="submit" name="sure"

value="Yes">

#3

#4

<input id="submit-no" class="btn btn-primary" type="submit" name="sure" value="No">

</div>
</div>
</form>"';

The user’s name and the Yes and No buttons are displayed. The result of clicking one of these buttons is

to send the value Yes or No to the preceding block of code numbered #2.

149

CHAPTER 4 © CREATE AN ADMINISTRATION INTERFACE

Note Only files that needed modifying have been described to save space. Many PHP files for this chapter
have not been mentioned because they are the same as the files in Chapter 3. If you have not already done so,
download the complete set of Chapter 4 files from the Apress.com website. Use XAMPP or easyPHP to work
though the examples from this chapter to understand the logic used to display, edit, and delete members.

Summary

In this chapter, you discovered how to create a user-friendly method of allowing an administrator to amend
the contents of a database. This included the ability to paginate the whole table of members. A search form
was described, and this can be used for selecting specific members so that their record can be amended or
deleted. Code was provided that allowed the administrator to edit and delete records. Security was increased
by sanitizing all input (no matter the source) to make sure that the values do not contain executable code.
We will continue to add more security features in the next several chapters.

In the next chapter, we will explore a database with a few extra features. For instance, we will include the
user’s title and the user’s postal address and telephone number. Additional validation and security devices
will also be introduced.

150

http://apress.com

CHAPTER 5

Expand and Enrich Your Website .

The tutorials in this chapter assume that website users are applying for membership in an organization that
requires a membership fee—for instance, a political party or a conservation society.

Website databases for such organizations require addresses and possibly the telephone numbers
of their members. These forms can also use pull-down menus to allow the user to choose a class of
membership.

As you may have experienced yourself, registration forms contain many fields; some are required, and
some are optional. This chapter deals with a larger registration form than the previous chapters, with two of
the fields as optional.

After completing this chapter, you will be able to

e Create a database that includes two tables

e Understand the importance of documentation

e Create an extended registration form with a drop-down menu
e Add PayPal and debit/credit card information

e Create variable pricing displays

e Apply pagination to the display of records

e Create code that edits records

The first step is to create a new database.

Creating a New Database, a Table with 15 Columns, and a
Price Table

Follow these steps to create a new database and two tables:

1. Open the XAMPP htdocs or easyPHP eds-www folder, and create a new folder
named postal.

2. Download the files for Chapter 5 from the book’s website at www.apress.com and
place the files in htdocs or eds-www under the new postal folder. If you want to
hand-code your files, copy the files from Chapter 4 and paste them into your new
postal folder. Then alter the code to match the revised code listed in this chapter.
Also change the database in mysqli_connect.php to postaldb.

© Adrian W. West and Steve Prettyman 2018 151
A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,
https://doi.org/10.1007/978-1-4842-3843-1_5

www.apress.com

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

Note As mentioned in previous chapters, if you copy the code from the e-book, paste the code into a basic
editor (such as Notepad) to ensure that all quotes are standard quotes. Save the code and then reopen the code
in a PHP editor (such as Notepad++).

3. Use abrowser to access phpMyAdmin, click the Databases tab, and create a new
database called postaldb. Pick utf8-general-ci from the encoding selections.

4. Inthe next screen, create a table named users, enter 15 for the number of
columns, and click Go (click Submit in some versions of phpMyAdmin). Enter
the information shown in Table 5-1. After you have created the users table, click
the New listing below the database name postaldb on the left column. This will
display the new table page. Create another table named prices, enter 10 for the
number of columns ,and click Go. Enter the information shown in Table 5-2. Also
enter the values shown in Table 5-2.

5. Click Check Privileges and then scroll down and click the Add User Account.
Now add a new user and password as follows:

e Username: jenner
e Host: LocalHost

e Password: Vacclnatl0n

Scroll down and click Check All, which is next to Global Privileges.

6. Scroll to the bottom and click Go.

Creating the File for Connecting to the Database

Name the following file mysqli_connect.php (or download it from www.apress.com), and add it to the postal
folder in the htdocs folder:

<?php

// Create a connection to the postaldb database

// Set the encoding to utf-8

// Set the database access details as constants

Define ('DB_USER', 'jenner');

Define ('DB_PASSWORD', 'Vacclnation');

Define ('DB_HOST', 'localhost');

Define ('DB_NAME', 'postaldb');

// Make the connection

$dbcon = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB NAME);
mysqli_set charset($dbcon, 'utf8'); // Set the encoding...

Test your connection (http://localhost/postal/mysqli_connect.php). Remember, if you do not see
anything on the screen, your connection was successful.

Next, if you have not already done so, create the table with columns and attributes as described in the
next section. When you have successfully entered the information from Table 5-1, scroll down to the bottom
of the phpMyAdmin page and click Go (or Submit).

152

www.apress.com

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

Creating the Tables

We will now create a table suitable for a membership database that requires addresses and telephone
numbers. The database table will also include extra items for the benefit of the administrator. These are
classes of membership and a field to indicate whether members have paid their subscription fee. The table
will have columns with the titles and attributes shown in Table 5-1.

Table 5-1. The Titles and Attributes for the users Table

Column name Type Length/Values Default Attributes NULL Index Al
userid MEDIUMINT 6 None UNSIGNED O PRIMARY
first_name VARCHAR 30 None O O
last_name VARCHAR 40 None O O
email VARCHAR 50 None O d
password CHAR 60 None O O
registration_date = DATETIME None O O
user_level TINYINT 1 None UNSIGNED [O
class CHAR 20 None d O
addressl VARCHAR 50 None O d
address2 VARCHAR 50 None 0
city VARCHAR 50 None d d
state_country CHAR 25 None O 0
zocde_pcode CHAR 10 None 0 0
phone CHAR 15 None d
paid ENUM “yes’, “no” None O O

Note that the address2 (the second address) and phone columns have their NULL INDEX boxes
selected. They are optional fields. NULL simply means that a field can be left empty by the user. Many users
might not have an additional address (such as a district in a large town or an apartment number). Some
users do not want to disclose their telephone numbers to reduce the nuisance created by cold-callers.

While the postal or ZIP code will directly relate to the city in which the person lives, it is still a good idea
to include the city and state or country information for verification that the correct code has been entered.

People who want to register for membership are required to pay a fee. However, fees change over time.
To avoid requiring the developer to make changes every time there is a price adjustment, we will store the
prices in a table and retrieve them when needed. This will allow the webmaster to make price changes in the
database, and the prices will instantly appear on the pages. We could also create a price changes page for the
administrator, but we will leave that to you to develop.

Table 5-2 shows the details for the prices table

153

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

Table 5-2. The Titles and Attributes for the prices Table

Column Name Type Length/Values Default Attributes NULL Index Al
oneyeargb DECIMAL 6 None UNSIGNED O
oneyearus DECIMAL 6 None UNSIGNED 0

fiveyeargb DECIMAL 6 None UNSIGNED 0 O
fiveyearus DECIMAL 6 None UNISGNED 0 d
militarugb DECIMAL 6 None UNISGNED 0 O
militaryus DECIMAL 6 None UNSIGNED 0 d
u2lgb DECIMAL 6 None UNSIGNED 0 O
u2lus DECIMAL 6 None UNSIGNED 0 O
minpricegb DECIMAL 6 None UNSIGNED 0 O
minpriceus DECIMAL 6 None UNSIGNED 0 O

After creating the prices table, click the Insert tab in phpMyAdmin and enter numbers in the Value
textboxes for each cell as shown here. Then click the Go button to save the values into the table.

oneyeargb 30.00 oneyearus 40.00 fiveyeargb
125.00
fiveyeargb 140.00 militarygb 5.00 militaryus 8.00
u21gb 2.00 u2lus 3.00 minpricegb

15.00

minpriceus 20.00

Using ENUM

ENUM (enumeration) provides the ability to list the valid choices to be entered into the database. It ensures
that only those values that you specify can be stored in that cell in the table. In our tutorial, only No or Yes
can be entered. The choices must be separated by commas, and each must be surrounded by single or
double quotes. You can type the values in the box or click the link below the box. If you click the Edit ENUM/
Set Values link, you can type in a list of values, and the system will add the quotes and commas for you. If
you choose NOT NULL for the paid column, the first value (No) will be the default. If you select the NULL
box for an ENUM column, an empty field will be a valid value.

The Importance of Documentation

Because the database is becoming increasingly compley, it is imperative that you continue to record
everything that you do. If you don’t, you will spend many unhappy hours wondering what you did and why
certain changes won’t work. This is especially true with many pages, as in the current project. Remember, a
database administrator is responsible for many databases. It may be months or years before a database or
table is adjusted. Even if the webmaster created the original database, it is unlikely that they will remember
the original design. By creating documentation of the design, it will help the webmaster to quickly remember
or understand the logic and make any necessary changes.

154

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

We suggest keeping careful records in a notebook (physical or electronic). Create a flowchart that shows
the logical relationships between the database and programs; in fact, it can be difficult to work without
a flowchart. Charts often extend over several pages. You might want to print your charts and paste them
together. It is not unusual to place charts on the wall of a conference room when teams are redesigning the
logic of an application and its database(s). Many also place the charts in a shareable system like Microsoft
SharePoint. By using this type of system, the design team can easily keep track of different versions.

The example charts that follow show all the pages, page titles, headers, and links between the pages.
As the work progresses, flowcharts are amended by correcting faults, adding pages, and adding any new
features required by the client. Amending the chart as you develop a database-driven website is vital. As an
exercise, you could amend this example to include the prices table.

Figure 5-1 shows a small section of an example flowchart.

header.ph] login-header.ph;
PP Log In | o8 PP Erase Entries

index.php <+
Main menu login.php

— ook b

A

Failed Login

Register

members-header.php

>

| New P; d # pswd-header.php
‘ .
Plain default header members-page.php 5 L Erase Enries |
Welcome Fred Cancel
reg-page,php
Register by choosing either View and update password.php
your account. New Password
Printable form PayPal or Page
and Check Credit/Debit Card.
Sorry but this memb-update-header.
OR | method of paying b
for membership is
still being
developed. memb-update.php
A Member can view and
update some of his own
—® account details such as
c-mail address or postal
v Y address

Figure 5-1. A small section of a flow chart

Commercial programs are available for creating flow charts, but you can use the drawing toolbar and
textboxes in Microsoft Word. The diamond-shaped textbox denotes a decision structure (switch). This
structure in the flowchart shown in Figure 5-1 determines a member’s user_level and switches the logic of the
code to either the members or administrator’s page. There are many free tutorials and videos on the Internet
that can demonstrate how to create flowcharts. Visio is a paid alternative with many additional features; for an
excellent free program, try Diagram Designer from the following website:

http://meesoft.logicnet.dk/
155

http://meesoft.logicnet.dk/

CHAPTER 5 EXPAND AND ENRICH YOUR WEBSITE

Additional free flowchart programs can be found at www.download.com.

Now let’s create a registration page based on the code used in the previous tutorials. We will adjust the
code to include the extra fields in our new table. The code will also provide a pull-down selection menu. The
registration page will display 12 fields; other fields will be hidden from the user.

Extending the Registration Form and Adding a Pull-Down
Menu

Figure 5-2 shows the extended registration page.

Erase Entries

Your Logo

Cancel

Register
Page2 Items marked with an asterisk * are required
Page3 Membership classes:
Standard one year £ 30 GB, S 20 US
Paged Standard fve year £ 125 GB, § 140 US, Miftary ona year £ 5 GB, § 8 US
Page 5 Under 21 one year: £2 GB, § 3 US, Cther - Give what you can. Maybe: £ 15 GB. S 20US
*First Name: aa
*Last Name: aa
*E-mail: jsmith@outcooki.com
*Password: Password
Between & and 12 characters.
*Confirm Password: Confirm Password
*Membership Class -Select- v
*Address: sdwdgh
Address: Address
*City: fl
*State/Country: dg
*Zip Code/Post Code: 33333
Phone Number: Phone Number

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid CSS & HTML3

Figure 5-2. The extended registration page

156

http://www.download.com

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

The required fields are denoted by the asterisk. When the fields are filled out correctly and the Register
button is clicked, the user is taken to a “thank you” page containing a PayPal payment button and logo. The
user will then pay the appropriate registration fee by PayPal or debit/credit card.

Always Announce Prices and Fee Payments Up-Front

Always declare up-front the full cost and the available payment methods. This is now a legal requirement
in the United Kingdom. In other parts of the world, this might not be a legal requirement, but you should
always declare all costs in advance. Users become irritated if extra costs are suddenly announced at the end
of a transaction. They will usually close your website without paying. As well as stating the cost, we will add
an image supplied by PayPal showing the various acceptable credit cards. However, users will not be able to
pay until they submit the registration form and the “thank you” page appears.

Note As previously stated, websites must conform to the required regulations of the country in which they
are used. This might require different websites for different countries.

The registration page now contains 12 visible fields and hidden fields. The hidden fields are
registration_date and paid. Hidden fields are not visible on the page that is displayed on the user’s screen
because they are relevant only to the administrator. Listing 5-1a shows the new fields.

Listing 5-1a. Creating the New Registration Page with 12 Visible Fields (register-page.php)

<!DOCTYPE html>
<html lang="en">
<head>
<title>Register Page</title>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwiSFIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGvFX0dIZ4"
crossorigin="anonymous">
<script src="verify.js"></script>

</head>

<body>

<div class="container" style="margin-top:30px">
<!-- Header Section -->

<header class="jumbotron text-center row col-sm-14"

style="margin-bottom:2px; background:linear-gradient(white, #0073e6);
padding:20px;">
<?php include('register-header.php'); ?>

</header>

<!-- Body Section -->

<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->

157

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); ?>

</nav>
<!-- Validate Input -->
<?php
if ($_SERVER['REQUEST METHOD'] == 'POST') {
require('process-register-page.php');
} // End of the main Submit conditional.
>
<div class="col-sm-8">
<h2 class="h2 text-center">Register</h2>
<h3 class="text-center">Items marked with an asterisk * are required</h3>
<?php
try {
require once ("mysqli_connect.php");$query = "SELECT * FROM prices"; //#1
$result = mysqli_query ($dbcon, $query); // Run the query.
if ($result) { // If it ran OK, display the records.
$row = mysqli fetch array($result, MYSQLI NUM);
$yearsarray = array(
"Standard one year:", "Standard five year:",
"Military one year:", "Under 21 one year:",
"Other - Give what you can. Maybe:");
echo '<h6 class="text-center text-danger">Membership classes:</h6>" ;
echo '<h6 class="text-center text-danger small"> ';
for ($j =0, $1 = 0; $j < 5; $j++, $1 = $1 + 2) {
echo $yearsarray[$j] . " £ "
htmlspecialchars($row[$i], ENT_QUOTES)
" GB, 8dollar; " .
htmlspecialchars($row[$i + 1], ENT_QUOTES) .
" US";
if (35 '= 4) {
if ($3 % 2 ==0) {
echo "</h6><h6 class="text-center text-danger small'>"; }

else {
echo n , ll; }
}
}
echo "</h6>";
}
2>

<form action="register-page.php" method="post" onsubmit="return checked();"
name="regform" id="regform">
<div class="form-group row">
<label for="first name" class="col-sm-4 col-form-label">
*First Name:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="first_name"
name="first_name"
placeholder="First Name" maxlength="30" required
value=

158

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

"<?php if (isset($_POST['first name']))
echo htmlspecialchars($ POST['first name'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="last name" class="col-sm-4 col-form-label">*Last Name:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="last name" name="last_name"
placeholder="Last Name" maxlength="40" required
value=
"<?php if (isset($_POST['last name']))
echo htmlspecialchars($ POST['last name'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="email" class="col-sm-4 col-form-label">*E-mail:</label>
<div class="col-sm-8">
<input type="email" class="form-control" id="email" name="email"
placeholder="E-mail" maxlength="60" required
value=
"<?php if (isset($_POST['email']))
echo htmlspecialchars($ POST['email'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="password1"
class="col-sm-4 col-form-label">*Password:</label>
<div class="col-sm-8">
<input type="password" class="form-control" id="password1"
name="password1"
placeholder="Password" minlength="8" maxlength="12" required
value=
"<?php if (isset($_POST['passwordi']))
echo htmlspecialchars($ POST['passwordi'], ENT QUOTES); ?>" >
Between 8 and 12 characters.
</div>
</div>
<div class="form-group row">
<label for="password2" class="col-sm-4 col-form-label">
*Confirm Password:</label>
<div class="col-sm-8">
<input type="password" class="form-control" id="password2"
name="password2"
placeholder="Confirm Password" minlength="8" maxlength="12" required
value=
"<?php if (isset($_POST['password2']))
echo htmlspecialchars($_POST['password2'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="level" class="col-sm-4 col-form-label">
*Membership Class</label>

159

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

<div class="col-sm-8">
<select id="level" name="level" class="form-control" required>
<option value="0" >-Select-</option>

<?php
for ($j =0, $1 =0; $j < 5; $j++, $1 = $1 + 2) {
echo '<option value=""'
htmlspecialchars($row[$i], ENT _QUOTES) . '" ';
if ((isset($ _POST['level'])) & ($ _POST['level'] == $row[$i]))
2> {
selected
<?php }
echo ">" . $yearsarray[$j] . " "
htmlspecialchars($row[$i], ENT_QUOTES) .
" £ GB, " .
htmlspecialchars($row[$i + 1], ENT_QUOTES) .
"$ US</option>";
}
?>
</select>
</div>
</div>

<div class="form-group row">
<label for="address1" class="col-sm-4 col-form-label">*Address:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="address1" name="address1"
placeholder="Address" maxlength="30" required
value=
"<?php if (isset($_POST['addressi']))
echo htmlspecialchars($_POST['addressi'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="address2" class="col-sm-4 col-form-label">Address:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="address2" name="address2"
placeholder="Address" maxlength="30"
value=
"<?php if (isset($_POST['address2']))
echo htmlspecialchars($_POST['address2'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="city" class="col-sm-4 col-form-label">*City:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="city" name="city"
placeholder="City" maxlength="30" required
value=
"<2?php if (isset($_POST['city']))
echo htmlspecialchars($ POST['city'], ENT_QUOTES); ?>" >
</div>
</div>

160

<l--#2-->

<l--#3-->

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

<div class="form-group row">
<label for="state country"
class="col-sm-4 col-form-label">*State/Country:</label>
<div class="col-sm-8">
<input type="text" class="form-control"
id="state_country" name="state_country"
placeholder="State or Country" maxlength="30" required
value=
"<?php if (isset($_POST['state country']))
echo htmlspecialchars($ POST['state country'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="zcode pcode" class="col-sm-4 col-form-label">
*Zip Code/Post Code:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="zcode_pcode"
name="zcode_pcode"
placeholder="Zip Code or Postal Code" maxlength="15" required
value=
"<?php if (isset($_POST['zcode_pcode']))
echo htmlspecialchars($ POST['zcode pcode'], ENT QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="phone" class="col-sm-4 col-form-label">
Phone Number:</label>
<div class="col-sm-8">
<input type="tel" class="form-control" id="phone" name="phone"
placeholder="Phone Number" maxlength="30"
value=
"<?php if (isset($_POST['phone']))
echo htmlspecialchars($ POST['phone'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<input id="submit" class="btn btn-primary" type="submit"
name="submit" value="Register">
</div>
</div>
</form>
</div>
<!-- Right-side Column Content Section -->
<?php

if(lisset($errorstring)) {
echo '<aside class="col-sm-2">";
include('info-col-cards.php');
echo '</aside>';
echo '</div>";

161

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

echo '<footer class="jumbotron text-center row col-sm-14"

style="padding-bottom:1px; padding-top:8px;">";

}

else

{
echo '<footer class="jumbotron text-center col-sm-12"
style="padding-bottom:1px; padding-top:8px;">";

}
include('footer.php');
echo "</footer>";
echo "</div>";

}

catch(Exception $e) // We finally handle any problems here

// print "An Exception occurred. Message:
print "The system is busy please try later";

. $e->getMessage();

catch(Error $e)

{
//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";
}
?>
</body>
</html>

Explanation of the Code

This section explains the code.

$query = "SELECT * FROM prices"”; //#1
$result = mysqli_query ($dbcon, $query); // Run the query.
if ($result) { // If it ran OK, display the records.

$row = mysqli fetch array($result, MYSQLI NUM);

All the prices are pulled from the prices table, creating a numerically indexed array called $row.

$yearsarray = array(

"Standard one year:", "Standard five year:",
"Military one year:", "Under 21 one year:",
"Other - Give what you can. Maybe:");

An array, $yearsarrayj, is created to hold the text of the different classes. In most programming
languages, you cannot change the contents of an array created with this format. However, in PHP you can.

echo '<h6 class="text-center text-danger">Membership classes:</h6>" ;

echo '<h6 class="text-center text-danger small"> ';
for ($j = 0, $i = 0; $j < 5; $j++, $i = $i + 2) {

162

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

In PHP a for loop can have more than one index, and each index can be incremented or decremented
individually. In this example, $j is increased by one each time, while $i is increased by two each time. There
are two values (GB and US) for each single description (Standard one year). Thus, as the descriptions change
one at a time, the prices jump two positions.

echo $yearsarray[$j] . " £
htmlspecialchars($row[$i], ENT_QUOTES)
" GB, 8$ " .
htmlspecialchars($row[$i + 1], ENT_QUOTES) .

" Ust
$j is controlling the description. $i is controlling the two prices to be displayed.
if ($5 1= 4) {

if ($5 % 2 == 0) {

echo "</h6><h6 class="text-center text-danger small'>"; }
else {

echo ", "; }
}

For every two jumps of $J (so we can have two descriptions on one line), we close the line (</h6>)
and open a new line for the next description, except when $j is 4. This would indicate there is not another
description, so we don’t need to start a new line.

}
echo "</h6>";
}
At the end we close the line of the last description.
<div class="col-sm-8"> <I--#2-->
<select id="level" name="level" class="form-control" required>
<option value="0" >-Select-</option>
<?php
for ($j =0, $1 =0; $j < 5; $j++, $1 = $1 + 2) {
echo '<option value="'
htmlspecialchars($row[$i], ENT QUOTES) . '" ';
if ((isset($ _POST['level'])) & ($ _POST['level'] == $row[$i]))
{
>
selected
<?php }
echo ">" . $yearsarray[$j] . " "
htmlspecialchars($row[$i], ENT_QUOTES) .
" £ GB, " .
htmlspecialchars($row[$i + 1], ENT_QUOTES) .
"$ US</option>";
}
>
</select>

The looping and controlling of information for this example is similar to the previous example.
However, we are creating a select statement for the form. Note that the code checks to see if the user
previously selected a level. If they did, it places “selected” in the option statement being created for that level
(such as Standard one year). Notice for selected to work correctly on the form, it must not be within an echo
statement inside of PHP code.

163

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

<div class="form-group row"> <I--#3-->
<label for="address1" class="col-sm-4 col-form-label">*Address:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="address1" name="address1"
placeholder="Address" maxlength="30" required
value=
"<?php if (isset($_POST['addressi']))
echo htmlspecialchars($ POST['addressi'], ENT_QUOTES); ?>" >
</div>
</div>

The HTML code for the additional fields within the form are in the same format as we have seen before.
The input tags will stick any input the user entered back into the form, after sanitizing them using PHP.

Listing 5-2b. Code for the New Registration Page with 12 Visible Fields (process-register-page.php)

<?php
// This script is a query that INSERTs a record in the users table.
// Check that form has been submitted:
try {
$errors = array(); // Initialize an error array.
// Check for a first name:
$first _name =
filter var($_POST['first name'], FILTER SANITIZE STRING);
if (empty($first name)) {

$errors[] = 'You forgot to enter your first name.';
}
// Check for a last name:
$last_name =

filter_var($_POST['last_name'], FILTER_SANITIZE_STRING);
if (empty($last name)) {

$errors[] = 'You forgot to enter your last name.';
}

// Check for an email address:
$email = filter var($_POST['email'], FILTER SANITIZE EMAIL);
if ((empty($email)) || (!filter var($email, FILTER VALIDATE EMAIL))) {
$errors[] = 'You forgot to enter your email address';

$errors[] = ' or the e-mail format is incorrect.';
}
// Check for a password and match against the confirmed password:
$passwordl =

filter_var($_POST['passwordi'], FILTER_SANITIZE_STRING);
$password2 = f
ilter var($_POST['password2'], FILTER SANITIZE STRING);
if (lempty($password1)) {
if ($passwordl !== $password2) {
$errors[] = 'Your two password did not match.';
}

} else {
$errors[] = 'You forgot to enter your password(s).';
}

164

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

// Check for an membership class
if(isset($_POST['level'])) {

$class =

filter var($_POST['level'], FILTER_SANITIZE_STRING); }
if (empty($class)) {

$errors[] = 'Please choose your membership class.';
}
// Check for address:

$address1 =

filter var($_POST['addressi'], FILTER SANITIZE STRING);
if (empty($addressi)) {

$errors[] = 'You forgot to enter your address.';

}

// Check for address2: #1
$address2 =

filter var($ POST['address2'], FILTER SANITIZE STRING);
if (empty($address2)) {

$address2 = NULL;
}

// Check for city:
$city =
filter var($_POST['city'], FILTER SANITIZE STRING);
if (empty($city)) {
$errors[] = 'You forgot to enter your City.';
}

// Check for the county:
$state_country =
filter var($_POST['state country'], FILTER SANITIZE STRING);
if (empty($state_country)) {
$errors[] = 'You forgot to enter your country.';
}

// Check for the post code:

$zcode_pcode =

filter var($_POST['zcode_pcode'], FILTER_SANITIZE_STRING);
if (empty($zcode pcode)) {

$errors[] = 'You forgot to enter your post code.';
}
// Check for the phone number:
$phone =
filter var($ _POST['phone'], FILTER SANITIZE STRING);
if (empty($phone)) {
$phone = NULL;
}
if (empty($errors)) { // If everything's OK.
//Determine whether the email address has already been registered #2

require ('mysqli_connect.php'); // Connect to the db.
$query = "SELECT userid FROM users WHERE email = ? ";
$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);

mysqli stmt bind param($q, 's', $email);
mysqli_stmt_execute($q);

$result = mysqli_stmt get result($q);

165

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

if (mysqli num rows($result) == 0){
//The email address has not been registered
// Register the user in the database...
// Hash password current 60 characters but can increase
$hashed passcode = password hash($passwordi, PASSWORD DEFAULT);
require ('mysqli_connect.php'); // Connect to the db.
// Make the query:

$query =

"INSERT INTO users (userid, first name, last name, email, password, ";
$query .=

"class, addressi, address2, city, state_country, zcode_pcode, phone, ";
$query .= "registration date) ";
$query .=

"VALUES(' ', 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, NOW())";
$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// use prepared statement to ensure that only text is inserted
// bind fields to SQL Statement
mysqli stmt bind param($q, 'sssssssssss',
$first name, $last name, $email, $hashed passcode,
$class, $addressi, $address2, $city, $state country,
$zcode_pcode, $phone);
// execute query
mysqli stmt execute($q);
if (mysqli_stmt_affected rows($q) == 1) { // One record inserted
header ("location: register-thanks.php?class=" . $class);
exit();
} else { // If it did not run OK.
// Public message:

$errorstring =
"<p class="text-center col-sm-8' style='color:red'>";
$errorstring .=
"System Error
You could not be registered due ";
$errorstring .=

"to a system error. We apologize for any inconvenience.</p>";
echo "<p class=" text-center col-sm-2'
style="color:red'>$errorstring</p>";
// Debugging message below do not use in production
//echo '<p>' . mysqli error($dbcon) . '

Query:
mysqli close($dbcon); // Close the database connection.
// include footer then close program to stop execution
echo '<footer class="jumbotron text-center col-sm-12"
style="padding-bottom:1px; padding-top:8px;">
include("footer.php");
</footer>';
exit();
telse{//The email address is already registered #3
$errorstring = 'The email address is already registered.';
echo "<p class=" text-center col-sm-2'
style="color:red'>$errorstring</p>";

. $query . '</p>';

166

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

} else { // Report the errors.
$errorstring =
"Error!
 The following error(s) occurred:
";
foreach ($errors as $msg) { // Print each error.
$errorstring .= " - $msg
\n";
}

$errorstring .= "Please try again.
";
echo "<p class=" text-center col-sm-2'
style="color:red'>$errorstring</p>";
}// End of if (empty($errors)) IF.
}
catch(Exception $e) // We finally handle any problems here
{
// print "An Exception occurred. Message:
print "The system is busy please try later";

. $e->getMessage();

catch(Error $e)

{

//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";

}

2>

Explanation of the Code

This section explains the code.

// Check for address2: #1
$address2 =
'Filter_val‘($_POST['address2'], FILTER_SANITIZE_STRING);
if (empty($address2)) {
$address2 = NULL;
}

The second address field (address2) is not a required field. This field has no required attribute because
it can be deliberately left empty by the user. If the field is empty, the else statement will execute. There is no
error message. Instead, the key word NULL is assigned to the variable $adress2. NULL indicates no value.
If the registration form field for address2 is empty, the address2 cell in the database table will also be set to
NULL. Examine the rest of the code and see whether you can find the same pattern being used for another
optional field.

//Determine whether the email address has already been registered #2
require ('mysqli_connect.php'); // Connect to the db.
$query = "SELECT userid FROM users WHERE email = ? ";
$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);
mysqli stmt bind param($q, 's', $email);
mysqli stmt_execute($q);
$result = mysqli stmt get result($q);

if (mysqli_num_rows($result) == 0){

167

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

Now a check is done to determine whether the e-mail is already in the database. If it is not, the
information is inserted.

}else{//The email address is already registered #3
$errorstring = 'The email address is already registered.';
echo "<p class=" text-center col-sm-2'
style="color:red'>$errorstring</p>";

}
If the email already exists, display an error message.
The extended registration page informs the user that membership fees can be paid using PayPal or a

debit/credit card. This is achieved pictorially using a PayPal image in the information column on the right
side, as shown in the next section.

Adding PayPal Debit/Credit Card Images

The image is downloaded from the PayPal website and added to a new version of the info column. The result
is shown in Figure 5-3.

Payment
Methods

_ Pl

= =
B =
M E
Y =

Figure 5-3. The revised info column

The new info-col-cards.php file is included only in the registration page and the “thank you” page. All
the other pages have no need for this information; therefore, they will include the original info-col.php.

Including PayPal on the “Thank You” Page

A payment method will now be added to the “thank you” page. This is shown in Figure 5-4.

168

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

Home Page

Your Logo meddel O

Thank you for registering
Page 2 To confirm your registration please verify membership class and pay the membership fee now.

You can use PayPal or a credit/debit card.
P
age When you have completed your registration you will be able to login to the member's only pages.

P 4 =
age Membership classes:

Page 5 Standard one year: £ 30 GB, $ 40 US
Standard five year: £ 125 GB, § 140 US , Military one year: £ 5 G8, § 8 US
Under 21 one year: £ 2 GB, § 3 US, Other - Give what you can. Maybe: £ 15 GB, § 20 US

*Membership Class Standard five year: 125 £ GB, 140% US v

t;,,.muow._ -
[==(— Pl) ol

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid C55 8 HTMLS
Figure 5-4. A PayPal link added to the “thank you” page

The “thank you” page from the previous chapter forms the basis of the new page. The user’s
membership application will be recorded in the database, but the Paid cell will contain the default value
No. This is because the Paid item is an ENUM hidden from the user. The administrator is the only person
allowed to enter data in that field. The administrator will change the Paid cell to Yes when they receive an
e-mail from PayPal confirming the payment (or when a card payment has arrived). The PayPal e-mail also
provides the new member’s address and e-mail. If the administrator is satisfied that the details match the
information that the user entered in the database, the member’s paid field in the database will be set to Yes.
The administrator will need to compare the membership class selected originally by the user and the class
the user paid to make sure they match. If there is a difference, the administrator will also need to adjust the
class paid for in the database.

We are using PayPal in the “thank you” page because it is a popular payment system. A website owner
can sign up at the paypal.com page (or paypal.co.uk page). They will be given a merchant ID and the option
to generate and copy a snippet of code to embed the payment link in any page. If the owner already has a
PayPal account, they can log in and go to My Profile and My Business Info, where they can find the merchant
account ID. That ID will enable them to access the appropriate generated code to embed in the page.

NOTE: The PayPal code in register-thanks.php is for demonstration only. The code provided will
not work because you must have a merchant account ID. PayPal does provide the ability to test payment
transactions without processing PayPal or debit/credit card accounts. Once you have an account, PayPal will
provide code that you can copy and paste to replace the example code in this demonstration. You can find
more information on setting up a test environment here:

https://developer.paypal.com/docs/classic/paypal-payments-standard/ht_test-pps-buttons/
Listing 5-4 presents the code for the “thank you” page.

Listing 5-4. Creating a Combined “Thank You” and PayPal Payment Page (register-thanks.php)

<!DOCTYPE html>
<html lang="en">
<head>
<title>Register Thanks</title>

169

http://paypal.com

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css
integrity=
"sha384-9gV04dYFwwWSFIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section --»
<header class="jumbotron text-center row"
style="margin-bottom:2px;
background:linear-gradient(white, #0073e6); padding:20px;">
<?php include('thanks-header.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('nav.php'); 2>

</nav>
<!-- Center Column Content Section -->
<div class="col-sm-8">
<h3 class="h2 text-center" >Thank you for registering</h2>
<h6 class="text-center">
To confirm your registration please verify membership class and pay the membership fee
now.</h6>
<h6 class="text-center">
You can use PayPal or a credit/debit card.</h6>
<p class="text-center" >
When you have completed your registration you will be able to login
to the member's only pages.</p>
<?php
try {
require ("mysqli connect.php");
$query = "SELECT * FROM prices";
$result = mysqli_query ($dbcon, $query); // Run the query.
if ($result) { // If it ran OK, display the records.
$row = mysqli_fetch_array($result, MYSQLI_NUM);
$yearsarray = array(
"Standard one year:", "Standard five year:", "Military one year:",
"Under 21 one year:", "Other - Give what you can. Maybe:");
echo '<h6 class="text-center text-danger">Membership classes:</h6>" ;
echo '<h6 class="text-center text-danger small"> ';
for ($j =0, $i =0; $j < 5; $j++, $1 = $1 + 2) {

170

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

echo $yearsarray[$j] . " £
htmlspecialchars($row[$i], ENT_QUOTES)
" GB, $ " .
htmlspecialchars($row[$i + 1], ENT_QUOTES) .
"us";

if ($5 !'=4) {
if ($j % 2 == 0) { echo "</h6><h6 class="text-center text-danger small'>"; }
else { echo ", "; }

}
}
echo "</h6>";
}
?>
<p></p>

<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="cmd" value="_s-xclick">
<input type="hidden" name="hosted button_id" value="XXXXXXXXXXXXX">
<div class="form-group row">
<label for="level" class="col-sm-4 col-form-label">
*Membership Class</label>
<div class="col-sm-8">
<select id="level" name="level" class="form-control" required>
<option value="0" >-Select-</option>
<?php //#1
$class = htmlspecialchars($ GET['class'], ENT_QUOTES);
for ($j =0, $1 = 0; $j < 5; $j++, $1 = $1 + 2) {

echo '<option value="" .

htmlspecialchars($row[$i], ENT QUOTES) . '" ';
if ((isset($class)) && ($class == $row[$i]))

{

echo ' selected ';

echo ">" . $yearsarray[$j] . .
htmlspecialchars($row[$i], ENT_QUOTES) .
" £ GB, " .
htmlspecialchars($row[$i + 1], ENT_QUOTES) .
"$ US</option>";
}
>
</select>
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<l-- #2-->
<!-- Replace the code below with code provided by PayPal once you obtain a Merchant ID -->
<input type="hidden" name="currency code" value="GBP">
<input style="margin:10px 0 O 40px" type="image"
src="https://www.paypalobjects.com/en_US/GB/i/btn/btn_buynowCC LG.gif" name="submit"

alt="PayPal The safer, easier way to pay online.">
171

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

<!-- Replace code above with PayPal provided code -->
</div>
</div>
</form>
</div>
<!-- Right-side Column Content Section -->
<aside class="col-sm-2">
<?php include('info-col-cards.php'); ?>
</aside>
</div>
<!-- Footer Content Section -->
<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;">
<?php include('footer.php'); ?>
</footer>
<?php
} // end try
catch(Exception $e) // We finally handle any problems here

{

// print "An Exception occurred. Message:
print "The system is busy please try later";

. $e->getMessage();

catch(Error $e)

{
//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";

}

>

</body>

</html>

Explanation of the Code

This section describes the code.

<?php /141
$class = htmlspecialchars($ GET['class'], ENT_QUOTES);
for ($j = 0, $i = 0; $j < 5; $j++, $i = $i + 2) {

echo '<option value="' .

htmlspecialchars($row[$i], ENT_QUOTES) . '" ';
if ((isset($class)) && ($class == $row[$i]))

{

echo ' selected ';
}
echo ">" . $yearsarray[$j] . " " .
htmlspecialchars($row[$i], ENT_QUOTES) .
" £ GB, " .
htmlspecialchars($row[$i + 1], ENT QUOTES) .
"$ US</option>";

172

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

The code to create the drop-down list for the classes is similar to the code in the register_page.php file.
However, the determination of which class to set as selected is decided by the value in $class, which was
passed into the page from the register page.

<!-- #2-->
<!-- Replace the code below with code provided by PayPal once you obtain a Merchant ID -->
<input type="hidden" name="currency code" value="GBP">

<input style="margin:10px 0 0 40px" type="image"
src="https://www.paypalobjects.com/en_US/GB/i/btn/btn_buynowCC_ LG.gif" name="submit"
alt="PayPal The safer, easier way to pay online.">

<!-- Replace code above with PayPal provided code -->

This is a small portion of the code generated by PayPal. For security we have used a dummy value
for the PayPal ID for this tutorial. PayPal provides a 13-character ID code. The header now has no menu
buttons; until the registrant’s payment is received, the registrant can only access the home page. The home
page is accessible from the main menu.

Before we go any further, you need to register some extra members.

Registering Some Members

Tip Entering the data can be tedious. To reduce the tedium in this tutorial, the addresses and telephone
numbers can be identical for each entry. A set of suitable data is suggested next.

When experimenting, the following data was used for every record. This is acceptable because no
searches are made using addresses and telephone numbers.

e Membership class: For each entry’s membership class, choose any of the drop-down
selections.

e Address I: 2 The Street.

e Address 2: The Village (to demonstrate the effect of the NULL setting in the database,
leave some of these fields empty and populate a few with The Village).

e City: Townsville.
e Country or State: UK (or CA, for example, if a U.S. state).
e Postor Zip code : EX7 9PP (or a U.S. ZIP code, 33040).

e Phone: 01234 777 888 (or a U.S. phone number, 3055551111. This field is optional,
and you should omit the phone in some records.

Register the members listed in Table 5-3.

173

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

Table 5-3. Some Member Names

First Name Last Name E-mail Password
James Smith jsmith@myisp.com Bl3cksmith
Jack Smith jsmith@outcook.com DO0gsb0dy
Mike Rosoft miker@myisp.com Willgat3s
Olive Branch obranch@myisp.co.uk An0OllyOne
Frank Incense fincense@myisp.net P3rfum3s
Annie Versary aversary@myisp.com h@ppyd@y
Terry Fide tfide@myisp.de sc@r3dst1ff
Rose Bush rbush@myisp.co.uk R3db100ms
Annie Mossity amositty@myisp.org.uk YOur3n3my
Percey Veer pveer@myisp.com K33pg0lng
Darrel Doo ddoo@myisp.co.uk Satlsfled
Stan Dard sdard@myisp.net b@ttl3fl@g
Nora Bone nbone@myisp.com L1k3t3rr13r
Barry Cade bcade@myisp.co.uk BlOckth3m

If you later require more data to play with, some suggestions are given in Table 5-4.

Table 5-4. Some Additional Suggestions for Registrations

First Name Last Name E-mail Password
Dee Jected djected@myisp.org.uk Gl00mnd0OOm
Lynn Seed Iseed@myisp.com Palnt3rs011
Barry Tone btone@myisp.net Nic3v01c3
Helen Back hback@myisp.net AgrlmsOrtle
Patrick O’Hara pohara@myisp.org.uk ShamrOck
Dawn Chorus dchorus@myisp.com Trllling
Connie Firs cfirst@myisp.com P1n3tr33s
Eva Nessant enessant@outlook.com Trans13nt

Al Fresco sfresco@myisp.net Fr3shalrfood

Important Jack Smith will once again act as the administrator. Go into phpMyAdmin and change Jack
Smith’s user_level from 0 to 1. Also, be sure to use phpMyAdmin to change the administrator’s paid column to
Yes. Change some other members’ paid columns to Yes.

174

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

To change the paid field to Yes, after entering all the members, open phpMyAdmin, and in the left
panel click the + sign next to postaldb and then click the underlined word users. The user’s records will
be displayed in horizontal format. To change a member’s paid field, click the Edit item on the left of each
member’s record. The record will then be displayed in a more convenient vertical format. Scroll down to the
paid ENUM radio buttons and click the Yes button. Then click Go.

Note Remember that if you can’t log in to a member’s account, it is probably because his paid column is
not set to Yes. This is as it should be.

A Small Amendment to the Login Page

The login page (included in the downloaded files) is almost the same as the one in the previous chapter,
except that we must prevent an applicant from accessing the members-only pages before the administrator
has received the membership fee. The following snippet of code shows the amendment to the query:

// Retrieve the user id, psword, first name and user level for that
// email/password combination

$query = "SELECT user_id, psword, fname, user level FROM users ";
$query .= "WHERE paid='Yes' AND email=?";

The error message is also modified as follows:

echo '<p class="error">our E-mail/Password does not match our records.';

echo ' Perhaps your fee has not yet been processed from PayPal or the credit card.';
echo '
Perhaps you need to register, just click the Register' ;

echo 'button on the header menu</p>';

We must now alter the administrator’s pages to match the extra columns. For instance, the membership
secretary (administrator) will want to update which members have paid their fees or requested other
changes. For example, Eva Nessant might move or change her name. In Chapter 6, we will also add
the ability to include a title (Mr. Mrs. Miss, Mx., Dr.) to each member. In Chapter 7, we will lighten the
administrator’s workload and allow the members to update these fields in their own records.

We will now make a change to the administration page’s header to incorporate a new button.

Amending the Administrator’s Header

To avoid having a mile-wide table display, the large number of columns will be split into two separate
displays: one displaying membership details and the other displaying members’ addresses and telephone
numbers. A new search facility is required so that the members’ addresses can be displayed in the table. This
will be launched by means of a new button on the header menu labeled Addresses.

We have modified the header to include the Addresses button, as shown in Figure 5-5. Because the
header is the launch pad, we will begin by listing the new header.

175

CHAPTER 5 EXPAND AND ENRICH YOUR WEBSITE

Your Logo Header Goes Here el

Figure 5-5. The new header containing the new Addresses button

The new addresses button is shown in Listing 5-5.

Listing 5-5. Installing a New Addresses Button in the Header (header-admin.php)

<div class="col-sm-2">

</div>
<div class="col-sm-8">
<h1 class="blue-text mb-4 font-bold">Header Goes Here</hi>

</div>
<nav class="col-sm-2">
<div class="btn-group-vertical btn-group-sm" role="group"
aria-label="Button Group">
<button type="button" class="btn btn-secondary"”
onclick="location.href = 'logout.php'" >
Logout</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'admin_view_users.php'">
View Members</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'search.php'">
Search</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = "#'">
Addresses</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'register-password.php'">
New Password</button>
</div>
</nav>

Note The link search addresses will not work until we have produced the search_address.php page. We
will do this in the next chapter.

The table displayed by the admin_view_users.php file needs two extra columns, called class and paid.

176

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

Adding Class and Paid to the admin_view_users Table

From the administrator’s point of view, the admin_view_users table needs to be revised to show some of the
new columns. The paginated table needs to display the columns shown in Figure 5-6.

Vit Lo Header Goes Here

These are the registered users

Page 2
Edit Delete Last Name First Name Email Date Registered Class Paid

Page 3

S Edit Delete Incense Frank incense@myisp.net December 08, 2017 15 No

age

Page 5 Edit Delete Branch Olive obranch@myisp.co.uk December 08, 2017 2 No
Edit Delete Rosoft Mike miker@myisp.com December 08, 2017 2 No
Edit Delete Smith Jack Jjsmith@outcook.com December 08, 2017 30 No

Total membership: 5

Mext

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid CSS & HTMLS

Figure 5-6. The new table display. Note the new Class and Paid columns

To save you the tedious task of entering a huge number of registrations, each table has again been
limited to four records. In a real-world situation, you would display about 20 to 25 rows per page. Figure 5-6
shows the table display with two extra columns.

Listing 5-6 shows the amendments to the code. Note that the right info column has been removed to
allow more space for the table. In the next section, we will show the code changes to accomplish this.

Listing 5-6. Code for Creating the Paginated Table to Display Two Extra Columns (process_admin_view_
users.php)

<?php
try {
// This script retrieves all the records from the users table.
require('mysqli_connect.php'); // Connect to the database.
//set the number of rows per display page
$pagerows = 4;
// Has the total number of pages already been calculated?
if ((isset($ GET['p']) 8& is numeric($ GET['p']))) {
//already been calculated
$pages = htmlspecialchars($ GET['p'], ENT QUOTES);
// make sure it is not executable XSS
}else{//use the next block of code to calculate the number of pages
//First, check for the total number of records

177

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

$query = "SELECT COUNT(userid) FROM users";

$result = mysqli query ($dbcon, $query);

$row = mysqli fetch array ($result, MYSQLI NUM);

$records = htmlspecialchars($row[0], ENT_QUOTES);

// make sure it is not executable XSS

//Now calculate the number of pages

if ($records > $pagerows){
//if the number of records will fill more than one page
//Calculate the number of pages and round the result up
// to the nearest integer
$pages = ceil ($records/$pagerows);

}else{

}
}//page check finished
//Declare which record to start with
if ((isset($ GET['s'])) &&(is_numeric($ GET['s'])))
{

$pages = 1;

$start = htmlspecialchars($ GET['s'], ENT_QUOTES);
// make sure it is not executable XSS

}else{
$start

}

0;

$query = "SELECT last_name, first name, email, "; //#1
$query .= "DATE_FORMAT(registration date, '%M %d, %Y')";

$query .=" AS regdat, class, paid, userid FROM users ORDER BY ";

$query .="registration_date DESC";

$query .=" LIMIT 2, ?";

$q = mysqli stmt_init($dbcon);
mysqli stmt prepare($q, $query);

// bind $id to SQL Statement
mysqli_stmt_bind_param($q, "ii", $start, $pagerows);

// execute query
mysqli_stmt_execute($q);
$result = mysqli_stmt get result($q);

if ($result) { 7/ #2
// If it ran OK (records were returned), display the records.
// Table header

echo '<table class="table table-striped">

<tr>

<th scope="col">Edit</th>

<th scope="col">Delete</th>

<th scope="col">Last Name</th>

<th scope="col">First Name</th>

<th scope="col">Email</th>

<th scope="col">Date Registered</th>

<th scope="col">Class</th>

<th scope="col">Paid</th>

178

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

</tr>';
// Fetch and print all the records:
while ($row = mysqli fetch array($result, MYSQLI ASSOC)) {

// Remove special characters that might already be in table to
// reduce the chance of XSS exploits
$user_id = htmlspecialchars($row['userid'], ENT QUOTES);
$last _name = htmlspecialchars($row['last name'], ENT QUOTES);
$first name = htmlspecialchars($row['first name'], ENT_QUOTES);
$email = htmlspecialchars($row['email'], ENT_QUOTES);
$registration_date =
htmlspecialchars($row['regdat'], ENT QUOTES);
$class = htmlspecialchars($row['class'], ENT_QUOTES);
$paid = htmlspecialchars($row['paid'], ENT_QUOTES);

echo '<tr>
<td>Edit</td>
<td>Delete</td>

<td>' . $last_name . '</td>

<td>' . $first_name . '</td>

<td>' . $email . '</td>

<td>' . $registration_date . '</td>
<td>' . $class . '</td>

<td>' . $paid . '</td>

</tr>';

echo '</table>'; // Close the table.
mysqli_free result ($result); // Free up the resources.

else { // If it did not run OK.
// Error message:
echo '<p class="text-center">The current users could not be ';
echo 'retrieved We apologize for any inconvenience.</p>';
// Debug message:
// echo '<p>' . mysqli error($dbcon) . '

Query: ' . $q . '</p>';
// exit;
} // End of else ($result)
// Now display the total number of records/members.
$q = "SELECT COUNT(userid) FROM users";
$result = mysqli_query ($dbcon, $q);
$row = mysqli_fetch_array ($result, MYSOLI_NUM);
$members = htmlspecialchars($row[0], ENT_QUOTES);
mysqli close($dbcon); // Close the database connection.
$echostring = "<p class="text-center'>Total membership: $members </p>";
$echostring .= "<p class="text-center'>";
if ($pages > 1) {//
//What number is the current page?
$current_page = ($start/$pagerows) + 1;
//1f the page is not the first page then create a Previous link
if ($current page != 1) {
$echostring .= '<a href="admin_view users.php?s=" .
($start - $pagerows) . '8p=" . $pages . '">

Previous ';

#3

179

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

//Create a Next link

if ($current page != $pages) {
$echostring .= ' <a href="admin_view_users.php?s=" .
($start + $pagerows) . '8p=" . $pages . "

>Next ';

}

$echostring .= '</p>';
echo $echostring;

}

} //end of try

catch(Exception $e) // We finally handle any problems here
// print "An Exception occurred. Message: "

print "The system is busy please try later";

. $e->getMessage();

}

catch(Error $e)
//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";

}

?>

Explanation of the Code

This section explains the code.

$query = "SELECT last name, first name, email, "; //#1
$query .= "DATE_FORMAT(registration date, '%M %d, %Y')";

$query .=" AS regdat, class, paid, userid FROM users ORDER BY ";

$query .="registration_date DESC";

$query .=" LIMIT 2, ?";

$q = mysqli stmt_init($dbcon);
mysqli stmt prepare($q, $query);

// bind $id to SQL Statement
mysqli_stmt_bind_param($q, "ii", $start, $pagerows);

// execute query
mysqli stmt_execute($q);
$result = mysqli_stmt get result($q);

if ($result) {

The two columns called class and paid are added to the SELECT query. The rows are again ordered by
registration date, but now they will be in descending order (DESC) because our imaginary administrator
prefers to view the latest registrations at the top of the table.

if ($result) { // #2
// If it ran OK (records were returned), display the records.

// Table header

echo '<table class="table table-striped">

<tr>

180

<th
<th
<th
<th
<th
<th
<th
<th

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

scope="col">Edit</th>
scope="col">Delete</th>
scope="col">Last Name</th>
scope="col">First Name</th>
scope="col">Email</th>
scope="col">Date Registered</th>
scope="col">Class</th>
scope="col">Paid</th>

</tr>';

If no problem was encountered, then display the table titles including the extra two items.

// reduce the chance of XSS exploits

$user id = htmlspecialchars($row['userid'], ENT QUOTES);
$last _name = htmlspecialchars($row['last name'], ENT QUOTES);
$first name = htmlspecialchars($row['first name'], ENT_QUOTES);
$email = htmlspecialchars($row['email'], ENT_QUOTES);
$registration_date =

htmlspecialchars($row['regdat'], ENT_QUOTES);
$class = htmlspecialchars($row['class'], ENT_QUOTES);
$paid = htmlspecialchars($row['paid'], ENT_QUOTES);
echo '<tr>
<td>Edit</td>

<td>Delete</td>

<td>' . $last_name . '</td>

<td>' . $first_name . '</td>

<td>' . $email . '</td>

<td>' . $registration_date . '</td>
<td>' . $class . '</td>

<td>' . $paid . '</td>

</tr>';

echo '</table>'; // Close the table.

We sanitized the two new columns and placed the results into the last two columns of the table.

Now let’s update our ability to search and edit the records.

Searching and Editing Records

The search form and its code are the same as those in Chapter 4; therefore, they will not be repeated here.
We do, however, need to add the Class and Paid columns to the table displayed on the screen when a record
is displayed using the Search button on the header menu.

Figure 5-7 shows the search result with the two new columns.

#3

181

CHAPTER 5 EXPAND AND ENRICH YOUR WEBSITE

Visiie Toie Header Goes Here

These are users found

Page 2 If no record is shown, this is because you had an incorrect or missing entry in the search form.
Page 3 Click the back button on the browser and try again
Page 4 Edit Delete Last Name First Name Email Date Registered Class Paid
Page 5 . i o
Edit Delete Smith Jack jsmith@outcock.com December 08, 2017 30 No

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS
Figure 5-7. The search result now displays a record with the two extra columns, Class and Paid

To make room for long e-mail addresses, last names, and the two new columns, we have removed the
information column in the display. The partial listing from the last few lines of the view_found_record.php
file is shown here:

<div class="col-sm-10">
<h2 class="text-center">These are users found</h2>
<p>
<?php
require ("process view found record.php");
>
</div>
</div>
<!-- Footer Content Section -->
<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;">
<?php include('footer.php'); ?>
</footer>
</div>
</body>
</html>

The number of Bootstrap columns to display the table has been increased from 8 to 10 (col-sm-10). The
information column code has been removed.
Listing 5-7 shows the changes to the PHP code for adding the two extra columns to the table.

Listing 5-7. Creating Two Extra Columns in the Table Display (process_view_found_record.php)

<?php

try

{
// This script retrieves records from the users table.
require ('./mysqli connect.php'); // Connect to the db.

echo '<p class="text-center">If no record is shown, ';
echo 'this is because you had an incorrect ';

182

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

echo ' or missing entry in the search form.';

echo '
Click the back button on the browser and try again</p>';
$first name = htmlspecialchars($ POST['first name'], ENT QUOTES);
$last_name = htmlspecialchars($_POST['last_name'], ENT_QUOTES);

// Since it's a prepared statement below this sanitizing is not needed
// However, to consistently retrieve than sanitize is a good habit
$query = "SELECT last _name, first name, email, ";

$query .= "DATE_FORMAT(registration date, '%M %d, %Y')";
$query .=" AS regdat, class, paid, userid FROM users WHERE ";
$query .= "last _name=? AND first name=? ";

$query .="ORDER BY registration date ASC ";

$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);

// bind values to SQL Statement
mysqli stmt bind param($q, 'ss', $last name, $first name);

// execute query
mysqli_stmt_execute($q);

$result = mysqli stmt get result($q);

if ($result) { // If it ran, display the records.

// Table header.

echo '<table class="table table-striped">

<tr>

<th scope="col">Edit</th>

<th scope="col">Delete</th>

<th scope="col">Last Name</th>

<th scope="col">First Name</th>

<th scope="col">Email</th>

<th scope="col">Date Registered</th>

<th scope="col">Class</th>

<th scope="col">Paid</th>

</tr>';

// Fetch and display the records:

while ($row = mysqli_fetch_array($result, MYSQLI_ASSOC)) {

// Remove special characters that might already be in table to

// reduce the chance of XSS exploits
$user_id = htmlspecialchars($row['userid'], ENT QUOTES);
$last _name = htmlspecialchars($row['last name'], ENT QUOTES);
$first_name = htmlspecialchars($row['first_name'], ENT_QUOTES);
$email = htmlspecialchars($row['email'], ENT_QUOTES);
$registration date =

htmlspecialchars($row['regdat'], ENT_QUOTES);

$class = htmlspecialchars($row['class'], ENT_QUOTES);
$paid = htmlspecialchars($row['paid’], ENT QUOTES);

echo '<tr>
<td>Edit</td>
<td>Delete</td>

183

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

<td>' . $last_name . '</td>

<td>' . $first_name . '</td>

<td>' . $email . '</td>

<td>' . $registration_date . '</td>
<td>' . $class . '</td>

<td>' . $paid . "</td>

</tr>';
}
echo '</table>'; // Close the table.
//

mysqli_free result ($result); // Free up the resources.
} else { // If it did not run OK.
// Public message:
echo '<p class="center-text">The current users could not ';
echo 'be retrieved.';
echo 'We apologize for any inconvenience.</p>';
// Debugging message:
//echo '<p>' . mysqli error($dbcon) . '

Query: ' . $q . '</p>';
//Show $q is debug mode only
} // End of if ($result). Now display the total number of records/members.
mysqli_close($dbcon); // Close the database connection.

catch(Exception $e)
{
print "The system is currently busy. Please try later.";
//print "An Exception occurred.Message: " . $e->getMessage();
}catch(Error $e)

{ print "The system us busy. Please try later.";
//print "An Error occurred. Message: " . $e->getMessage();
}
?>
</html>

Explanation of the Code

The changes to the code are the same as we discussed related to a previous listing, so we will not explain
them again here.

Modifying the Form for Editing Records

The form for editing a record will now contain two more fields, Membership Class and Paid. This enables the
membership secretary to view a member’s chosen class of membership. They can also enter Yes in the Paid
field when the member’s PayPal payment is processed. These fields are shown in Figure 5-8.

184

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

Logout

YaiiLogs Header Goes Here

Edit a Record This is the

Page 2 First Name: Jack 'nflormation
Page 3 column

Last Name: Smith Information area
Page 4
Page 5 E-mail: jsmith@outcook.com

Membership Class: 30

Paid: No

Register

Copyright © Adrian West & Steve Prettyran 2018 Designed by Adrian West and Steve Prettyman Valid C55 8 HTMLS
Figure 5-8. The screen for editing a record

All five fields can be edited. When the Edit button is clicked, the revised data is shown, together with
a message saying that the record was edited successfully. Editing an address or telephone number will be
covered in Chapter 6. Listing 5-8 shows the code for editing a record.

Listing 5-8. The Code for Creating an Editing Screen to Include the Two Additional Fields (process_edit_
record.php)

<?php
try
{
// After clicking the Edit link in the found record.php page. This code is executed
// The code looks for a valid user ID, either through GET or POST:
if ((isset($ _GET['id'])) && (is_numeric($ GET['id']))) {
// From view users.php
$id = htmlspecialchars($ _GET['id'], ENT_QUOTES);

} elseif ((isset($_POST['id'])) & (is_numeric($ POST['id']))) {
// Form submission.

$id = htmlspecialchars($ POST['id'], ENT_QUOTES);
} else { // No valid ID, kill the script.

echo '<p class="text-center">

This page has been accessed in error.</p>';

include ('footer.php');

exit();
}

require ('./mysqli_connect.php');

// Has the form been submitted?

if ($_SERVER['REQUEST METHOD'] == 'POST") {
$errors = array();

185

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

186

// Look for the first name:
$first name =
filter var($_POST['first name'], FILTER SANITIZE STRING);
if (empty($first name)) {
$errors[] = 'You forgot to enter your first name.';
}

// Look for the last name:
$last _name = filter var($_POST['last name'], FILTER_SANITIZE STRING);
if (empty($last name)) {
$errors[] = 'You forgot to enter your last name.';
}

// Look for the email address:

$email = filter var($_POST['email'], FILTER SANITIZE EMAIL);

if ((empty($email)) || (!filter var($email, FILTER VALIDATE EMAIL))) {
$errors[] = 'You forgot to enter your email address’;
$errors[] = ' or the e-mail format is incorrect.';

}

// Look for the class:

$class = filter var($ _POST['class'], FILTER SANITIZE NUMBER_INT);

if (empty($class)) {
$errors[] = 'You forgot to the class or it is not numeric.';

}

// Look for the Paid Status:
$paid = filter var($ POST['paid'], FILTER _SANITIZE STRING);
if (empty($paid)) {

$errors[] = 'You forgot to enter the paid status.';

}

if (1(($paid == "No") [| ($paid == "Yes"))) {
$errors[] = "Paid must be No or Yes.";

}

if (empty($errors)) { // If everything's OK.
$q = mysqli_stmt_init($dbcon);
$query = 'SELECT userid FROM users WHERE email=? AND userid !=?';
mysqli stmt prepare($q, $query);

// bind $id to SQL Statement
mysqli stmt bind param($q, 'si', $email, $id);

// execute query
mysqli stmt_execute($q);
$result = mysqli_stmt_get result($q);

if (mysqli_num_rows($result) == 0) {

// e-mail does not exist in another record

$query = 'UPDATE users SET first name=?, last name=?, email=?,';
$query .= ' class=?, paid=?';

$query .= ' WHERE userid=? LIMIT 1';

$q = mysqli_stmt_init($dbcon);

mysqli stmt prepare($q, $query);

#1

#2

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

// bind values to SQL Statement
mysqli stmt bind param($q, 'sssssi', $first name, $last name, $email, $class, $paid, $id);
// execute query
mysqli_stmt_execute($q);

if (mysqli_stmt affected rows($q) == 1) { // Update OK
// Echo a message if the edit was satisfactory:
echo '<h3 class="text-center">
The user has been edited.</h3>";
} else { // Echo a message if the query failed.
echo '<p class="text-center">
The user could not be edited due to a system error.';
echo ' We apologize for any inconvenience.</p>';
// Public message.
//echo '<p>' . mysqli error($dbcon) . '
Query: ' . $q . '</p>';
// Debugging message.
// Message above is only for debug and should not in live mode
}
} else { // Already registered.
echo '<p class="text-center">
The email address has already been registered.</p>";
}

} else { // Display the errors.
echo '<p class="text-center">
The following error(s) occurred:
';
foreach ($errors as $msg) { // Echo each error.
echo " - $msg
\n";
}

echo '</p><p>Please try again.</p>";
} // End of if (empty($errors))section.
} // End of the conditionals
// Select the user's information to display in textboxes:

$q = mysqli_stmt init($dbcon);
$query =
"SELECT first name, last name, email, class, paid FROM users WHERE userid=?";
mysqli stmt prepare($q, $query);
// bind $id to SQL Statement
mysqli_stmt_bind_param($q, 'i', $id);
// execute query
mysqli stmt_execute($q);
$result = mysqli stmt get result($q);
$row = mysqli fetch array($result, MYSQLI NUM);
if (mysqli_num_rows($result) == 1) {
// Valid user ID, display the form.
// Get the user's information:
// Create the form:
>
<h2 class="h2 text-center">Edit a Record</h2>
<form action="edit user.php" method="post"
name="editform" id="editform">

187

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

<div class="form-group row">
<label for="first name" class="col-sm-4 col-form-label">
First Name:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="first name"
name="first name" placeholder="First Name" maxlength="30" required
value="<?php echo htmlspecialchars($row[0], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="last _name" class="col-sm-4 col-form-label">
Last Name:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="last name"
name="last _name" placeholder="Last Name" maxlength="40" required
value="<?php echo htmlspecialchars($row[1], ENT QUOTES); ?>">
</div>
</div>
<div class="form-group row">
<label for="email" class="col-sm-4 col-form-label">
E-mail:</label>
<div class="col-sm-8">
<input type="email" class="form-control" id="email"
name="email" placeholder="E-mail" maxlength="60" required
value="<?php echo htmlspecialchars($row[2], ENT QUOTES); ?>">
</div>
</div>
<div class="form-group row">
<label for="class" class="col-sm-4 col-form-label">
Membership Class:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="class"
name="class" placeholder="Membership Class" maxlength="60" required
value="<?php echo htmlspecialchars($row[3], ENT QUOTES); ?>">
</div>
</div>
<div class="form-group row">
<label for="paid" class="col-sm-4 col-form-label">Paid:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="paid"
name="paid" placeholder="Paid" maxlength="60" required
value="<?php echo htmlspecialchars($row[4], ENT QUOTES); ?>">
</div>
</div>
<input type="hidden" name="id" value="<?php echo $id ?>" />
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<input id="submit" class="btn btn-primary" type="submit"
name="submit" value="Register">
</div>
</div>

188

CHAPTER 5 * EXPAND AND ENRICH YOUR WEBSITE

</form>
<?php
} else { // The user could not be validated

echo '<p class="text-center">

This page has been accessed in error.</p>';

}
mysqli stmt free result($q);
mysqli close($dbcon);

catch(Exception $e)
print "The system is busy. Please try later";

//print "An Exception occurred.Message: " . $e->getMessage();
}catch(Error $e)

{ print "The system is currently busy. Please try again later";
//print "An Error occurred. Message: " . $e->getMessage();
}
>
// Look for the class: #1

$class = filter var($ POST['class'], FILTER SANITIZE NUMBER INT);
if (empty($class)) {

$errors[] = 'You forgot to the class or it is not numeric.';
}

The integer parameter of the filter var method is used to make sure the class is numeric.

// Look for the Paid
Status: #2
$paid = filter var($ POST['paid'], FILTER SANITIZE STRING);
if (empty($paid)) {
$errors[] = 'You forgot to enter the paid status.';

}

if (1(($paid == "No") || ($paid == "Yes"))){
$errors[] = "Paid must be No or Yes.";

}

An additional check is used to make sure that paid is No or Yes. Other values would cause errors
because we set the column in the database to only accept these two values.

All the remaining code has been seen and explained before; therefore, further explanation is
unnecessary. Where anything new has been inserted, the comments within the listing give a full explanation.

Note the screen for deleting a record is the same as in Chapter 4 and will not be repeated here to save
space. However, the file delete_record.php is included in the downloads for Chapter 5.

We need to limit the amount of information shown to the administrator. An extremely wide and
confusing table would be required to display a member’s full details. Therefore, a member’s details will be
split and displayed using two separate pages. The administrator will be able to view the address separately
from the rest of the member’s information by means of the search-address.php page. The new Address button
was added to the menu to access this page. However, we will create the code for this page in the next chapter.

Note The downloaded files for Chapter 5 include all files required for these demonstrations, including
unchanged files from Chapter 4.

189

CHAPTER 5 © EXPAND AND ENRICH YOUR WEBSITE

Summary

In this chapter, we created a database containing many more fields than the ones in prior chapters. We
added sessions to all the administration pages for security. We added a new Addresses button to the
administrator’s page header. We learned how to add PayPal logos and buttons to the pages. We discussed
how to obtain the necessary code to link to the PayPal system to accept payments. Pagination was
demonstrated in a tabular display of members. The form for editing records was modified to include extra
data. A second table was created to hold the current pricing information for membership. This information
was displayed both in the class pricing and in the drop-down list provided for the user to select a class.

In the next chapter, you will learn how the administrator can view and edit addresses and telephone
numbers. Also, in the next chapter, we will add the finishing touches to the database. The filing system will
be tidied up by placing the included files in an includes folder. For increased security, extra user input filters
will be introduced. A title column will be added to the table display for editing and deleting a record, and the
title column will also be added to the table display for editing addresses and phone numbers.

190

CHAPTER 6

Add the Finishing Touches:
Security and Validation

In the previous chapter, we created the beginnings of a useful database and several interactive website

pages. However, the administrator was not able to edit all the member information. In this chapter, we will

provide the ability to edit the address and telephone number information. This will be achieved by using

the Addresses menu button. In addition, we will add an additional Title field to the database. This field will
also be editable through the Addresses menu button. The folder and filing system for the PHP pages will be
tidied up to reduce the clutter. More information will be placed in folders for easier discovery and retrieval.

The previous interactive pages had a minimum of user input validation and sanitation. This chapter will

introduce a more secure system.
After completing this chapter, you will be able to

e Generate a SQL script from an existing database and its associated tables

e Importa SQL script into phpMyAdmin to generate a new database and associated

tables
e Add an additional field to an existing database table
e (Create an organized folder structure to store related files and web pages
e Provide more security for access to and storage of database information

e Validate and sanitize user input before entry into a database

e Provide additional searching capabilities for titles, addresses, and phone numbers

e Provide additional capabilities to view and edit titles, addresses, and phone numbers

Creating the Database

First, we will create a new version of the postaldb database and rename it finalpost.

1. Open the XAMPP htdocs or easyPHP eds-www folder, and create a new folder

named finalpost.

2. Download the files for Chapter 6 from the book’s website at www.apress.com and

place the files in the new folder called finalpost.

3. Then use a browser to access phpMyAdmin, click the Database tab, and create a

new database called finalpost.

© Adrian W. West and Steve Prettyman 2018
A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,
https://doi.org/10.1007/978-1-4842-3843-1_6

191

www.apress.com

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

4. Scroll down and find the newly created database. Then select the check box
alongside it.

5. Click Check Privileges, click Add User, and then add a new user and password as
follows:

e Username: cabbage

e Password: in4aPin4al

e Host:localhost

Scroll down; next to Global Privileges, click Check All.
6. Accept the default for Resource limits.

7. Scroll to the bottom and click Go to save the user’s details.

Creating the File for Connecting to the Database

Create a new connection file named mysqli_connect.php. (If you don’t need to practice creating the file from
scratch, it is already included in the downloaded files for Chapter 6.)

Listing 6-1. The Database Connection File (mysqli_connect.php)

<?php
// Create a connection to the postaldb database
// Set the database access details as constants and set the encoding to utf-8

Define ('DB_USER', 'cabbage');

Define ('DB_PASSWORD', 'in4aPindal');

Define ('DB_HOST', 'localhost');

Define ('DB_NAME', 'finalpost');

// Make the connection

$dbcon = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB NAME);
mysqli_set_charset($dbcon, 'utf8'); // Set the encoding...

Test your connection in a browser (http://localhost/finalpost/mysqli_connect.php). Remember, if
you do not see anything on the screen, your connection was successful.

Tip When composing a password for use in the real world, you should make it as complex as possible.
Ensure that it is not related in any way to the name of the database. A complex password can be easily
remembered by means of a mnemonic. The mnemonic can then be written down and placed under lock and
key. The mnemonic chosen for the password (in4aPin4al) in this tutorial is the old British saying, “In for a
penny, in for a pound.” One of the meanings of this maxim is, “If we start this, we must make sure we finish it;
there is no turning back.” In the password itself, the uppercase P stands for Penny, and the uppercase L is the
archaic symbol for a British pound (100 pennies).

192

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

Creating the users Table by Importing a SQL Dump File

We now need to create a table named users with 17 columns.

We can hear you groaning, “Oh, no! Not another table!” Don’t worry, we are about to show you a
shortcut using the Import/Export facility in phpMyAdmin.

The generated code is already created for you and exported into a file called users.sql. This file actually
contains code to create both the users and prices tables. You will find this among the downloaded files that
you installed in the folder finalpost.

However, you can also create the users.sql file from your current postaldb database from Chapter 5. You
can ignore the following directions and skip to the import directions if you want to start with a database and
table not affected by anything you did in Chapter 5.

To create a file to import, follow these steps:

1.

6.

Open up phpMyAdmin. Select the postaldb database from the listing on the left
of the screen.

Then select the export tab at the top of the page. Create a name for the template,
such as users, and enter it in the new template textbox.

Click the create button to the right of the textbox. The new template name, users,
should now appear in the existing templates drop-down box to the right. Leave
the quick export method selected. Also make sure that SQL is displayed in the
Format dropbox list.

If everything looks correct, click the Go button. The system will download a file
containing SQL code that will not only create your tables for you but will also
copy your existing data from the Chapter 5 database into the new database for
Chapter 6.

Open the downloaded file into Notepad++ or a similar editor that displays the
code line by line. Examine the code and see whether you can determine which
lines are creating the tables and which lines are adding the data into the tables.

Select Save As from the File menu and save the file as users.sqgl.

To import the users.sql file from the textbook files for Chapter 6 or to import the file you created from
exporting the tables from Chapter 5, complete the following directions:

1.
2.
3.

In the home page of phpMyAdmin, click the database finalpost.
Click the Import tab.

Click the Browse button on the Import screen, as shown in Figure 6-1.

193

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

> C o

phpMyAdmin
aselae
Recent Favontes
Be
g How
;_, adenintable
(= nalpost
ZJ information_schema
L g
F_ . performance_sthema
B3 ¥
i postald
Ly test

% Search

i Cuery =} Expont b Import * Operations ©° Privileges of Routines (2 Events 3¢ Triggers % Tracking

Importing into the database "finalpost”

File to import:

File may be {gzip, bzip2, 2ip) or
A comprassed Sle's name must and i [format].[compression]. Example: sql.rip

(Max 2.046K8)

Browse your computer | Browse.. | Ha Fle selected.
You may also drag and drop a file on sy pags.

Character st of the file: | w8 B

Partial import:

[l Allow the internuption of an inport in case the script detects it is close 1o the PHP timeou frmit. (This might be & good way fa import large files, however if can break fransachions)

Shkip this number of querics (lbe SOL) starting #um the Srstone: (0 1

Other options:

[Enabie foreign key checks

Format:
sa. [
Format-specific eptions:
SOL compatitiity mode: | HONE -

[Do not use avTe_tHermEsT for 2o volues

Figure 6-1. The Import screen in phpMyAdmin

The Browse button allows you to navigate to the file users.sql. Open the users.sql file.

4. Then click Go, and the file will be imported.

5. Now open the users table in phpMyAdmin (click the browse tab), you will be able
to view the table and its data.

You can alternatively use the Operations tab, after selecting the database, to copy a table from one
database to another. Table 6-1 shows the structure of the imported users table.

194

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

Table 6-1. The Titles and Attributes of the Chapter 6 Imported users Table

Column Name Type Length/Values Default Aftributes NULL Index Al
userid MEDIUMINT 6 None UNSIGNED [PRIMARY
title VARCHAR 10 None [
first_name VARCHAR 30 None]]
last_name VARCHAR 40 None L] L]
email VARCHAR 50 None]]
password CHAR 60 None U] L]
registration_date DATETIME None]]
user_level TINYINT 1 None UNSIGNED []
class CHAR 20 None O]
address1 VARCHAR 50 None L] L]
city VARCHAR 50 None]]
state_country CHAR 25 None L] Ul
zcode_pcode CHAR 10 None O]]
phone CHAR 15 None (]
secret VARCHAR 30 None] O
paid ENUM “yes’; “no” None |]

If you imported the users.sql file from the textbook files, the structure will also include a title and a secret
field. These fields did not exist in the database in Chapter 5. We will soon explain how you can add these
columns if you imported your own data from the previous chapter. Also, note that the columns for the title,
the second address and the phone number, have their NULL boxes checked. This is because they will be
optional fields that can be ignored by the user. Many users may not have an additional address, such as an
apartment number. Some users are ex-directory and do not want to disclose their telephone numbers.

Registering Some Members Manually

If you did not import the existing data (users) from the users table, you will need to manually enter them. To
register the members, run XAMPP or EasyPHP and use a browser to enter this URL:

http://localhost/finalpost/safexr-register-page.php

The file safer-register-page.php is a more secure version of the register-page.php file from Chapter 5. The
file is included in the downloadable files for Chapter 6. The enhancements for the safer file are described
later in this chapter.

As in Chapter 5, James Smith is registered first as a member and then also as the membership secretary
(administrator) with the alias Jack Smith. As a reminder, their details are given next:

e First name: James
e Last name: Smith

e E-mail: jsmith@myisp.co.uk

Password: Bl@cksm1th

195

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

e First name: Jack

e Last name: Smith

e E-mail: jsmith@outcook.com
e Password: D@gsb0dy

Set Jack Smith'’s user level to 1. By using phpMyAdmin, both Smiths should have their paid column set
to Yes. You may optionally add titles and a secret answer for both users.

Tip When adding new members, use phpMyAdmin to put Yes in a member’s Paid column. To do this, click
the box next to finalpost in the left panel to expand it and then click the users item. You will see the registered
members. In the user’s record, click Edit. In the next screen, scroll down and click the Yes radio button at the
bottom right. Then click Go.

Members are unable to log in unless their Paid column has been marked Yes by the membership secretary
(administrator).

So that you can access the members’ data, the downloadable members’ details are shown in Table 6-2.
This is the same data from Chapter 5. The data is already placed in the table from the imported users.sql
file. This chapter assumes the data is as shown. If you imported your own data, you may want to make some
manual adjustments to reflect this information. You do not need to manually enter the information again.

Table 6-2. Details of the Downloadable Registered Members

Title First Name Last Name E-mail Password
Mr Mike Rosoft miker@myisp.com Willg@t3s
Ms Olive Branch obranch@myisp.co.uk An@llyOne
Mr Frank Incense fincense@myisp.net P@rfum3s
Ms Annie Versary aversary@myisp.com H@ppyd8y
Mr Terry Fide tfide@myisp.de sc@r3Dst1ff
Mrs Rose Bush rbush@myisp.co.uk R@db100ms
Mrs Annie Mossity amositty@myisp.org.uk YOur@n3my
Mr Percey Veer pveer@myisp.com K33pg0!ing
Mr Darrel Doo ddoo@myisp.co.uk Sat!sfled
Mr Stan Dard sdard@myisp.net b@TTI3fl@g
Mrs Nora Bone nbone@myisp.com Lik@t@rrl3r
Mr Barry Cade bcade@myisp.co.uk Blockth@m

196

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

Tip Remember as stated in the previous chapter, entering the data can be tedious using the manual
method. To reduce the tedium, you can enter some identical addresses, telephone numbers, and secret answers
for different users. A set of suitable data is suggested next.

In Chapter 5, we entered the following information in every record to save time and effort. Here are
some suggested default entries:

Address 1 2 The Street

Address 2 The Village (this is optional and should be omitted when registering some
of the members’ addresses)

City Townsville

State or Country UK (or US)

Postal or Zip code EX7 9PP (or in the United States, 33040)

Phone 01234 777 888 (or in the United States, 999 888 4444; this is optional and
should be omitted when registering some of the members’ telephone
numbers)

Remember, in phpMyAdmin, change the paid column to Yes for several of the members. Only those
members with a paid column set to Yes will be able to sign into the system.

Adding a Title Column to the users Table

If you imported your own data from Chapter 5, the table does not include a title and a secret column. If you
did use the users.sql file from the Chapter 6 textbook files, these columns were created already, and you can
skip this section.

Let’s add a title column to allow members to optionally provide a preferred title (such as Mr., Mrs., Ms.,
Mx., or Dr.).

1. In phpMyAdmin, select the finalpost database on the listing to the left of the
screen.

2. Then select the users table in the database.

3. Select the Structure tab at the top of the page. The screen shown in Figure 6-2 will
now appear.

197

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

é.ﬂ ﬁ & e] Browse s Suucture [SQL 4 Search #¢ Insert =} Export [id Import = Privileges ” Operations # Tre
Recent Favorites 7
e ¥ Table structure 3 Relation view
=3 Hew
F._ . admintable # MName Type Collation Attributes Null Default Comments Extra Action
.:L_ + infarmation_schema 0 1 userid > madiumint(5) unsishED Mo Nane AUTO_INCREMENT o7 Change @ Drop g2 Primary [
- myzgl 0 2 fname varchar(30) utfg_bin No None &7 Change & Drop > Primary [+
{#L. J perfarmance_schema
& [. phpmyadmin 1 3 Iname varchar(40) utf@_bin No Nene &" Change @ Drop > Primary &
=) postaldh 1 4 email varchan(50) utfg_bin Ho Nome & Change @ Drop > Primary [+
i M
‘__'_\: u:;s T § psword chan(60) utf8_bin No Nene &7 Change @ Drop 5 Primary [§
3 test | 6 registration_date datetime No None & Change @ Drop . Primary [
[7 class chan(20) utfg_bin No None &7 Change @ Drop 5 Primary [k
1 8 user_level timyint{ 1} Mo None & Change @ Drop 5 Primary 5
0 9 addrl wvarchar(50) utfE_bin No None & Change @ Drop > Primary [
1 10 addr2 wvarchar(50) utf2_bin Yes NULL & Change @ Drop > Primary |4
I 1 city varchas(50) utf@_bin No Nene & Change @ Drop > Primary |5
1 12 state_country char(25) utf3_bin No None & Change @ Drop 3 Primary |-
113 zcode_pcode chan(10) utfg_bin No Nene & Change @ Drop 5 Primary
] 14 phone char(15) utf3_bin Yes NULL & Change @ Drop 7 Primary [+
0 15 paid enum{No, Yes') utfi_bin No None &7 Change @ Drop 5 Primary [3
T[] Checkall Withselected: [[]Browse g7 Change @0Drop > Pomary [i Unique]Index 25 Add to central columns
S Pant §B Propose table structure & ® Track table [Move columns & Improve table structure
3iadd |1 1| column(s) | after paid [-] (6o
Indexes &
Figure 6-2. The Structure screen in phpMyAdmin
4. Locate the Add Columns information below the listing of the current columns.
5. Change the settings to indicate that 1 column will be added after the user_id
column and click the Go button.
6. Enter the following settings for the new title column.
Column name Type Length/Values Default Attributes NULL Index A_l
title VARCHAR 10 None L]

Notice that the new column will allow null values. This will make the entering of
a title optional.

7. Once you have entered the new settings, click the Save button. The new column
will now appear in the structure of the table between the userid and first_name
columns.

8. Now click the browse tab to view the current data in the table. Randomly select
some users by clicking the Edit link to the left side of the data, enter a title, and
save the changes. You need some titles in the table to display when search results
for members are displayed.

9. Repeat these steps to add the secret column using the following settings.

198

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

Column name Type Length/Values Default Attributes NULL Index Al

secret VARCHAR 30 None O O

Creating the Prices Table by Importing a SQL Dump File

Ifyou imported the users.sql file from the Chapter 6 textbook files, it already imported the prices table, so you
can skip this section. We now need to repeat the import procedure to copy the prices table from Chapter 5
into the finalpost database.

1. Inthe home page of phpMyAdmin, click the database finalpost.
2. Click the Import tab.

3. Click the Browse button on the Import screen (see Figure 6-1). The browse
button allows you to navigate to the file prices.sql.

4. Open the prices.sql file and then click Go. The file will be imported.

You can alternatively use the Operations tab, after selecting the database, to copy a table from one
database to another. If you now open the prices table in phpMyAdmin (click the browse tab), you will be able
to view the table and its data.

Table 6-3 shows the structure of the prices table.

Table 6-3. The Titles and Attributes for the prices Table

Column Name Type Length/Values Default Attributes NULL Index A_l
oneyeargb DECIMAL 6 None UNSIGNED] [
oneyearus DECIMAL 6 None UNSIGNED (] (]
fiveyeargb DECIMAL 6 None UNSIGNED L] L]
fiveyearus DECIMAL 6 None UNISGNED (] (]
militarugb DECIMAL 6 None UNISGNED L] L]
militaryus DECIMAL 6 None UNSIGNED]]
u2lgb DECIMAL 6 None UNSIGNED L] L]
u2lus DECIMAL 6 None UNSIGNED]]
minpricegb DECIMAL 6 None UNSIGNED Ul Ul
minpriceus DECIMAL 6 None UNSIGNED] |

The table should now also include the data that was entered in Chapter 5. You can also export and
import your own data from the Chapter 5 database.

Let’s now take a diversion to do some housekeeping before we continue. The ever-increasing number of
PHP and HTML files can become a problem if we don’t provide better organization.

199

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

Tidying Up the Folders and Filing System

The number of files in the postal folder has increased as each chapter has added more features. The clutter
can be confusing. To tidy the new finalpost folder, we will place all the included files in their own include
folder. This has already been accomplished in the downloadable files for this chapter. Note that all files that
are inserted into the PHP programs using the include statement are now in the new includes folder. In the
main files, all the PHP includes now have the prefix includes/, as shown in the following snippet:

<?php
include("includes/header-admin.php");
include("includes/nav.php");
include("includes/info-col.php");

>

We will now provide some additional validation and sanitation for the data. Security is the most
important aspect of the development process and perhaps the most tedious. Inappropriate input from a
user can insert faulty or corrupt data into a database table. More seriously, it can cause a leakage of private
information or allow nefarious people to trash a table. It can also allow people to take control of the server and
any data residing on the server. Unacceptable input or control can be the work of criminals, or it could simply
be caused by users’ mistakes. Therefore, all user input must be filtered to ensure that it is fit for your database.

Degrees of Security

A database can be insecure or partially secure; it can never be 100 percent secure. However, this statement
must be qualified because the risk depends on several other factors besides the built-in security of the
database. Postal addresses, e-mail addresses, credit card information, and users’ preferences can be
harvested from an insecure database and sold for substantial amounts of money.

Databases for small firms, clubs, or societies must still provide a layer of security. The administrator
has a legal responsibility to keep data as secure as possible. Even if hackers do not attack the database,
users could inadvertently enter invalid information. Remember, it is much easier to filter out any potential
problems before the data is entered into the database. Once bad data exists in a database, it is more difficult
to remove it.

Adding a Layer of Security

The database must have a unique name (up to 16 characters long), a password (as complex as possible), a
host name (such as localhost), a designated user, and a set of permissions.

Multiple users are permissible, and their permissions should be limited. The number of user IDs for
a database must be restricted for maximum security. Users should be provided only with the permissions
needed to complete their job (task). There have been many recent examples in the news of employees who
were granted more permissions than necessary and thus exposed users’ personal information to either
criminals or other websites. Most users should not have permissions such as GRANT, SHUTDOWN, or DROP.

The PHP code that we have demonstrated in previous chapters hashes the password before storing it on the
server. Additionally, the webmaster should choose a password that is difficult to deduce. Never use a word that
can be found in a dictionary or a word that is an anagram of the webmaster’s name. You could take a popular
saying such as “Raining again, good weather for ducks” and create a password something like RaGw4dux.

Always assume that everything a user enters will be a danger to the database. In addition, the data
should be as accurate as possible. The age of a person is not a good entry for a database. The person’s age
changes over time. The data would soon be invalid. A better entry is the person’s date of birth. That does not
change. The age of the person can then be calculated from their birthdate and will always be accurate.

200

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

Additionally, e-mail addresses with incorrect formats are of no use to the user or to the owner of the
database. Code should be provided to ensure the e-mail is in the proper format. Some systems even sent a
verification to the e-mail entered to ensure that not only is the format correct, but it is an actual live e-mail.

We are using prepared SQL statements in our example code. This ensures that no user data can
be executed and cause harm to the database. However, we currently are not eliminating any invalid or
unnecessary characters from the user entries. We want to avoid, as much as possible, allowing invalid or
corrupt data into the database.

We should always sanitize any input strings to eliminate the possibility of executable code being entered
into the database. Prepared statements will also prevent the execution of data.

Validate e-mail addresses, phone numbers, and all numerical items and any other items that have a
standard format (such as ZIP/postal codes). Anything that is too general to be validated should, at least, be
sanitized. The two techniques validation and sanitization will be explained later in this chapter.

Sanitize all user input before it is displayed to the page or inserted into the database. Scripts can
infiltrate the database using HTML tags, such as the <script> tag, in conjunction with JavaScript.

In a live website, when possible, store the file that accesses the database in a folder located one level
above the root folder. (The root folder is htdocs or eds-www.) You may need to contact your remote host
provider to see whether this is possible. Moving this file to a folder outside of htdocs or eds-www will make
it harder to access. Leaving this file in the root folder can allow a person or program to access the database.
The connection code we have been using is as follows:

require ('mysqli connect.php');
When using a file in a folder one level above the root level, the connection code is as follows:

require ('../mysqli_connect.php');

Note The downloadable PHP files for this tutorial will retain the code require (‘mysqli_connect.php’);
because the database will be located on your computer and not on a remote host. You should move the location
of this file (and change all similar statements) to a more secure folder when uploading your files to a production
server. You are leaving a large security risk if you do not secure this file.

Where possible, prevent browsers from displaying error messages that reveal the structure of the
database. In the example code, the catch blocks of code capture and display error messages. In the real
world, the catch blocks will store error messages in an error log that is not accessible by a user. E-mails can
also be sent to the web administrator to inform them that an error has occurred. The log can then be viewed
to determine the problem. The user will be provided with a generic message asking them to return to the site
at a later time. Chapter 7 will provide an example of logging error messages.

As we have shown in previous chapters, always use sessions to restrict access to vulnerable pages, such
as an administration page and members’ special pages. You might also consider providing different levels
of access, such as a user level, a membership chairperson level, and a web administrator level. This can be
accomplished by setting the user_level to different values (such as 1, 2, 3) and then checking for one (or
more) of these values within the session code at the top of each secured page.

You can safely accept payments through a website by using PayPal, Stripe, or a similar secure payment
system. But never store members’ bank/debit/credit card details. Also, do not store government-identifying
numbers (such as a Social Security number). Remember that access to this type of information can provide
the ability for a hacker to destroy a person’s credit, steal tax refunds, and steal retirement checks. If you need
a unique identifier, generate a user ID using autonum as we have previously shown.

201

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

An Increased Layer of Protection

If your clients want to use an internal payment system rather than using PayPal or a similar third-party
company, they will need a more expensive security budget. For sites where security is important or when
users’ financial details are stored, the site will require specialist staff or a third party to supervise and
continually monitor the website. This can be costly and time-consuming.

A Secure Sockets Layer (SSL) is necessary whenever secure information must travel from the client to
the server. SSL will provide an encrypted channel for the information to flow. Sites that include SSL use the
HTTPS protocol instead of the HTTP protocol. Many browsers also provide a lock icon to indicate that the
communication channel is encrypted by SSL. Some hosts, such as Facebook, now require SSL for all hosted
applications. The client may have to pay a higher annual fee to use a Secure Sockets Layer.

Validation and Sanitization

Let’s demonstrate the difference between validation and sanitization.

e Validating: The validator checks the format of the users’ input. If the format is
incorrect, the form is not submitted, and an error message asks the user to correct
the input. For example, validation ensures that e-mail addresses are in the correct
format (i.e., a username followed by an @ symbol followed by an ISP address). This
prevents incorrect data from being entered into a database table.

e Sanitizing: This can be achieved by two methods: using standard PHP cleaners or using
the filter_var() function with a SANITIZE attribute. Sanitizing removes undesirable
characters automatically before the data is sent to the database table or displayed on the
page. When you are using the SANITIZE attribute, no error message is displayed. Users
are not alerted to the fact that they have made a mistake or that their input contains
dangerous characters or scripts. This may not be desirable, as it does not provide the
user with the opportunity to correct what they have entered. Sanitization will remove or
inactivate HTML tags and JavaScript commands that could harm a database.

Validation and sanitization can be applied by means of the function filter_var().

The filter_var() Function

The function filter_var() is included with PHP version 5.2 and later. Its purpose is to simplify the validation
and sanitization of user input. The function is used in conjunction with either a FILTER_VALIDATE or
FILTER_SANITIZE attribute. For more detailed information on this function, see http://php.net/manual/
en/function.filter-var.php.

Validation

In Chapter 5, some validation was provided in the registration page using HTML 5. However, users could
still enter information that was invalid. In addition, even if the information has been validated on the client
machine using HTML 5 or JavaScript, it still can be corrupted while traveling from the client to the server.
Data could be received on the server side that would either damage the web page or the server or interfere
with the database. The user could have also entered items that were in the wrong format. As an example of
a wrong format, a user could make a mistake when entering an e-mail address. The incorrect address could
contain spaces or unacceptable characters as follows:

rbush 'myisp.com

202

http://php.net/manual/en/function.filter-var.php
http://php.net/manual/en/function.filter-var.php

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

This faulty e-mail address contains no @ symbol, and it has two spaces and an apostrophe. These are
unacceptable e-mail characters. The VALIDATION process will recognize the problems and provide an error
message asking the user to correct the e-mail address.

In Chapter 5, in the file register-page.php, the code for the e-mail was as follows:

// Check for an email address:
$email = filter var($ POST['email'], FILTER SANITIZE EMAIL);
if ((empty($email)) || (!filter var($email, FILTER VALIDATE EMAIL))) {
$errors[] = 'You forgot to enter your email address’;

$errors[] = ' or the e-mail format is incorrect.';

}

This code sanitizes the input, checks that the field contained some characters, and validates the format
of the e-mail. This keeps the e-mail format from being complete nonsense; that nonsense would have
been entered into the database table. Some programmers use regex (regex is an abbreviation of “regular
expressions”) to validate the format of the e-mail address, but with the advent of PHP 5.2 and later versions,
the filter_var() function became available and is easier to use. Validation by means of regex is rather
complicated and prone to typing errors, as you will see from the following example:

$email = "name@usersisp.com”;
if (preg_match('/~[*0-9][a-zA-Z0-9_]+([.][a-zA-Z0-9_]+)*[@][a-zA-Z0-9_]+([.]~

[a-zA-Z0-9_]+)*[.][a-zA-Z]{2,4}$/' ,$email)) {
echo "Your email is in the acceptable format";

} else {
echo "Your email address does not have an acceptable format";
}

Validating by means of the filter_var() function is a great improvement. This code is used in the safer
registration code (process_register_page.php).

Some text input does not follow a standard format. Let’s look at first_ name. In Chapter 5, we checked
the contents of first_name using the following code:

// Check for a first name:
$first name = filter var($ POST['first name'],
FILTER SANITIZE STRING);
if (empty($first name)) {
$errors[] = 'You forgot to enter your first name.';
}

In this example, the string first_name was sanitized; however, no validation was provided to attempt to
gather good data before it is entered into the database.
In this chapter, we provide some additional validation.

// Trim the first name
$first name = filter var($_POST['first name'], FILTER _SANITIZE STRING);
if (('empty($first name)) &8 (preg match('/[a-z\s]/i',$first name)) &&
(strlen($first name) <= 30)) {
//Sanitize the trimmed first name
$first nametrim = $first name;
telse{
$errors[] =
'First name missing or not alphabetic and space characters. Max 30';

}
203

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

In addition to checking whether $first name is empty, we now are checking the string for a limited set of
characters and that the string is less than or equal to 30 characters. The character length matches the length
of the column in the database table and the length set in the HTML file (safer-register-page.php).

Since a filter_var function parameter does not exist for verifying first names, we must develop our own.

preg match('/[a-z\s]/i',$first name)

The preg_match function will compare a string ($first_name) with a regular expression ('/[a-z\s]/i') and
return True if the string meets the requirements or False if it does not.

In this example, a-z allows all alphabetic characters. The \s also indicates that spaces will be allowed.
The [] symbols are used to contain the values to be compared. The i character (along with the //, which
holds the other characters) indicates that we are ignoring the case. The following example provides the same
ability without the use of i:

preg match('[a-zA-z\s]', $first name)

We will look at some additional regular expressions soon. However, as you can see, it is easy to make
mistakes creating expressions. It is safer to use an existing function when they meet your needs.

Tip Some text input might not have a valid format because it does not conform to a set pattern—for
instance, a text area for comments or a person’s title. In the United Kingdom, some titles are a holdover from
medieval feudalism, such as quaint things like Baroness, Lord, Lady, or Sir. Some retired military members use
their armed forces titles like Major or Colonel. College instructors might use Professor or Prof. Text that does not
conform to a set pattern can be validated using a regular expression with a regex function.

Sanitization

In our safer registration page, we will use the filter_var function with a sanitization parameter to remove any
harmful characters.

//Is the last name present? If it is, sanitize it
$last _name = filter var($ POST['last name'], FILTER _SANITIZE STRING);
if (('empty($last_name)) 8& (preg match('/[a-z\-\s\']/i',$last_name)) 8&
(strlen($last_name) <= 40)) {
//Sanitize the trimmed last name
$last_nametrim = $last_name;
telse{
$errors[] =
"Last name missing or not alphabetic, dash, quote or space. Max 30.';

}

As we have seen in Chapter 5, the FILTER_SANITIZE_STRING parameter is used to sanitize any string
that does not have a common format. There are sanitizing filters (such as FILTER_SANTITIZE_EMAIL) that
should be used for specific formats. The e-mail sanitize filter is much easier than attempting to create a
regular expression for all e-mail formats.

204

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

Validating Telephone Numbers

Telephone numbers do not conform to a common format. Users will enter any combination of numbers,
spaces, hyphens, and brackets. Also there are international differences. To complicate matters, some users
will write the numbers in groups as follows:

0111222333 or (0111) 222 333 or 0111-222-333

Some programmers will attempt to use several regex statements to validate multiple formats of phone
numbers. This book offers a simplified approach. The neatest solution is to strip out every character that is
not a number. We will use a filter_var() function as shown next:

//1s the phone number present? If it is, sanitize it
$phone = filter var($ POST['phone'], FILTER SANITIZE STRING);
if (('empty($phone)) & (strlen($phone) <= 30)) {
//Sanitize the trimmed phone number
$phonetrim = (filter_var($phone, FILTER_SANITIZE_NUMBER_INT));
$phonetrim = preg replace('/[?0-9]/", ", $phonetrim);
telse{
$phonetrim = NULL;
}

If a user enters (01234) 777 888, then after sanitization it will enter the database as 01234777888. The
preg_replace function will replace any characters in the regular expression with the character(s) in the
second parameter. In this example, the A symbol indicates a NOT (like the ! symbol in PHP). Thus, the
expression is telling us to replace any character that is NOT a number with “ (nothing). This cleans out all
characters that are not numbers. We can place characters back into our telephone number when we display
them to the user, using the format of the countries in which our pages are used.

Tip See Appendix B for a list of the available validation and sanitation types.

A Safer Registration Page

To make the registration page more secure, several techniques are employed. The revised registration
page has the similar appearance as the registration page in Chapter 5 (with the addition of the title entry, a
security question, and Captcha), as shown in Figure 6-3.

205

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

ama Register Payment
Fage s Items marked with an asterisk * are required Methods
s — oy —
St = m
; =2 =
- " a
Rt N O B
e e
Eal ST D e e
Pattwenr | sesesass
Batwian B and "1 ancun
Contms Dikpwon oo Daiswers
Mamgsrhg Sait ~Seec il |
Agamis
Asdwis
oo
Coumprat”
TpPeed Code”
—
Seout Queimon T ~

[EE e

Copysopt © ADein Werl & St PveBmdn 2017 Desgrad by ASvan Wil And S Pamman \ABd G55 & HTMLE
Figure 6-3. The registration page

Additional security and cleaning have been included, and this will be explained at the end of
Listing 6-3a and Listing 6-3b.

Listing 6-3a. Creating a More Secure Registration Page (safer-register-page.php)

<?php

if ($_SERVER['REQUEST METHOD'] == 'POST") {
require("cap.php"); // recaptcha check

}

>
<!DOCTYPE html>
<html lang="en">
<head>
<title>Register Page</title>
<meta charset="utf-8">
<meta name="viewport" content=
"width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css”
integrity=
"sha384-9gV04dYFwwWSFIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"

206

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

crossorigin="anonymous">
<script src="verify.js"></script>
<script src="https://www.google.com/recaptcha/api.js'></script>
// Required for Captcha Verification
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section --»
<header class="jumbotron text-center row col-sm-14"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6);
padding:20px;">
<?php include('includes/register-header.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('includes/nav.php'); ?>

</nav>
<!-- Validate Input -->
<?php
if ($_SERVER['REQUEST METHOD'] == 'POST') {
require('process-register-page.php');
} // End of the main Submit conditional.
>
<div class="col-sm-8">
<h2 class="h2 text-center">Register</h2>
<h3 class="text-center">
Ttems marked with an asterisk * are required</h3>
<?php
try {
require_once("mysqli_connect.php");
$query = "SELECT * FROM prices";
$result = mysqli query ($dbcon, $query); // Run the query.
if ($result) { // If it ran OK, display the records.
$row = mysqli fetch array($result, MYSQLI NUM);
$yearsarray = array(
"Standard one year:", "Standard five year:",
"Military one year:", "Under 21 one year:",
"Other - Give what you can. Maybe:");
echo '<h6 class="text-center text-danger">
Membership classes:</h6>" ;
echo '<h6 class="text-center text-danger small"> ';
for ($j =0, $i =0; $j < 5; $j++, $1 = $1 + 2) {
echo $yearsarray[$j] . " £ "
htmlspecialchars($row[$i], ENT_QUOTES)
" GB, $ " .
htmlspecialchars($row[$i + 1], ENT_QUOTES) .
"US";

207

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

if (35 !=4) {
if ($7 % 2 == 0) {
echo "</h6><h6 class=
"text-center text-danger small'>"; }
else { echo ", "; }
}
}
echo "</h6>";
}
>
<form action="safer-register-pagel.php" method="post"
onsubmit="return checked();" name="regform" id="regform">
<div class="form-group row">
<label for="title" class="col-sm-4 col-form-label
text-right">Title:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="title" name="title"
placeholder="Title" maxlength="12"
pattern='[a-zA-Z][a-ZA-Z\s\.]*'
title="Alphabetic, period and space max 12 characters"

value=
"<?php if (isset($_POST['title']))
echo htmlspecialchars($_POST['title'], ENT_QUOTES); 2>" >
</div>
</div>
<div class="form-group row"> <I--#1-->

<label for="first name" class="col-sm-4 col-form-label
text-right">First Name*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="first name"
name="first name" pattern="[a-zA-Z][a-zA-Z\s]*"
title="Alphabetic and space only max of 30 characters"
placeholder="First Name" maxlength="30" required
value=
"<?php if (isset($_POST['first name']))
echo htmlspecialchars($_POST['first name'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="last name" class="col-sm-4 col-form-label text-right">
Last Name*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="last _name" name="last name'
pattern="[a-zA-Z][a-zA-Z\s\-\"]*"
title="Alphabetic, dash, quote and space only max of 40 characters"
placeholder="Last Name" maxlength="40" required
value=
"<?php if (isset($_POST['last name']))
echo htmlspecialchars($ POST['last name'], ENT_QUOTES); ?>" >

</div>
</divy>

208

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

<div class="form-group row">
<label for="email" class="col-sm-4 col-form-label text-right">
E-mail*:</label>
<div class="col-sm-8">
<input type="email" class="form-control" id="email" name="email"
placeholder="E-mail" maxlength="60" required
value=
"<?php if (isset($_POST['email']))
echo htmlspecialchars($ _POST['email'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row"> <l--#2-->
<label for="password1" class="col-sm-4 col-form-label
text-right">Password*:</label>
<div class="col-sm-8">
<input type="password" class="form-control" id="password1"
name="password1"
pattern="(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{8,12}"
title="One number, one upper, one lower, one special, with 8 to 12
characters”
placeholder="Password" minlength="8" maxlength="12" required
value=
"<?php if (isset($_POST['passwordi']))
echo htmlspecialchars($_POST['passwordi'], ENT QUOTES); ?>" >
Between 8 and 12 characters.
</div>
</div>
<div class="form-group row">
<label for="password2" class="col-sm-4 col-form-label
text-right">Confirm Password*:</label>
<div class="col-sm-8">
<input type="password" class="form-control" id="password2"
name="password2"
pattern="(?=.*\d) (?=.*[a-z])(?=.*[A-Z]).{8,12}"
title="One number, one uppercase, one lowercase letter, with 8 to 12
characters”
placeholder="Confirm Password" minlength="8"
maxlength="12" required
value=
"<?php if (isset($_POST['password2']))
echo htmlspecialchars($_POST['password2'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="level" class="col-sm-4 col-form-label
text-right">Membership Class*</label>
<div class="col-sm-8">
<select id="level" name="level" class="form-control" required>
<option value="0" >-Select-</option>
<?php
for ($j =0, $i =0; $j < 5; $j++, $1 = $1 + 2) {

209

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

echo '<option value="" .
htmlspecialchars($row[$i], ENT QUOTES) . '" ';
if ((isset($ _POST['level'])) & ($ _POST['level'] == $row[$i]))

2>
selected
<?php }

echo ">" . $yearsarray[$j] .
htmlspecialchars($row[$i], ENT_QUOTES) .
" £ GB, " .
htmlspecialchars($row[$i + 1], ENT_QUOTES) .
"$ US</option>";

}

echo "here";
>
</select>
</div>
</div>
<div class="form-group row">
<label for="address1" class="col-sm-4 col-form-label
text-right">Address*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="address1" name="address1"
pattern="[a-zA-Z0-9][a-zA-Z0-9\s\.\,\-]*"
title="Alphabetic, numbers, period, comma, dash and space only max of 30
characters”
placeholder="Address" maxlength="30" required
value=
"<?php if (isset($_POST['adressi']))
echo htmlspecialchars($ POST['addressi'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="address2" class="col-sm-4 col-form-label
text-right">Address:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="address2" name="address2"
pattern="[a-zA-Z0-9][a-zA-Z0-9\s\.\,\-]*"
title="Alphabetic, numbers, period, comma, dash and space only max of 30
characters”
placeholder="Address" maxlength="30"
value=
"<?php if (isset($_POST['address2']))
echo htmlspecialchars($_POST['address2'], ENT_QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="city" class="col-sm-4 col-form-label
text-right">City*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="city" name="city"
pattern="[a-zA-Z][a-zA-Z\s\.]*"

210

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

title="Alphabetic, period and space only max of 30 characters"
placeholder="City" maxlength="30" required
value=
"<?php if (isset($_POST['city']))
echo htmlspecialchars($ POST['city'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="state country" class="col-sm-4 col-form-label text-right">
Country/state*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="state_country"
name="state_country"
pattern="[a-zA-Z][a-ZA-Z\s\.]*"
title="Alphabetic, period and space only max of 30 characters"
placeholder="State or Country" maxlength="30" required
value=
"<?php if (isset($_POST['state country']))
echo htmlspecialchars($_POST['state country'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="zcode pcode" class="col-sm-4 col-form-label text-right">
Zip/Postal Code*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="zcode pcode"
name="zcode_pcode"
pattern="[a-zA-Z0-9][a-zA-Z0-9\s]*"
title="Alphabetic, period and space only max of 30 characters"
placeholder="7ip or Postal Code" minlength="5" maxlength="30"
required
value=
"<?php if (isset($_POST['zcode pcode']))
echo htmlspecialchars($_POST['zcode pcode'], ENT QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="phone" class="col-sm-4 col-form-label
text-right">Telephone:</label>
<div class="col-sm-8">
<input type="tel" class="form-control" id="phone" name="phone"
placeholder="Phone Number" maxlength="30"
value=
"<?php if (isset($_POST['phone']))
echo htmlspecialchars($_POST['phone'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="question" class="col-sm-4 col-form-label text-right">
Secret Question*:</label>
<div class="col-sm-8">

211

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

<select id="question" class="form-control">
<option selected value="">- Select -</option>
<option value="Maiden">Mother's Maiden Name</option>
<option value="Pet">Pet's Name</option>
<option value="School">High School</option>
<option value="Vacation">Favorite Vacation Spot</option>
</select>
</div>
</div>
<div class="form-group row">
<label for="secret" class="col-sm-4 col-form-label
text-right">Answer*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="secret" name="secret"
pattern="[a-zA-Z][a-ZzA-Z\s\.\,\-]*"
title="Alphabetic, period, comma, dash and space only max of 30
characters”
placeholder="Secret Answer" maxlength="30" required
value=
"<?php if (isset($_POST['secret']))
echo htmlspecialchars($_POST['secret'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<div class="float-left g-recaptcha"
data-sitekey="yourdatasitekeyhere"></div>
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8 text-center">
<input id="submit" class="btn btn-primary" type="submit"
name="submit" value="Register">
</div>
</div>
</form>
</div>
<!-- Right-side Column Content Section -->
<?php

if(lisset($errorstring)) {
echo '<aside class="col-sm-2">";
include('includes/info-col-cards.php');
echo '</aside>’;
echo '</div>';
echo '<footer class="jumbotron text-center row col-sm-14"

style="padding-bottom:1px; padding-top:8px;">";

212

<I--#3-->

<I--#4-->

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

else

{
echo '<footer class="jumbotron text-center col-sm-12"
style="padding-bottom:1px; padding-top:8px;">";

}

include('includes/footer.php');
echo "</footer>";
echo "</div>";

}
catch(Exception $e) // We finally handle any problems here

// print "An Exception occurred. Message:
print "The system is busy please try later";

. $e->getMessage();

catih(Error $e)
//print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try again later.";
}
?>
</body>
</html>

Explanation of the Code

This section explains the code.

<div class="form-group row"> <I--#1-->
<label for="first name" class="col-sm-4 col-form-label
text-right">First Name*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="first name"
name="first name" pattern="[a-zA-Z][a-zA-Z\s]*"
title="Alphabetic and space only max of 30 characters"
placeholder="First Name" maxlength="30" required
value=
"<?php if (isset($_POST['first name']))
echo htmlspecialchars($ POST['first name'], ENT QUOTES); ?>" >
</div>
</div>

The pattern attribute of the input HTML tag allows us to use regular expressions to validate information
in relation to the validation we provide in the PHP code. The pattern shown in this example allows
uppercase and lowercase alphabetic characters and spaces. The title attribute is the message displayed
when the pattern is not matched. This information is required and has a maximum length of 30 characters.
The same validation is also achieved on the server side with the PHP code shown previously.

<div class="form-group row"> <I--#2-->
<label for="password1" class="col-sm-4 col-form-label
text-right">Password*:</label>
<div class="col-sm-8">
<input type="password" class="form-control" id="password1i"

213

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

name="password1"
pattern="(?=.*\d) (?=.*[a-z])(?=.*[A-Z]).{8,12}"
title="One number, one upper, one lower, one special, with 8 to 12
characters”
placeholder="Password" minlength="8" maxlength="12" required
value=
"<2php if (isset($_POST['passwordi']))
echo htmlspecialchars($ _POST['passwordl'], ENT_QUOTES); ?>" >
Between 8 and 12 characters.
</div>
</div>

The password restrictions have increased. The previous pattern restricts the input to require one
uppercase letter, one lowercase letter, one number, and one special character. The special character is
actually not validated here but is validated in the PHP code. We have left this challenge for you to discover
the pattern for special characters. Both the pattern and the attributes of the input statement require that the
user enter eight to twelve characters. In the “real world,” we would increase these numbers to provide even
more security. The other values accepted from the user are validated in a similar manner.

<div class="form-group row"> <I--#3-->
<label for="secret" class="col-sm-4 col-form-label
text-right">Answer*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="secret" name="secret"
pattern="[a-zA-Z][a-zA-Z\s\.\,\-]*"
title="Alphabetic, period, comma, dash and space only max of 30
characters”
placeholder="Secret Answer" maxlength="30" required
value=
"<?php if (isset($_POST['secret']))
echo htmlspecialchars($ POST['secret'], ENT QUOTES); ?>" >
</div>
</div>

A new secret question is now requested from the user. This information would be used to allow the user
to reset their password when they forget the password. In Chapter 11 we will create a form for the user to
request a new password.

<div class="form-group row"> <I--#4-->
<label class="col-sm-4 col-form-label"></label>

<div class="col-sm-8">

<div class="float-left g-recaptcha"
data-sitekey="yourdatasitekeyhere"></div>

</div>

</div>

Currently we still have a security weakness that we can easily fix. We don’t have the ability to detect if
a human is really using our program. This can be a major problem as programs can just flood our site with
bogus registrations until the database and server crash. Also, as we have mentioned, they can attempt to
insert executable code that will cause harm to the site, database, and server.

214

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

Banks and other high-security organizations will use multiple methods to validate human input,
including verification of the IP address used. We will take a common approach and use Google’s Recaptcha
system to request that the user verify they are human. Using Recaptcha only requires the importing of the
required JavaScript code and the display of the Recaptcha application. The code for displaying the application
is shown in #4 in the previous code. The code for importing the required JavaScript code is as follows:

<script src="https://www.google.com/recaptcha/api.js'></script>
// Required for Captcha Verification
We will also need to verify that a human did actually check the box on the server side.
<?php
if ($_SERVER['REQUEST METHOD'] == 'POST') {
require("cap.php"); // recaptcha check
}

2>

The previous code is at the top of safer-register-page to insert the verification that the check box has
been checked.

<?php
if(isset($_POST['g-recaptcha-response'])){
$captcha=$_POST['g-recaptcha-response'];
$secretkey = "Put your secret key here";
$ip address = $ SERVER['REMOTE_ADDR'];
$response=
file get contents("https://www.google.com/recaptcha/api/siteverify?secret=".
$secretKey. "&response=".$captcha."&remoteip=".$ip address);
$keys = json_decode($response,true);
if(intval($keys["success"]) == 1) {
echo "<h4 class="text-center'>Are you human? Click recaptcha</h4>";
header("refresh:1;");
}

}
else {

echo "<h4 class="text-center'>Are you human? Click recaptchal</h4>";
header("refresh:1;");
}

>

Recaptcha will create a g-recaptcha-response POST value if an attempt has been made to be verified
as a human. If it exists, the secret key and current IP address are placed in variables, which are then used to
retrieve the contents of the response by using the function file_get_contents. The response is in the format
of a JSON data structure. The function json_decode converts the structure to a PHP array ($keys). The
intval function is used to determine whether the contents of the success column of the array is the number
1 (equivalent to checking if it is true). If it is not, a message is displayed, and the page is reset (after one
second). If the response does not exist, a similar message is displayed, and the page is reset. If the human
did check the box, all is well, and the program continues. The require statement to link the file with this code
(cap.php) is commented out in the example files since it requires a secret key to work successfully.

To sign up for a site and secret keys and to read more information, visit this site:

https://www.google.com/recaptcha

Now let’s look at some of the PHP code.

215

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

Listing 6-3b. Code for a More Secure Registration Page (process-register-page.php)

<?php

// Has the form been submitted?

try {

216

require ('mysqli_connect.php'); // Connect to the database
$errors = array(); // Initialize an error array.
A EE L check the entries-------------
//1s the title present? If it is, sanitize it #1
$title = filter var($ _POST['title'], FILTER SANITIZE STRING);
if (('empty($title)) &8 (preg_match('/[a-z\.\s]/i',$title)) &&
(strlen($title) <= 12)) {
//Sanitize the trimmed title
$titletrim = $title;
telse{
$titletrim = NULL; // Title is optional
}

// Trim the first name
$first_name =
filter_var($_POST['first_name'], FILTER_SANITIZE_STRING);
if (('empty($first _name)) && (preg match('/[a-z\s]/i',$first name)) &&
(strlen($first _name) <= 30)) {
//Sanitize the trimmed first name
$first _nametrim = $first name;
}else{
$errors[] =
'First name missing or not alphabetic and space characters. Max 30';
}
//1s the last name present? If it is, sanitize it
$last _name = filter var($_POST['last name'], FILTER SANITIZE STRING);
if (('empty($last name)) &&
(preg match('/[a-z\-\s\']/i',$last _name)) &8&
(strlen($last _name) <= 40)) {
//Sanitize the trimmed last name
$last_nametrim = $last_name;
}else{
$errors[] =
"Last name missing or not alphabetic, dash, quote or space. Max 30.';
}
// Check that an email address has been entered
$emailtrim = filter var($_POST['email'], FILTER SANITIZE EMAIL);
if ((empty($emailtrim)) ||
(!filter var($emailtrim, FILTER VALIDATE EMAIL))
|| (strlen($emailtrim > 60))) {
$errors[] = 'You forgot to enter your email address';
] =

$errors| ' or the e-mail format is incorrect.';
}
// Check for a password and match against the confirmed password: #2
$passworditrim =

filter var($ POST['passwordi'], FILTER SANITIZE STRING);
$string length = strlen($passworditrim);

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

if (empty($passworditrim)){
$errors[] ='Please enter a valid password';
}

else {
if(!preg match(
"/h(2=0%a-z]) (2= F[A-Z]) (2=.5\d) (2=} [#$@!%8*?]) [A-Za-z\d#$@! %&*?]{8,12}$/ ",
$passworditrim)) {
$errors[] =
'Invalid password, 8 to 12 chars, 1 upper, 1 lower, 1 number, 1 special.’;
} else
{
$password2trim =
filter var($ POST['password2'], FILTER SANITIZE STRING);
if($passworditrim === $password2trim) {
$password = $passworditrim;
telse{
$errors[] = 'Your two passwords do not match.';
$errors[] = 'Please try again';

}

}
}

//Is the 1st address present? If it is, sanitize it
$address1 = filter var($ POST['addressi'], FILTER SANITIZE STRING);
if (('empty($addressi)) 88&
(preg match('/[a-z0-9\.\s\,\-]/1i", $address1)) &&
(strlen($address1) <= 30)) {
//Sanitize the trimmed 1st address
$addressitrim = $addressi;
telse{
$errors[] =
'Missing address. Numeric, alphabetic, period, comma, dash and space.Max 30.';
}
//If the 2nd address is present? If it is, sanitize it
$address2 = filter var($ POST['address2'], FILTER SANITIZE STRING);
if (('empty($address2)) 88&
(preg_match('/[a-z0-9\.\s\,\-]/1i", $address2)) 8&&
(strlen($address2) <= 30)) {
//Sanitize the trimmed 2nd address
$address2trim = $address2;
telse{
$address2trim = NULL;
}

//Is the city present? If it is, sanitize it
$city = filter var($ POST['city'], FILTER SANITIZE STRING);
if (('empty($city)) & (preg match('/[a-z\.\s]/i', $city)) &&
(strlen($city) <= 30)) {
//Sanitize the trimmed city
$citytrim = $city;
}else{
$errors[] =
'Missing city. Only alphabetic, period and space. Max 30.';

217

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

//Is the state or country present? If it is, sanitize it
$state_country =

filter var($_POST['state country'], FILTER SANITIZE STRING);
if (('empty($state country)) &&

(preg match('/[a-z\.\s]/i', $state country)) &&

(strlen($state country) <= 30)) {

//Sanitize the trimmed state or country

$state_countrytrim = $state_country;
telse{

$errors[] =
'Missing state/country. Only alphabetic, period and space. Max 30.';}
//Is the zip code or post code present? If it is, sanitize it
$zcode_pcode =

filter var($_POST['zcode pcode'], FILTER SANITIZE STRING);
$string length = strlen($zcode pcode);
if (('empty($zcode pcode)) 8&

(preg match('/[a-z0-9\s]/i", $zcode pcode)) &&

($string_length <= 30) & ($string length >= 5)) {

//Sanitize the trimmed zcode pcode

$zcode_pcodetrim = $zcode_pcode;
}else{

$errors[] =

'Missing zip code or post code. Alpha, numeric, space only max 30 characters';

}

//1s the secret present? If it is, sanitize it
$secret = filter var($ POST['secret'], FILTER SANITIZE STRING);
if (('empty($secret)) 8& (preg match('/[a-z\.\s\,\-]/i"', $secret)) &&
(strlen($secret) <= 30)) {
//Sanitize the trimmed city
$secrettrim = $secret;
telse{
$errors[] =

'Missing city. Only alphabetic, period, comma, dash and space. Max 30.';

218

//Is the phone number present? If it is, sanitize it

$phone = filter var($_POST['phone'], FILTER SANITIZE STRING);

if (('empty($phone)) &3 (strlen($phone) <= 30)) {
//Sanitize the trimmed phone number
$phonetrim = (filter_var($phone, FILTER_SANITIZE_NUMBER_INT));
$phonetrim = preg replace('/[?0-9]/"', ", $phonetrim);

telse{

}

//1s the class present? If it is, sanitize it
$class = filter var($_POST['level'], FILTER SANITIZE STRING);
if (('empty($class)) &8 (strlen($class) <= 3)) {
//Sanitize the trimmed phone number
$classtrim = (filter var($class, FILTER SANITIZE NUMBER INT));
}else{
$errors[] = 'Missing Level Selection.';
}

$phonetrim = NULL;

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

if (empty($errors)) { // If everything's OK.
// If no problems encountered, register user in the database
//Determine whether the email address has already been registered
$query = "SELECT userid FROM users WHERE email = ? ";
$q = mysqli stmt_init($dbcon);
mysqli stmt prepare($q, $query);
mysqli stmt bind param($q,'s', $emailtrim);
mysqli_stmt_execute($q);
$result = mysqli stmt get result($q);

if (mysgli_num_rows($result) == 0){
//The email address has not been registered
//already therefore register the user in the users table
J e Valid Entries - Save to database -----
//Start of the SUCCESSFUL SECTION.
// i.e., all the required fields were filled out
$hashed password = password hash($password, PASSWORD DEFAULT);
// Register the user in the database...
$query = "INSERT INTO users (userid, title, first name, ";
$query .= "last _name, email, password, class, ";
$query .= "addressi, address2, city, state_country, ";
$query .= "zcode pcode, phone, secret, registration date) ";
$query .= "VALUES ";
$query .= "(l ',?,?,?,?,?,?,?,?,?,?,?,?,?,NOW())";
$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// use prepared statement to ensure that only text is inserted
// bind fields to SQL Statement
mysqli stmt bind param($q, 'sssssssssssss',
$titletrim, $first nametrim, $last nametrim, $emailtrim,
$hashed_password, $classtrim, $addressitrim,
$address2trim, $citytrim, $state_countrytrim,
$zcode_pcodetrim, $phonetrim, $secrettrim);
// execute query
mysqli stmt execute($q);
if (mysqli_stmt affected rows($q) == 1) {
header ("location: register-thanks.php?class=" . $classtrim);
} else {
// echo 'Invalid query:' . $dbcon->error;
$errorstring = "System is busy, please try later";
echo "<p class=' text-center col-sm-2'
style="color:red'>$errorstring</p>";
}
telse{//The email address is already registered
$errorstring = 'The email address is already registered.';
echo "<p class=" text-center col-sm-2'
style="color:red'>$errorstring</p>";

}
} else {//End of SUCCESSFUL SECTION
/] =mmmmmmmm e Process User Errors---------------

// Display the users entry errors

219

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

$errorstring = 'Error! The following error(s) occurred: ';

foreach ($errors as $msg) { // Print each error.
$errorstring .= " - $msg
\n";

}

$errorstring .= 'Please try again.';

echo "<p class=" text-center col-sm-2' style=
'color:red'>$errorstring</p>";

}// End of if (empty($errors)) IF.

}
catch(Exception $e)

print "The system is busy, please try later";
//print "An Exception occurred. Message: " . $e->getMessage();

}

catch(Error $e)

print "The system is busy, please come back later";
//print "An Error occurred. Message: " . $e->getMessage();

}

2>

Explanation of the Code

This section explains the code.

//1s the title present? If it is, sanitize it #1
$title = filter var($_POST['title'], FILTER SANITIZE STRING);
if (('empty($title)) &8 (preg match('/[a-z\.\s]/i',$title)) 8&
(strlen($title) <= 12)) {
//Sanitize the trimmed title
$titletrim = $title;
telse{
$titletrim = NULL; // Title is optional
}

The title is sanitized. If the sanitized input is not empty, it is compared to the required format, which
allows alphabetic characters, spaces, and periods. If it fails the verification checks, $title is set to NULL. Since
title is optional, no error message is produced if it is missing or invalid. For variables that are not optional, an
error message is placed in the error array.

// Check for a password and match against the confirmed password: #2
$passworditrim =
filter var($ POST['passwordi'], FILTER SANITIZE STRING);
$string length = strlen($passworditrim);
if (empty($passworditrim)){
$errors[] ='Please enter a valid password';
}

else {

if(!preg match(

/A(2=%[a-2]) (2= F[A-Z]) (2=.5\d) (2= [#3501 %8*?]) [A-Za-Z\d#$@! %8*?1{8,12}$/ ",
$passworditrim)) {

$errors[] = 'Invalid password, 8 to 12 chars, 1 upper, 1 lower, 1 number, 1 special.';

220

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

Note the exclamation mark in front of preg_match. This means “If the password does NOT match, put
an error message into the $errors array.” The regex function preg_match() checks the first password for the
correct combination of characters. There must be one uppercase letter, one lowercase letter, one number,
and one special character (#$@!%&*?). In addition, there must be at least eight characters and no more than
twelve. Since the second password must match the first password, this check is not necessary for the second
password. For more information on preg_match, see this page:

http://php.net/manual/en/function.preg-match.php
If the two passwords do not match or the format is incorrect, an error message is placed in the $errors

array. Both checks are completed to provide the user with all error feedback at once. For example, if the
format is incorrect and the passwords do not match, the user will see both errors displayed.

Note The downloadable files from www.apress.com for this chapter now include the safer registration page
link in the Register menu button for the headers. All other files from Chapter 5 has also been updated using the
sanitation and validation techniques shown in this chapter. The verification techniques used in this file are for
demonstration.

In a real-world situation, you would allow additional characters in many of the user inputs and require a longer
password. Always think about the users and the requirements that they need. It is a balance between security
and convenience of the user.

Run XAMPP or easyPHP and enter http://localhost/finalpost/safer-register-page.php in the
address field of a browser. Then register some members, but make deliberate errors to see the results.

In the previous chapter, we created and listed a screen for searching addresses. We will now make use of
that screen so that we can search and edit titles, addresses, and phone numbers.

Searching for a Title, an Address, or a Telephone Number

In the file header-admin.php, the dead link in the Addresses menu button has been replaced with a link to
the page search_addresses.php. Figure 6-4 shows the screen for searching a title, an address, and a phone
number.

221

http://php.net/manual/en/function.preg-match.php
www.apress.com

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

Your Logo

Search for an Address or Phone Mumber This is the

Both Names are required items . :
Page 2 4 information
First Mame: Jack Column
Page 3
Information area
Page 4 Last Name: Smith
Page 5§

Search

Copyright © Adrian West & Steve Prettyman 2017 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS

Figure 6-4. Searching for a title, address, or phone number

The code begins with a session to ensure that only the administrator can view and amend the member’s
record. In this case, we have assumed that the administrator’s session is sufficient protection. Only the
administrator can search for users’ records. The HTML code is shown in Listing 6-4.

Listing 6-4. Creating the Search Address Page (search_address.php)

<?php
session_start();
if (lisset($ SESSION['user level']) or ($ SESSION['user level'] != 1)) //#1
{ header("Location: login.php");
exit();
}
>
<!DOCTYPE html>
<html lang="en">
<head>
<title>Search Address Page</title>
<meta charset="utf-8">
<meta name="viewport" content=
"width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css”
integrity=
"sha384-9gV04dYFwwWSFIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<script src="verify.js"></script>
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section --»>
<header class="jumbotron text-center row col-sm-14"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6);
padding:20px;">

222

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

<?php include('includes/login-header.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('includes/nav.php'); ?>

</nav>
<!-- Validate Input -->
<?php
if ($_SERVER['REQUEST METHOD'] == 'POST') {
require('process-view found addresses.php');
} // End of the main Submit conditional.
>
<div class="col-sm-8">
<div class="h2 text-center">
<h5>Search for an Address or Phone Number</h5>
<h5 style="color: red;">Both Names are required items</h5>
</div>
<form action="view_found_address.php" method="post" name="searchform"
id="searchform">
<div class="form-group row">
<label for="first name" class=
"col-sm-4 col-form-label text-right">First Name:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="first name"
name="first _name"
placeholder="First Name" maxlength="30" required
value=
"<?php if (isset($_POST['first name']))
echo htmlspecialchars($ POST['first name'], ENT QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="last name" class="col-sm-4 col-form-label text-right">
Last Name:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="last name"
name="last name"
placeholder="Last Name" maxlength="40" required
value=
"<?php if (isset($_POST['last_name']))
echo htmlspecialchars($ POST['last name'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="1" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<input id="submit" class="btn btn-primary" type="submit" name="submit"
value="Search">

223

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

</div>

</div>

</form>

</div>

<!-- Right-side Column Content Section -->

<?php

if(!isset($errorstring)) {

echo '<aside class="col-sm-2">";
include('includes/info-col.php');
echo '</aside>’;
echo '</div>';
echo '<footer class="jumbotron text-center row col-sm-14"

style="padding-bottom:1px; padding-top:8px;">";
else

echo '<footer class="jumbotron text-center col-sm-12"
style="padding-bottom:1px; padding-top:8px;">";
}
include("'includes/footer.php');
?>
</footer>
</div>
</body>
</html>

Explanation of the Code

This section explains the code.

<?php

session_start();

if (!isset($ SESSION['user level']) or ($ SESSION['user level'] != 1))
{

header("Location: login.php");

exit();

}

?>
Only the administrator can access the page as shown previously.

<form action="view_found_address.php" method="post" name="searchform"
id="searchform">

The <form> section of the file has been amended in the downloadable file so that it connects to the file
view_found_address.php as follows.

We will now examine the screen for the retrieved title, addresses, and phone numbers.

Note that the Delete column is absent from the table displayed in Figure 6-5 because the act of deleting
is rather final; it must be done using the delete_record.php page, where the administrator is given a second
chance to decide whether to delete the record.

224

CHAPTER 6 ' ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION
Viewing the Retrieved Title, Address, and Phone Number

Figure 6-5 shows titles, addresses and phone numbers.

Your Logo Header Goes Here

Addresses

Mew Password

These are addresses found

Page 2 If no record is shown, this is because you had an incorrect or missing entry in the search form.
Click the back button on the browser and try again

Page 3
Page 4 Edit Title Last Name First Name Addressl Address2 City State or Country Zip or Postal Code Phone
Page5 Edit UK Jack Smith 3 The Street Townsville UK EX7 9PP

Copyright © Adrian West & Steve Prettyman 2017 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS
Figure 6-5. The new table displays the title, address, and telephone number of the selected member

Listing 6-5 shows the code that displays the two new columns. Note that because there is no room to
include an e-mail column, the e-mail address can be edited in the admin_view_users.php page.

Listing 6-5. Code for Displaying a Table with Title, Address, and Phone Number (process_view_found_
address.php)

<?php

try

{
// This script retrieves records from the users table.
require ('./mysqli connect.php'); // Connect to the db.
echo '<p class="text-center">If no record is shown, ';
echo 'this is because you had an incorrect ';
" or missing entry in the search form.';
echo '
Click the back button on the browser and try again</p>';
$first name = htmlspecialchars($ POST['first name'], ENT QUOTES);
last _name = htmlspecialchars($_POST['last name'], ENT_QUOTES);

// Since it's a prepared statement below this sanitizing is not needed
// However, to consistently retrieve than sanitize is a good habit
$query = "SELECT userid, title, last name, first name, ";

$query .= "address1, address2, city, state_country, zcode pcode, phone ";
$query .= "FROM users WHERE ";
$query .= "last _name=? AND first name=?";

$q = mysqli stmt_init($dbcon);
mysqli stmt prepare($q, $query);

// bind values to SQL Statement

225

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

mysqli stmt bind param($q, 'ss', $last name, $first name);

// execute query
mysqli_stmt_execute($q);

$result = mysqli stmt get result($q);

if ($result) { // If it ran, display the records.
// Table header. #1
echo '<table class="table table-striped table-sm">
<tr>
<th scope="col">Edit</th>
<th scope="col">Title</th>
<th scope="col">Last Name</th>
<th scope="col">First Name</th>
<th scope="col">Address1</th>
<th scope="col">Address2</th>
<th scope="col">City</th>
<th scope="col">State or Country</th>
<th scope="col">Zip or Postal Code</th>
<th scope="col">Phone</th>
</tr>';

// Fetch and display the records:
while ($row = mysqli fetch array($result, MYSQLI ASSOC)) {

226

// Remove special characters that might already be in table to
// reduce the chance of XSS exploits

$user id = htmlspecialchars($row['title'], ENT QUOTES);

$title = htmlspecialchars($row['state country'], ENT QUOTES);
$last_name = htmlspecialchars($row['last name'], ENT_QUOTES);
$first name = htmlspecialchars($row['first name'], ENT_QUOTES);
$address1 = htmlspecialchars($row['addressi'], ENT_QUOTES);
$address2 = htmlspecialchars($row['address2'], ENT_QUOTES);

$city = htmlspecialchars($row['city'], ENT QUOTES);

$state _country = htmlspecialchars($row['state country'], ENT QUOTES);
$zcode pcode = htmlspecialchars($row['zcode pcode'], ENT _QUOTES);
$phone = htmlspecialchars($row['phone'], ENT_QUOTES);

/7 #2
echo '<tr>

<td scope="row"><a href="edit address.php?id=" . $user id .
"">Edit</td>

<td scope="row">' . $title . '</td>

<td scope="row">' . $first _name . '</td>

<td scope="row">" . $last_name . '</td>

<td scope="row">' . $addressi . '</td>

<td scope="row">' . $address2 . '</td>

<td scope="row">' . $city . '</td>

<td scope="row">' . $state_country . '</td>

<td scope="row">' . $zcode pcode . '</td>

<td scope="row">' . $phone . '</td>

</tr>';

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

echo '</table>'; // Close the table.
/7
mysqli_free result ($result); // Free up the resources.
} else { // If it did not run OK.
// Public message:
echo
'<p class="center-text">The current users could not be retrieved.';
echo 'We apologize for any inconvenience.</p>';
// Debugging message:
//echo '<p>' . mysqli error($dbcon) . '

Query: ' . $q . '</p>';
//Show $q is debug mode only
} // End of if ($result). Now display the total number of records/members.
mysqli close($dbcon); // Close the database connection.

catch(Exception $e)

print "The system is currently busy. Please try later.";
//print "An Exception occurred.Message: " . $e->getMessage();

}
catch(Error $e)
{
print "The system us busy. Please try later.";
//print "An Error occurred. Message: " . $e->getMessage();
}
>

Explanation of the Code

This section explains the code.

// Table header. #1
echo '<table class="table table-striped table-sm">
<tr>

<th scope="col">Edit</th>

<th scope="col">Title</th>

<th scope="col">Last Name</th>

<th scope="col">First Name</th>

<th scope="col">Addressi</th>

<th scope="col">Address2</th>

<th scope="col">City</th>

<th scope="col">State or Country</th>

<th scope="col">Zip or Postal Code</th>

<th scope="col">Phone</th>

</tr>';

The column headings now include the member’s title, address, and telephone number.

// #2
echo '<tr>
<td scope="row"><a href="edit_address.php?id=" . $user_id .
"">Edit</td>
<td scope="row">' . $title . '</td>
<td scope="row">' . $first name . '</td>

227

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

<td scope="row">' . $last name . '</td>

<td scope="row">' . $addressi . '</td>

<td scope="row">' . $address2 . '</td>

<td scope="row">' . $city . '</td>

<td scope="row">' . $state country . '</td>
<td scope="row">' . $zcode pcode . '</td>
<td scope="row">' . $phone . '</td>

</tr>';

The table is displayed and populated with the member’s title, address, and telephone number. Note the
link for editing the title/address/phone table is now edit_address.php. We will be creating this file next.

Editing the Title, Addresses, and Telephone Numbers

When the record is found and the Edit link is clicked, the screen shown in Figure 6-6 appears. This allows
the administrator to edit any field in the display. Note that the administrator cannot delete a record from
the title/address/phone search because this must be done using the record displayed by the delete.php
page. Deleting a record from the delete.php page automatically removes the title, address, and phone details
because they are part of the record.

Your Logo Header Goes Here .

View Members

Search
Addresses

MNew Password

Edit User This is the

Tk Items marked with an asterisk * are required information
column
e o Title: Mr. ;
Information area
Page4
First Name™: Jack
Page 5

Last Name™: Smith
Address™ 1 The Street
Address: Address
City™ Townsville
Country/state™: Devon
Zip/Postal Code™ EX12 6RE

Telephone: Phone Number

Copyright € Adrian West & Steve Prettyman 2017 Designed by Adrian West and Steve Prettyman Valid CSS & HTMLS

Figure 6-6. The screen for editing fields in the title/address/phone display
228

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

In this screen, all the fields can be edited. The title, second address, and phone fields are optional—that
is, they can remain empty if necessary. Listing 6-6 shows the code for the screen.

Note Validation and sanitation have been used in Listing 6-6 and also in the file edit_record.php. The file
edit_record.php is not listed here, but you can examine it by viewing the downloaded file in your text editor.

Listing 6-6. Creating a Screen for Editing the Title, Address, and Phone Number (process_edit_address.php)

<?php
try
{
// After clicking the Edit link in the found_record.php page. This code is executed
// The code looks for a valid user ID, either through GET or POST:
if ((isset($_GET['id'])) & (is_numeric($ GET['id']))) {
$id = htmlspecialchars($ GET['id'], ENT_QUOTES);
} elseif ((isset($_POST['id'])) 8& (is_numeric($ POST['id']))) {
// Form submission.
$id = htmlspecialchars($ _POST['id'], ENT_QUOTES);
} else { // No valid ID, kill the script.
echo
'<p class="text-center">This page has been accessed in error.</p>';
include ('footer.php');
exit();
}
require ('mysqli_connect.php');
// Has the form been submitted?
if ($_SERVER['REQUEST METHOD'] == 'POST') {
$errors = array();
// Look for the first name:
//Is the title present? If it is, sanitize it
$title = filter var($_POST['title'], FILTER SANITIZE STRING);
if (('empty($title)) &8 (preg match('/[a-z\.\s]/i',$title)) 8&
(strlen($title) <= 12)) {
//Sanitize the trimmed title
$titletrim = $title;
telse{
$titletrim = NULL; // Title is optional
}

// Sanitize the first name
$first _name =
filter var($ _POST['first name'], FILTER SANITIZE STRING);
if (('empty($first name)) && (preg match('/[a-z\s]/i',$first name)) &&
(strlen($first _name) <= 30)) {
//Sanitize the trimmed first name
$first nametrim = $first name;
telse{
$errors[] =
'First name missing or not alphabetic and space characters. Max 30';

}

229

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

//Is the last name present? If it is, sanitize it
$last _name = filter var($ POST['last name'], FILTER SANITIZE STRING);
if (('empty($last name)) &% (preg match('/[a-z\-\s\']/i',$last name)) 8&&
(strlen($last name) <= 40)) {
//Sanitize the trimmed last name
$last_nametrim = $last_name;
telse{

$errors[] = 'Last name missing or not alphabetic, dash, quote or space. Max 30.';

}

//Is the 1st address present? If it is, sanitize it
$address1 = filter var($ POST['addressi'], FILTER SANITIZE STRING);
if (('empty($address1)) && (preg match('/[a-z0-9\.\s\,\-]/i", $address1)) &&
(strlen($address1) <= 30)) {
//Sanitize the trimmed 1st address
$addressitrim = $addressi;
telse{
$errors[] =
'Missing address. Numeric, alphabetic, period, comma, dash, space. Max 30.';
}
//If the 2nd address is present? If it is, sanitize it
$address2 = filter_ var($_POST['address2'], FILTER_SANITIZE_STRING);
if ((!empty($address2)) &&
(preg match('/[a-z0-9\.\s\,\-]/i", $address2)) &&
(strlen($address2) <= 30)) {
//Sanitize the trimmed 2nd address
$address2trim = $address2;
}else{
$address2trim = NULL;
}

//Is the city present? If it is, sanitize it
$city = filter var($_POST['city'], FILTER SANITIZE STRING);
if (('empty($city)) & (preg match('/[a-z\.\s]/i', $city)) &&
(strlen($city) <= 30)) {
//Sanitize the trimmed city
$citytrim = $city;
telse{
$errors[] =
'Missing city. Only alphabetic, period and space. Max 30.';
}
//1s the state or country present? If it is, sanitize it
$state country =
filter var($ _POST['state country'], FILTER SANITIZE STRING);
if (('empty($state _country)) &&
(preg_match('/[a-z\.\s]/i', $state_country)) 8&
(strlen($state country) <= 30)) {
//Sanitize the trimmed state or country
$state_countrytrim = $state country;
}else{
$errors[] =
'Missing state/country. Only alphabetic, period and space. Max 30.';

}

230

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

//Is the zip code or post code present? If it is, sanitize it
$zcode_pcode =
filter var($_POST['zcode pcode'], FILTER SANITIZE STRING);
$string length = strlen($zcode pcode);
if (('empty($zcode pcode)) 8&
(preg match('/[a-z0-9\s]/i", $zcode pcode)) &&
($string_length <= 30) & ($string length >= 5)) {
//Sanitize the trimmed zcode pcode
$zcode_pcodetrim = $zcode_pcode;
telse{
$errors[] =
'Missing zip-post code. Alphabetic, numeric, space. Max 30 characters';
}
//Is the phone number present? If it is, sanitize it
$phone = filter var($_POST['phone'], FILTER SANITIZE STRING);
if (('empty($phone)) && (strlen($phone) <= 30)) {
//Sanitize the trimmed phone number
$phonetrim = (filter var($phone, FILTER SANITIZE NUMBER INT));

$phonetrim = preg replace('/[?0-9]/', ", $phonetrim);
telse{
$phonetrim = NULL;
}
if (empty($errors)) { // If everything's OK.
$query =
"UPDATE users SET title=?, first name=?, last name=?, addressi=?,';
$query .=

address2=?, city=?, state_country=?, zcode_pcode=?,";
$query .= ' phone=?";

$query .= ' WHERE userid=? LIMIT 1';

$q = mysqli stmt_init($dbcon);

mysqli stmt prepare($q, $query);

// bind values to SQL Statement

mysqli stmt bind param($q, 'ssssssssss', $titletrim, $first nametrim,
$last _nametrim, $addressitrim, $address2trim, $citytrim,
$state_countrytrim, $zcode pcodetrim, $phonetrim, $id);
// execute query

mysqli stmt execute($q);
if (mysqli_stmt_affected rows($q) == 1) { // Update OK

// Echo a message if the edit was satisfactory:
echo '<h3 class="text-center">The user has been edited.</h3>";
} else { // Echo a message if the query failed.
echo
'<p class="text-center">The user could not be edited due to a system error.';
echo
We apologize for any inconvenience.</p>'; // Public message.
//echo '<p>' . mysqli error($dbcon) . '
Query: ' . $q . '</p>';

231

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

// Debugging message.
// Message above is only for debug and should not display sql in live mode
}
} else { // Display the errors.
echo '<p class="text-center">The following error(s) occurred:
';
foreach ($errors as $msg) { // Echo each error.
echo " - $msg
\n";
}

echo '</p><p>Please try again.</p>';
} // End of if (empty($errors))section.
} // End of the conditionals
// Select the user's information to display in textboxes:

$q = mysqli_stmt_init($dbcon);
$query = "SELECT * FROM users WHERE userid=?";
mysqli stmt prepare($q, $query);
// bind $id to SQL Statement
mysqli stmt bind param($q, 'i', $id);
// execute query
mysqli stmt_execute($q);
$result = mysqli stmt_get result($q);
$row = mysqli_fetch_array($result, MYSQLI_ASSOC);
if (mysgli_num_rows($result) == 1) {
// Valid user ID, display the form.
// Get the user's information:
// Create the form:
>
<h2 class="h2 text-center">Edit User</h2>
<h3 class="text-center">Items marked with an asterisk * are required</h3>
<form action="edit address.php" method="post"
name="editform" id="editform">
<div class="form-group row">
<label for="title" class="col-sm-4 col-form-label
text-right">Title:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="title" name="title"
placeholder="Title" maxlength="12"
pattern='[a-zA-Z][a-zA-Z\s\.]*'
title="Alphabetic, period and space max 12 characters"
value=
"<?php if (isset($row['title']))
echo htmlspecialchars($row['title'], ENT_QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="first name" class="col-sm-4 col-form-label
text-right">First Name*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="first_name"
name="first_name"
pattern="[a-zA-Z][a-zA-Z\s]*"
title="Alphabetic and space only max of 30 characters"

232

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

placeholder="First Name" maxlength="30" required
value=
"<?php if (isset($row['first name']))
echo htmlspecialchars($row['first name'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="last name" class="col-sm-4 col-form-label text-right">
Last Name*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="last name" name="last name"
pattern="[a-zA-Z][a-zA-Z\s\-\"]*"
title="Alphabetic, dash, quote and space only max of 40 characters"
placeholder="Last Name" maxlength="40" required
value=
"<?php if (isset($row['last name']))
echo htmlspecialchars($row['last name'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="address1" class="col-sm-4 col-form-label
text-right">Address*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="address1" name="address1"
pattern="[a-zA-Z0-9][a-zA-Z0-9\s\.\,\-]*"
title="Alphabetic, numbers, period, comma, dash and space only max of 30
characters”
placeholder="Address" maxlength="30" required
value=
"<?php if (isset($row['addressi']))
echo htmlspecialchars($row['addressi'], ENT QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="address2" class="col-sm-4 col-form-label
text-right">Address:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="address2" name="address2"
pattern="[a-zA-Z0-9][a-zA-Z0-9\s\.\,\-]*"
title="Alphabetic, numbers, period, comma, dash and space only max of 30
characters”
placeholder="Address" maxlength="30"
value=
"<?php if (isset($row['address2']))
echo htmlspecialchars($row['address2'], ENT QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="city" class="col-sm-4 col-form-label
text-right">City*:</label>
<div class="col-sm-8">

233

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

<input type="text" class="form-control" id="city" name="city"
pattern="[a-zA-Z][a-zA-Z\s\.]*"
title="Alphabetic, period and space only max of 30 characters"
placeholder="City" maxlength="30" required
value=
"<?php if (isset($row['city']))
echo htmlspecialchars($row['city'], ENT _QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="state country" class="col-sm-4 col-form-label text-right">
Country/state*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="state_country"
name="state_country"
pattern="[a-zA-Z][a-zA-Z\s\.]*"
title="Alphabetic, period and space only max of 30 characters"”
placeholder="State or Country" maxlength="30" required
value=
"<?php if (isset($row['state_country']))
echo htmlspecialchars($row['state_country'], ENT_QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="zcode pcode" class="col-sm-4 col-form-label text-right">
Zip/Postal Code*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="zcode_pcode"
name="zcode_pcode"
pattern="[a-zA-Z0-9][a-zA-Z0-9\s]*"
title="Alphabetic, period and space only max of 30 characters"
placeholder="Zip or Postal Code" minlength="5" maxlength="30"
required
value=
"<?php if (isset($row['zcode pcode']))
echo htmlspecialchars($row['zcode pcode'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="phone" class="col-sm-4 col-form-label
text-right">Telephone:</label>
<div class="col-sm-8">
<input type="tel" class="form-control" id="phone" name="phone"
placeholder="Phone Number" maxlength="30"
value=
"<?php if (isset($row['phone']))
echo htmlspecialchars($row['phone’], ENT _QUOTES); 2>" >
</div>
</div>
<input type="hidden" name="id" value="<?php echo $id ?>" />
<div class="form-group row">
<label class="col-sm-4 col-form-label"></label>

234

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

<div class="col-sm-8">
<div class="float-left g-recaptcha"
data-sitekey="Yourdatakeygoeshere"></div>
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<input id="submit" class="btn btn-primary" type="submit" name="submit"
value="Edit User">
</div>
</div>
</form>
<?php
} else { // The user could not be validated
echo '<p class="text-center">
This page has been accessed in error.</p>';
}
mysqli stmt free result($q);
mysqli close($dbcon);
}

catch(Exception $e)
print "The system is busy. Please try later";

//print "An Exception occurred.Message: " . $e->getMessage();
}catch(Error $e)

{
print "The system is currently busy. Please try again later";
//print "An Error occurred. Message: " . $e->getMessage();

}

>

Explanation of the Code

The majority of the code you will have seen before. The administrator is not allowed to view users’
passwords. The password has been hashed before being placed into the database. Thus, the password
pulled from the database would not be in a readable format. The administrator would derive no benefit from
viewing the hashed password.

Note The listings for some files are not included in this chapter because some of them are the same as
those in Chapter 5. To examine the code, view the downloadable files for Chapter 6 in your text editor.

235

CHAPTER 6 * ADD THE FINISHING TOUCHES: SECURITY AND VALIDATION

Summary

In this chapter, we created a copy of the database from Chapter 5. We created a new name and password
for the database. We then created two tables. The process for importing a SQL file was described, and the
chapter provided a quick method for creating tables. We also discovered how to insert an additional column
(title) in a table. As an alternative to using the SQL file, sufficient information was provided to enable you to
create the populated database tables from scratch.

Next, we tidied up the filing system by putting all the included files into a folder named includes. We
discussed security, briefly mentioned sanitization, and investigated validation. We then created a new safer
registration page. We learned how to create pages for searching and editing titles, addresses, and telephone
numbers.

In the next chapter, you will learn how to make those inevitable last-minute changes and also how to
migrate a database to a remote host. Advice will be given on how to back up tables. We will also provide an
e-mail and logging ability in the catch routines.

236

CHAPTER 7

Migrate to a Host and Back Up
Your Website Database

You might think that the database-driven website created in Chapter 6 is finished and ready for migrating
to the host. However, in a real-world situation, a client probably will ask for some last-minute changes. To
reduce the number of last-minute changes, the client should always be involved in the development process.
As each phase of the site is completed, the client should “sign off” on the changes to indicate they accept
the current version of the site. Keeping the client involved is essential. A web designer/developer cannot
anticipate everything that a client might expect to achieve with a website. Even if the client does not have
last-minute changes, there still might be necessary changes when new laws are implemented that require
additional website or database adjustments. In this chapter, we will make some last-minute changes, which
might be suggested by a client, before our site is finished. We will also upload our database and website to a
remote host and back up all information.

After completing this chapter, you will be able to

e (Create a site that allows users to change their own personal information
e Create a secure user feedback form
e Migrate a database to a remote host

e Backup adatabase

Making Last-Minute Changes

In our example, we will assume that the client has asked for some last-minute changes as follows:

e Toreduce the workload of the membership secretary, we have been asked to allow
registered members to update their own details. For instance, telephone numbers,
addresses, and e-mail addresses can change. Also, someone might need to change
their title or name. We agreed to allow registered members to update their titles,
names, addresses, telephone numbers, and e-mail addresses.

e The client asked for an inquiry form so that users can ask for more information about
the organization before registering as members. We have agreed to create a secure
inquiry form.

Let’s begin by creating a new database and table.

© Adrian W. West and Steve Prettyman 2018 237
A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,
https://doi.org/10.1007/978-1-4842-3843-1_7

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

Creating a New Database

The last-minute changes were requested for the database that we created in the previous chapter, but to
avoid confusion we will implement the changes in a new version of the database called migrate. Download
the files for Chapter 7 from the book’s page at www. apress.com, and load them into the new migrate folder,
using the following steps:

1. In XAMPP htdocs or EasyPHP eds-www folder, create a new folder called migrate.

2. From the book’s page at Apress.com, download and unzip the files for Chapter 7
into your new folder.

3. Inthe address field of a browser, enter http://localhost/phpmyadmin/ to
access phpMyAdmin.

4. Click the databases tab, create a database named migrate, choose utf8_general_ci
from the pull-down collation list, and then click Go.

5. Inthe left panel, click the box next to the database migrate.
6. Do not enter anything on the next screen, but click the Import tab.

7. Click the Browse button (see Figure 7-1) and navigate to where your SQL dump
file users.sql is located.

8. Click the users.sql file and then click the Open button; the field will fill with the
URL of the dump file. Notice that the dump file contains both the users and
prices tables.

9. Ensure that the character set in the pull-down menu is utf-8 and that the format
is shown as SQL.

10. Click Go.

11. Inthe left panel, click the database migrate, and on the next screen click the
Privileges tab.

12. Scroll down and click Add user account. Then enter the following details:
e Username: trevithick
e Host Select: Local
e Password:10cOmOt1v3
13. Scroll down to the Global privileges and click the box next to Check all.
14. Scroll down and on the right click Go.

238

www.apress.com
http://apress.com

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

£)=2C &
phpMyAdmin
smeTae M Swoctwre [f SOL 4 Search [Query w3 Expon 5 Impont 4* Operations 0= Privileges of Routines (& Evens 3 Triggers % Tracking
Recent Favontes
(=1 . .
ot Importing into the database "finalpost”
e adenintable
e inalpost
Fis information_schema File to import:
i mwmtl o Fil be d uzip2, zip) d.
4 o may compreased (gp, bzip2, Zzip) of uncompressed.
i._ ' p: ‘m‘mm A compressed Sle's name must end in [forma).[compression]. Example: sql.zip
%:__; postald Browse yeur computer: [Browsen, | tio fle selected, (Max: 2 048Ki8)
EEL L lest You may also drag and drop a file on sy page.
Character set of the file: |~ w8 Zl
Pantal import:

[Allow the internsption of an imnport in case the scipt detects it is close 1o the PHP timeou it (This might be a good ay fa impor large files, however if can break fransachions)

Skip this number of querics (le SOL) stading fum the Srstone: (0 B

Other options:

[Enabie foreign key checks

Format:
saL =l
Format-specitic options:
0L compatiiity mode: | NONE E
[Do not use avze_wcRmmrT for o valuss

(s

Figure 7-1. The import interface in phpMyAdmin

Details of the Downloaded File for Connecting to the Database

The file mysqli_connect.php is already created for you in the download files for this chapter. The contents are
shown here:

<?php

// This creates a connection to the migrate database and to MySOL,
// It also sets the encoding.

// Set the access details as constants:

Define ('DB_USER', 'trevithick');

Define ('DB_PASSWORD', 'locomotiv3');

Define ('DB_HOST', 'localhost');

Define ('DB_NAME', 'migrate');

// Make the connection:

$dbcon = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB NAME);
// Set the encoding...optional but recommended
mysqli_set_charset($dbcon, 'utf8');

Caution Remember to log in as administrator to view the table of members. The login e-mail is
jsmith@outcook.com, and the password is d0g3b0dy.

239

jsmith@outcook.com

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

The membership secretary has asked for a change so that members can update their own records to a
limited extent. This is a common feature in database-driven websites. For instance, in PayPal, members can
update their profile (their own account details). A provision was already made for members to change their
password; therefore, this feature will not be included again in the members’ update interface that follows.

Allowing Members to Update Their Own Records

When members have logged in, they will be permitted to update their own accounts. They will have

no access to any other member’s account; this can be controlled by means of a session. The member’s
amendments will be validated and sanitized. If members want to change a password, they must use the New
Password button on the header menu. The items that can be amended are limited for security reasons, and
they are as follows:

title, first name, last name, e-mail address, postal address, and telephone
number

The user has restricted access that allows them to edit only their information. To accomplish this,
we must have an ability to identify the individual member. The member secretary uses a search page to
determine which record to edit. This screen is not provided to an individual member since they have no
choice but to edit their own record. Thus, we need to identify the user when they log in and save their
identity in a session variable that can be used on the edit your account page shown later.

In the login page, we previously determined whether a user was a member or administrator by looking at
the user_level. The value in user_level also determined which pages they can access. This level was saved
in a session variable that then was checked by the session code (security guard) at the top of each restricted
page. We can make a minor change to the login code to give us the ability use the session code (security
guard) at the top of the edit your account page to determine the user information that can be edited.

if (password verify($p, $row[1])) {

session_start();

// Ensure that the user level is an integer.

$ SESSION['user_level'] = (int) $row[3];

$ SESSION['user id'] = (int) $row[0]; // Determine individual user

The only change needed is the addition of the last line in the previous code snippet. The user_id, which
is the record row number in the database, is saved in a session variable with the same name. This uniquely
identifies the user. This identification is secure because session variables are accessible only during active
sessions. The user must be logged in, as indicated by the if statement in this code segment, for the session
user ID and user level to be created. We can now use this information in the edit the account page.

However, before we do that, let’s change the header for the members-only page so that registered
members can view and amend their records. The header shown in Figure 7-2 is modified to allow this.

240

CHAPTER 7 = MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

Logout

Your Account

New Password

Figure 7-2. The new Your Account button in the header for the members page

Listing 7-2 shows the code for the revised header. This is in the includes folder in the download code.

Listing 7-2. Adding a New Menu Button to the Header of the Members Page

<div class="col-sm-2">

</div>
<div class="col-sm-8">
<h1 class="blue-text mb-4 font-bold">Header Goes Here</hi1>
</div>
<nav class="col-sm-2">
<div class="btn-group-vertical btn-group-sm" role="group"
aria-label="Button Group">
<button type="button" class="btn btn-secondary"
onclick="location.href = 'logout.php'" >Logout</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'edit_your_account.php'">
Your Account</button>
<button type="button" class="btn btn-secondary"
onclick="location.href =
'safer-register-password.php

>New Password</button>
</div>
</navy>

241

CHAPTER 7 = MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

When the Your Account button is clicked, a new page is displayed, as shown in Figure 7-3.

Logout

Your Logo rneadct 9oces rneic

Your Account

New Password

Edit Your Account Details This is the
Page2 For your own security, please remember to log out! information
baals column
a9s Titlee Title :

Information area
Page 4
First Name™: James

Page 5

Last Name™: Smith
E-mail": Jjsmith@outcook.com.de
Address™ 2 The Street
Address: The Village
City™: Townsville
Country/state™: FL
Zip/Postal Code™ 33040

Telephone: Phone Number

'm not a robot c

Edit Your Record

Copyright © Adrian West & Steve Prettyman 2017 Designed by Adrian West and Steve Prettyman Valid CSS & HTMLS

Figure 7-3. The new Edit Your Account Details page

The importance of logging out is stressed on the members page and on the update screens. When
fields are edited and the Edit Your Record button is clicked, the confirmation message appears, as shown
in Figure 7-4. By displaying the details again, the user has another chance to change any information that is
incorrect before logging out.

242

CHAPTER 7 = MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

Logout

Your Logo

Your Account

New Password

b il Edit Your Account Details
Rage s For your own security, please remember to log out!
Page3 Title Mr.
Page4
First Name": James
Page 5
Last Name™: Smith

E-mail™: jsmith@myisp.co.uk
Address™ 111 Main 5t
Address: Address
City™ Key West
Country/state™ FL
Zip/Postal Code™ 33040

Telephone: Phone Number

I'm not & robot g

Edit Your Record

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid CS5 & HTMLS

Figure 7-4. The update is confirmed

Listing 7-4a shows the code for the screens shown in Figures 7-3 and 7-4.

Listing 7-4a. Creating an Interface for Members to Edit Their Accounts (edit_your_account.php)

<?php

if ($_SERVER['REQUEST METHOD'] == 'POST") {
require("cap.php");

}

session_start();

// #1

if (isset($_SESSION['user id']) && ($_SESSION['user level'] == 0)){

$id = filter var($_SESSION['user_id'], FILTER SANITIZE STRING);
define('ERROR_LOG',"errors.log");

} else {
header("Location: login.php");
exit();

}

243

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

>
<IDOCTYPE html>
<html lang="en">
<head>
<title>Edit Your Account Page</title>
<meta charset="utf-8">
<meta name="viewport" content=
"width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css
integrity=
"sha384-9gVQ4dYFwwWSFIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<script src="verify.js"></script>
<script src="https://www.google.com/recaptcha/api.js'></script>
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section --»>
<header class="jumbotron text-center row col-sm-14"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6);
padding:20px;">
<?php include('includes/header members_account.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('includes/nav.php'); 2>

</nav>
<?php
try {
require ('mysqli_connect.php');
// Has the form been submitted?
if ($_SERVER['REQUEST METHOD'] == 'POST') {
$errors = array();
//Is the title present? If it is, sanitize it
$title = filter var($ POST['title'], FILTER SANITIZE STRING);
if (('empty($title)) &8 (preg match('/[a-z\.\s]/i',$title)) 8&
(strlen($title) <= 12)) {
//Sanitize the trimmed title
$titletrim = $title;
telse{
$titletrim = NULL; // Title is optional

244

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

// Trim the first name
$first name = filter var($ POST['first name'], FILTER SANITIZE STRING);
if (('empty($first _name)) &8 (preg match('/[a-z\s]/i',$first name)) &&
(strlen($first name) <= 30)) {
//Sanitize the trimmed first name
$first_nametrim = $first name;
telse{
$errors[] =
'First name missing or not alphabetic and space characters. Max 30';
}
//Is the last name present? If it is, sanitize it
$last _name = filter var($ POST['last name'], FILTER _SANITIZE STRING);
if (('empty($last_name)) & (preg match('/[a-z\-\s\']/i',$last name)) &&
(strlen($last_name) <= 40)) {
//Sanitize the trimmed last name
$last_nametrim = $last_name;
telse{
$errors[] =
"Last name missing or not alphabetic, dash, quote or space. Max 30.';
}
// Check that an email address has been entered
$emailtrim = filter var($_POST['email'], FILTER SANITIZE EMAIL);
if ((empty($emailtrim)) || (!filter var($emailtrim, FILTER VALIDATE EMAIL))
|| (strlen($emailtrim > 60))) {
$errors[] = 'You forgot to enter your email address';
]

$errors[] = ' or the e-mail format is incorrect.’;

}
//1s the 1st address present? If it is, sanitize it
$address1 = filter var($ POST['addressi'], FILTER_SANITIZE STRING);
if (('empty($addressi)) && (preg match('/[a-z0-9\.\s\,\-]/i", $address1)) &&
(strlen($address1) <= 30)) {
//Sanitize the trimmed 1st address
$addressitrim = $addressi;
telse{
$errors[] =
'Missing address. Numeric, alphabetic, period, comma, dash, space. Max 30.';
}
//If the 2nd address is present? If it is, sanitize it
$address2 = filter var($_POST['address2'], FILTER SANITIZE STRING);
if ((!empty($address2)) && (preg match('/[a-z0-9\.\s\,\-]/i", $address2)) &&
(strlen($address2) <= 30)) {
//Sanitize the trimmed 2nd address
$address2trim = $address2;
}else{

}

//Is the city present? If it is, sanitize it

$city = filter var($_POST['city'], FILTER SANITIZE STRING);

if (('empty($city)) & (preg match('/[a-z\.\s]/i', $city)) &&
(strlen($city) <= 30)) {

$address2trim = NULL;

245

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

//Sanitize the trimmed city
$citytrim = $city;
}else{
$errors[] =
'Missing city. Only alphabetic, period and space. Max 30.';
}
//Is the state or country present? If it is, sanitize it
$state_country = filter var($_POST['state country'], FILTER SANITIZE STRING);
if (('empty($state_country)) &8 (preg match('/[a-z\.\s]/i', $state_country))
88 (strlen($state country) <= 30)) {
//Sanitize the trimmed state or country
$state_countrytrim = $state country;
telse{
$errors[] =
'Missing state/country. Only alphabetic, period and space. Max 30.';
//Is the zip code or post code present? If it is, sanitize it
$zcode pcode = filter var($ POST['zcode pcode'], FILTER SANITIZE STRING);
$string length = strlen($zcode_pcode);
if (('empty($zcode pcode)) 88 (preg match('/[a-z0-9\s]/i', $zcode pcode)) 8&8&
($string length <= 30) 8& ($string length >= 5)) {
//Sanitize the trimmed zcode pcode
$zcode_pcodetrim = $zcode_pcode;
telse{
$errors[] =
'Missing zip code or post code. Alphabetic, numeric, space only max 30 chars';

//Is the phone number present? If it is, sanitize it
$phone = filter var($ POST['phone'], FILTER SANITIZE STRING);
if (('empty($phone)) &3 (strlen($phone) <= 30)) {
//Sanitize the trimmed phone number
$phonetrim = (filter var($phone, FILTER SANITIZE NUMBER _INT));
$phonetrim = preg replace('/[*0-9]/', ", $phonetrim);
telse{
$phonetrim = NULL;

}
if (empty($errors)) { // If everything's OK.
// make the query
$q = mysqli_stmt_init($dbcon);
$query =
"SELECT userid FROM users WHERE email=? AND userid !=?';
mysqli stmt prepare($q, $query);
// bind $id to SQL Statement
mysqli stmt bind param($q, 'si', $emailtrim, $id);
// execute query
mysqli_stmt_execute($q);
$result = mysqli stmt get result($q);
if (mysqli_num rows($result) == 0) {
// e-mail does not exist in another record
// Make the update query:
$query =

246

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

"UPDATE users SET title=?, first name=?, last name=?, email=?, ';

$query .=
'address1=?, address2=?, city=?, state_country=?, zcode pcode=?, ';
$query .=
'phone=?";
$query .= ' WHERE userid=?";

$q = mysqli stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// bind values to SQL Statement
mysqli stmt bind param($q, 'ssssssssssi', $titletrim,
$first_nametrim, $last_nametrim,
$emailtrim, $addressitrim, $address2trim, $citytrim,
$state_countrytrim,
$zcode_pcodetrim, $phonetrim, $id);
// execute query
mysqli_stmt_execute($q);
if (mysqli_stmt_affected rows($q) == 1) { // Update OK
// Echo a message if the edit was satisfactory:
$errorstring = 'The user has been edited.';
echo "<p class=" text-center col-sm-2'
style="color:green'>$errorstring</p>";
} else { // Echo a message if the query failed.
$errorstring =
'The user could not be edited. Did you change anything?';
$errorstring .=
' We apologize for any inconvenience.'; // Public message.
echo "<p class=" text-center col-sm-2'
style="color:red'>$errorstring</p>";
//echo '<p>' . mysqli error($dbcon) . '
Query: ' . $q . '</p>';
// Debugging message.
// Message above is only for debug and should not display sql
}
}
} else { // Display the errors.
/] —=mmmmmm e Process User Errors---------------
// Display the users entry errors
$errorstring = 'Error! The following error(s) occurred: ';
foreach ($errors as $msg) { // Print each error.

$errorstring .= " - $msg
\n";
}
$errorstring .= 'Please try again.';

echo "<p class=" text-center col-sm-2' style='color:red'>$errorstring</p>";
}// End of if (empty($errors)) IF.
} // End of the conditionals
// Select the user's information:
$query = "SELECT title, first name, last name, email, addressi,
address2, city, state country, zcode pcode, phone ";
$query .=" FROM users WHERE userid=?";
// id was retrieved from database prepared not needed
$q = mysqli stmt init($dbcon);
mysqli stmt prepare($q, $query);

247

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

// bind $id to SQL Statement
mysqli stmt bind param($q, 'i', $id);
// execute query
mysqli_stmt_execute($q);
$result = mysqli stmt get result($q);
if (mysqli_num_rows($result) == 1) { // Valid user ID, display the form.
// Get the user's information:
$row = mysqli fetch array ($result, MYSQLI ASSOC);
// Create the form:
>
<!-- Validate Input -->
<div class="col-sm-8">
<h2 class="h2 text-center">Edit Your Account Details</h2>
<h3 class="text-center">
For your own security, please remember to log out!</h3>
<form action="edit_your_ account.php" method="post"
name="editform" id="editform">
<div class="form-group row">
<label for="title" class="col-sm-4 col-form-label
text-right">Title:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="title" name="title"
placeholder="Title" maxlength="12"
pattern="'[a-zA-Z][a-zA-Z\s\.]*'
title="Alphabetic, period and space max 12 characters"
value=
"<?php if (isset($row['title']))
echo htmlspecialchars($row["title'], ENT _QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="first name" class="col-sm-4 col-form-label text-right">
First Name*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="first name"
name="first name"
pattern="[a-zA-Z][a-zA-Z\s]*"
title="Alphabetic and space only max of 30 characters"
placeholder="First Name" maxlength="30" required
value=
"<?php if (isset($row['first name']))
echo htmlspecialchars($row['first name'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="last_name" class="col-sm-4 col-form-label text-right">
Last Name*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="last _name" name="last_name"
pattern="[a-zA-Z][a-zA-Z\s\-\"]*"
title="Alphabetic, dash, quote and space only max of 40 characters"

248

<l-- #2 -->

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

placeholder="Last Name" maxlength="40" required
value=
"<?php if (isset($row['last name']))
echo htmlspecialchars($row['last name'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="email" class="col-sm-4 col-form-label text-right">
E-mail*:</label>
<div class="col-sm-8">
<input type="email" class="form-control" id="email" name="email"
placeholder="E-mail" maxlength="60" required
value=
"<?php if (isset($row['email']))
echo htmlspecialchars($row['email'], ENT_QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="address1" class="col-sm-4 col-form-label
text-right">Address*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="addressi" name="addressi"
pattern="[a-zA-Z0-9][a-zA-Z0-9\s\.\,\-]*"
title="Alphabetic, numbers, period, comma, dash and space only max of 30 characters"
placeholder="Address" maxlength="30" required
value=
"<?php if (isset($row['addressi']))
echo htmlspecialchars($row['address1i'], ENT QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="address2" class="col-sm-4 col-form-label text-right">Address:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="address2" name="address2"
pattern="[a-zA-Z0-9][a-zA-Z0-9\s\.\,\-]*"
title="Alphabetic, numbers, period, comma, dash and space only max of 30 characters"
placeholder="Address" maxlength="30"
value=
"<?php if (isset($row['address2']))
echo htmlspecialchars($row['address2'], ENT _QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="city" class="col-sm-4 col-form-label
text-right">City*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="city" name="city"
pattern="[a-zA-Z][a-zA-Z\s\.]*"
title="Alphabetic, period and space only max of 30 characters"

249

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

placeholder="City" maxlength="30" required
value=
"<?php if (isset($row['city']))
echo htmlspecialchars($row['city'], ENT_QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="state country" class="col-sm-4 col-form-label text-right">
Country/state*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="state country"
name="state_country"
pattern="[a-zA-Z][a-ZzA-Z\s\.]*"
title="Alphabetic, period and space only max of 30 characters"
placeholder="State or Country" maxlength="30" required
value=
"<?php if (isset($row['state country']))
echo htmlspecialchars($row['state country'], ENT QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="zcode pcode" class="col-sm-4 col-form-label text-right">
Zip/Postal Code*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="zcode pcode"
name="zcode_pcode"
pattern="[a-zA-Z0-9][a-zA-Z0-9\s]*"
title="Alphabetic, period and space only max of 30 characters"
placeholder="Zip or Postal Code" minlength="5"
maxlength="30" required
value=
"<2php if (isset($row['zcode pcode']))
echo htmlspecialchars($row['zcode pcode'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="phone" class="col-sm-4 col-form-label
text-right">Telephone:</label>
<div class="col-sm-8">
<input type="tel" class="form-control" id="phone" name="phone"
placeholder="Phone Number" maxlength="30"
value=
"<?2php if (isset($row['phone’]))
echo htmlspecialchars($row['phone'], ENT_QUOTES); ?>" >
</div>
</div>
<input type="hidden" name="id" value="' . $id . '">
<div class="form-group row">
<label class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<div class=

250

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

"float-left g-recaptcha" style="padding-left: 80px;"
data-sitekey="6LcrQIwUAAAAAPX1TAKLUPdpY5qwS9rXF1j46fhq"></div>
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8 text-center">
<input id="submit" class="btn btn-primary" type="submit"
name="submit" value="Edit Your Record">
</div>
</div>
</form>
</div>
<?php

if(lisset($errorstring)) {
echo '<aside class="col-sm-2">";
include('includes/info-col.php');
echo '</aside>';
echo '</div>";
echo '<footer class="jumbotron text-center row col-sm-14"

style="padding-bottom:1px; padding-top:8px;">";

}

else

{
echo '<footer class="jumbotron text-center col-sm-12"
style="padding-bottom:1px; padding-top:8px;">";

}

include('includes/footer.php');
echo "</footer>";
echo "</div>";

}
catch(Exception $e) // We finally handle any problems here

// print "An Exception occurred. Message: "

print "The system is busy please try later";

// $date = date('m.d.y h:i:s’);

// $errormessage = $e->getMessage();

// $eMessage = $date . " | Exception Error | " , $errormessage . |\n";

// error log($eMessage,3,ERROR_LOG);

// e-mail support person to alert there is a problem

// error_log(“Date/Time: $date - Exception Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Exception Error \nFrom: Error Log <errorlog
@helpme.com>" . "\r\n");

. $e->getMessage();

catch(Error $e)

{

// print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try later";

251

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

// $date = date('m.d.y h:i:s');
// $errormessage = $e->getMessage();
// $eMessage = $date . " | Error | " , $errormessage . |\n";
// error log($eMessage,3,ERROR_LOG);
// e-mail support person to alert there is a problem
// error_log("Date/Time: $date - Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Error \nFrom: Error Log <errorlog@helpme.com>"."\r\n");
}
?>
</body>
</html>

Explanation of the Code

This section explains the code.

<?php

session start();

1/ #1
if (isset($_SESSION['user id']) &3 ($ SESSION['user level'] == 0)){

$id = filter var($ SESSION['user_id'], FILTER SANITIZE STRING);

} else {

header("Location: login.php");

exit();

}

>

The access to the page is allowed only if there is a value in the session variable user_id and the user level
is 0. The user_id was set as a session variable when the user signed in using the login page. Thus, this value is
valid as long as the session is still active. The user_id is then saved in the $id variable because it will be used
to display and update the user’s record.

form action="edit_your_ account.php" method="post" <I--#2-->
onsubmit="return checked();"
name="regform" id="regform">
<div class="form-group row">
<label for="title" class="col-sm-4 col-form-label text-right">
Title:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="title" name="title"
placeholder="Title" maxlength="12"
pattern="[a-zA-Z][a-ZzA-Z\s\.]*'
title="Alphabetic, period and space max 12 characters
value=
"<?php if (isset($row['title']))
echo htmlspecialchars($row['title'], ENT_QUOTES); ?>" >

</div>
</div>

252

CHAPTER 7 = MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

This segment of code shows part of the sticky form for editing the member’s account. The $row array
was created by pulling the user’s record from the database table using a SELECT statement. The code is
similar to what we have seen before, except that we are pulling the data from $row and not from $_POST.

All sanitation and validation in the file process_edit_your_account is the same as shown in Chapter 6.
Therefore, we will not discuss it here. You can view the contents of this file, with a text editor, from the
downloaded Chapter 7 files.

Let’s diverge for a quick second. In the previous chapters, we have not taken a moment to point out that,
in most cases, our web pages are already mobile (small screen) enabled. Figure 7-5 shows the mobile size
version of the safer-register-page.

Your Logo

Erase Your Entries

Cancel

Page 2
Page 3
Page 4

Page 5

Register

Items marked with an asterisk *
are required

Membership classes:
Standard one year: £30 GB, $40 US
Standard five year: £ 125 GB, S 140 US, Military one year: £5 GB, 58 US
Under 21 one year: £ 2 GB, 53 US, Other - Give what you can. Maybe: £
15GB, 520 US

Title:

Title

First Name*:

Figure 7-5. Mobile size registration page

253

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

The Bootstrap classes we have been using throughout the previous chapters have given our pages this
capability. In the remaining chapters, we will make slight adjustments to the Bootstrap code to personalize
our buttons and to hide some menus when viewed from a mobile device.

This concludes the tutorial on the membership website and the database migrate. However, we can add
some useful additions and changes to this website (or any website), as we will see next.

A Secure Feedback Form

A Contact Us form is not strictly related to databases; however, it is an interactive element and provides an
excellent application of PHP code.

E-mails and feedback forms are the most popular contact methods for allowing users to communicate
easily with website owners. Unfortunately, both contact methods can be abused. E-mail addresses are
harvested and sold to spammers. Both actions cause distress and an influx of spam to the site owner.
Hackers can hijack a form and use it to send frequent spam messages to the website owner. These usually
contain malware that can be activated via a link in the text area. As stated, no one should click a link
embedded within an e-mail, unless absolutely sure that the link is valid. This section describes some options
to reduce these risks.

When designing feedback forms, we need to consider the following points:

e Blind and severely visually impaired users will use screen readers to read and reply
to forms. Accessibility rules must be observed.

e Filters must be built into the form handler to prevent the form from being hijacked
for nefarious purposes.

Note Many government agencies require companies to comply with accessibility guidelines in websites.
Many countries will not provide government contracts to companies that do not follow accessibility guidelines.
The guidelines are usually not difficult to implement and increase the goodwill of an organization by providing
visually impaired users access to the information on the site.

What Does a Feedback Reply Look Like?

The following is a genuine e-mail received from a secure form and its handler:

Name of sender: Andrew Eastman

Email of sender: aeastman@myisp.co.uk
Telephone No: 01111 222333

XP?: No

Vista?: No

Windows7?: No

Windows 8: Yes

Laptop?: Yes

Desktop?; No
------------------------- MESSAGE = ----=-mmmmmmmm oo
How can I change back to Windows 7?

254

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

The Feedback Form

Figure 7-6 shows a typical feedback form.

Login

Your Logo

Register

Edit Your Account Details This is the

Page 2 For your own security, please remember to log out! information
Page 3 Address: 1 The Street, Townsville, AAG 8PF, Tel: 01111 800777 column
Saz To email us: Please use this form and click the Send button at the bottom. Information area
age T o v .

Essential items are marked with an asterisk
Page 5

First Name*: First Name

Last Name™ Last Name

E-mail*: E-mail
Telephone: Phone Number

Would you like us to send a Brochure? (check box):

Yes[J

Please enter address if you checked the brochure box above
Address*: Address

Address: Address
Figure 7-6. The feedback form

The code for the feedback page concentrates on preventing URLs from being entered because these are
the main concern with forms filled in by robots.
Listing 7-6a provides a look at the code to display the form.

Listing 7-6a. Creating the Contact Us Form (feedback-form.php)

<?php

if ($_SERVER['REQUEST METHOD'] == 'POST") {
require("cap.php");

}

?>
<!DOCTYPE html>
<html lang="en">
<head>
<title>Feedback Form</title>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"

255

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity="sha384-9gV04dYFwwhSjIDZnLEWnXCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGvFX0dIZ4"
crossorigin="anonymous">
<script src="https://www.google.com/recaptcha/api.js'></script>
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section --»
<header class="jumbotron text-center row col-sm-14"
style="margin-bottom:2px; background:linear-gradient(white, #0073e6);
padding:20px;">
<?php include('includes/header.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('includes/nav.php'); ?>

</nav>
<!-- Validate Input -->
<div class="col-sm-8">
<h3 class="text-center">Contact Us!</h3>
<h5 class="text-center">Address:
1 The Street, Townsville, AA6 8PF, Tel: 01111 800777</h5>
<h5 class="text-center">To email us:
Please use this form and click the Send button at the bottom.</h5>
<h4 class="text-center">Essential items are marked with an asterisk</h4>
<!-- #1-->
<form action="feedback-handler.php" method="post" name="feedbackform"
id="feedbackform">
<!--START OF TEXT FIELDS-->
<div class="form-group row">
<label for="first name" class="col-sm-4 col-form-label text-right">
First Name*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="first_name"
name="first_name"
pattern="[a-zA-Z][a-zA-Z\s]*"
title="Alphabetic and space only max of 30 characters"
placeholder="First Name" maxlength="30" required
value=
"<?php if (isset($row['first name']))
echo htmlspecialchars($row['first name'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="last _name" class="col-sm-4 col-form-label text-right">
Last Name*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="last name" name="last name"

256

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

pattern="[a-zA-Z][a-zA-Z\s\-\"]*"
title="Alphabetic, dash, quote and space only max of 40 characters"
placeholder="Last Name" maxlength="40" required
value=
"<?php if (isset($row['last name']))
echo htmlspecialchars($row['last name'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="email" class="col-sm-4 col-form-label text-right">
E-mail*:</label>
<div class="col-sm-8">
<input type="email" class="form-control" id="email" name="email"
placeholder="E-mail" maxlength="60" required
value=
"<?php if (isset($row['email']))
echo htmlspecialchars($row['email'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="phone" class="col-sm-4 col-form-label
text-right">Telephone:</label>
<div class="col-sm-8">
<input type="tel" class="form-control" id="phone" name="phone"
placeholder="Phone Number" maxlength="30"
value=
"<?php if (isset($row['phone']))
echo htmlspecialchars($row['phone'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label text-right"></label>
<h5 class="col-sm-8 text-center">Would you like us to send a Brochure?
(check box):</h5>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label text-right"></label>
<div class="checkbox col-sm-8 text-center">Yes
<input class="" type="checkbox" name="brochure" id="brochure" value="yes">
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label text-right"></label>
<h6 class="col-sm-8 text-center">
Please enter address if you checked the brochure box above</h6>
</div>
<div class="form-group row">
<label for="address1" class="col-sm-4 col-form-label
text-right">Address*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="addressi" name="addressi"
pattern="[a-zA-Z0-9][a-zA-Z0-9\s\.\,\-]*"

257

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

title="Alphabetic, numbers, period, comma, dash and space only max of 30
characters”
placeholder="Address" maxlength="30" required
value=
"<?php if (isset($row['addressi']))
echo htmlspecialchars($row['addressi'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="address2" class="col-sm-4 col-form-label
text-right">Address:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="address2" name="address2"
pattern="[a-zA-Z0-9][a-zA-Z0-9\s\.\,\-]*"
title="Alphabetic, numbers, period, comma, dash and space only max of 30
characters”
placeholder="Address" maxlength="30"
value=
"<?php if (isset($row['address2']))
echo htmlspecialchars($row['address2'], ENT QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="city" class="col-sm-4 col-form-label
text-right">City*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="city" name="city"
pattern="[a-zA-Z][a-zA-Z\s\.]*"
title="Alphabetic, period and space only max of 30 characters"
placeholder="City" maxlength="30" required
value=
"<?php if (isset($_POST['city']))
echo htmlspecialchars($ POST['city'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="state country" class="col-sm-4 col-form-label text-right">
Country/state*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="state country"”
name="state_country"
pattern="[a-zA-Z][a-zA-Z\s\.]*"
title="Alphabetic, period and space only max of 30 characters"
placeholder="State or Country" maxlength="30" required
value=
"<?php if (isset($_POST['state country']))
echo htmlspecialchars($ POST['state_country'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="zcode pcode" class="col-sm-4 col-form-label text-right">
Zip/Postal Code*:</label>

258

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

<div class="col-sm-8">
<input type="text" class="form-control" id="zcode_pcode"
name="zcode_pcode"
pattern="[a-zA-Z0-9][a-zA-Z0-9\s]*"
title="Alphabetic, period and space only max of 30 characters"
placeholder="Zip or Postal Code" minlength="5" maxlength="30"
required
value=
"<?php if (isset($_POST['zcode_pcode']))

echo htmlspecialchars($ POST['zcode pcode'], ENT QUOTES); 2>" >

</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label text-right"></label>
<h5 class="col-sm-8 text-center">
Would you like to receive emailed newsletters?</hs>
</div>
<fieldset class="form-group row">

<label for="" class="col-sm-4 col-form-label text-right"></label>

<div class="col-sm-8 text-center">
<div class="form-check form-check-inline">
<input class="form-check-input" type="radio" name="letter"
id="letter" value="yes" checked>
<label class="form-check-label" for="letter">
Yes
</label>
</div>
<div class="form-check form-check-inline">
<input class="form-check-input" type="radio" name="noletter"
id="noletter" value="no"»
<label class="form-check-label" for="noletter">
No
</label>
</div>
</div>
</fieldset>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label text-right"></label>
<div class="col-sm-8 text-center">
<label for="comment">Please enter your message below</label>
<textarea class="form-control" id="comment" name="comment" rows="12"
cols="40"
value=
"<?php if (isset($_POST['comment']))
echo htmlspecialchars($ POST['comment'], ENT_QUOTES); ?>" >
</textarea>
</div>
</div>
<div class="form-group row">
<label class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">

<l--#2 -->

<I--#3-->

259

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

<div class="g-recaptcha" style="margin-left: 8opx;"

data-sitekey="placeyoursitekeyhere"></div>
</div>
</div>
<div class="form-group row">

<label for="" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8 text-center">

<input id="submit" class="btn btn-primary" type="submit" name="submit"

value="Send">

</div>
</div>
</form>
</div>
<!-- Right-side Column Content Section -->

<aside class="col-sm-2">

<?php include('includes/info-col.php'); ?>

</aside>
<!-- Footer Content Section -->
</div>
<footer class="jumbotron text-center row"

style="padding-bottom:1px; padding-top:8px;">

<?php include('includes/footer.php'); ?>
</footer>
</body>
</html>

Explanation of the Code

This section explains the code.

<l-- #1-->
<form action="feedback-handler.php" method="post" name="feedbackform"
id="feedbackform">

Bogus feedback from the feedback form will be stopped by means of a PHP handler file that is called by
the form. If a URL has been entered in any text field, the form handler will display an error message after the
submit button is clicked. This will stop bogus replies. Listing 7-3b shows the PHP code for the handler.

<div class="col-sm-8 text-center"> <l--#2 -->
<div class="form-check form-check-inline">
<input class="form-check-input" type="radio" name="letter"
id="letter" value="yes" checked>
<label class="form-check-label" for="letter">
Yes
</label>
</div>
<div class="form-check form-check-inline">
<input class="form-check-input" type="radio" name="noletter"
id="noletter" value="no">

260

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

<label class="form-check-label" for="noletter"s

No
</label>
</div>
Radio buttons are used to determine if the user wants to join the e-mail newsletter.
<div class="form-group row"> <I--#3-->

<label for="" class="col-sm-4 col-form-label text-right"></label>
<div class="col-sm-8 text-center">
<label for="comment">Please enter your message below</label>
<textarea class="form-control" id="comment" name="comment" rows="12"
cols="40"
value=
"<?php if (isset($_POST['comment']))
echo htmlspecialchars($ POST['comment'], ENT _QUOTES); 2>" >
</textarea>
</div>
</div>

Textarea is used to gather the message to be sent. This message will be sanitized on the server side. All other
code is similar to the code in safer-register-page shown in Chapter 6. Let’s look at the PHP code in Listing 7-6b.

Listing 7-6b. Creating the Feedback Form Handler (feedback-handler.php)

Note that dummy e-mail addresses and URLs have been used. Replace them with your client’s details.

<?php

// Feedback form handler
// set the error and thank you pages #1
$formurl = "feedback form.php" ;
$errorurl = "feedback/error.php" ;
$thankyouurl = "feedback/thankyou.php" ;
$emailerrurl = "feedback/emailerr.php" ;
$errorcommenturl = "feedback/commenterror.php" ;
// set to the email address of the recipient
$mailto = "none@noone.com" ;
// Is first name present? If it is, sanitize it #2
$first_name = filter var($_POST['first_name'], FILTER_SANITIZE_STRING);
if (('empty($first name)) &8 (preg match('/[a-z\s]/i',$first name)) &&
(strlen($first_name) <= 30)) {

//Save first name

$first nametrim = $first name;
}else{

}

//Is the last name present? If it is, sanitize it

$last _name = filter var($ POST['last name'], FILTER _SANITIZE STRING);

if (('empty($last name)) & (preg match('/[a-z\-\s\']/i',$last name)) &&
(strlen($last_name) <= 40)) {

$errors = 'yes';

261

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

//Save last name
$last_nametrim = $last name;

}else{
$errors = 'yes';
}
// Check that an email address has been entered correctly #3

$emailtrim = filter var($ POST['email'], FILTER SANITIZE EMAIL);
if ((empty($emailtrim)) || (!filter var($emailtrim, FILTER VALIDATE EMAIL))
|| (strlen($emailtrim > 60))) {
// if email is bad display error page
header("Location: $emailerrurl");
exit ;
}
// Is the phone number present? if so, sanitize it
$phone = filter var($_POST['phone'], FILTER SANITIZE STRING);
if (('empty($phone)) && (strlen($phone) <= 30)) {
//Sanitize and validate phone number
$phonetrim = (filter var($phone, FILTER SANITIZE NUMBER INT));
$phonetrim = preg replace('/[*0-9]/', ", $phonetrim);
}else{

}

//1s the 1st address present? If it is, sanitize it

$address1 = filter var($ POST['address1'], FILTER SANITIZE STRING);

if (('empty($address1)) && (preg match('/[a-z0-9\.\s\,\-]/i', $address1)) &&
(strlen($address1) <= 30)) {
//Save the 1st address
$addressitrim = $addressi;

$phonetrim = NULL; // if not valid or missing do not save

telse{

}

//If the 2nd address is present? If it is, sanitize it

$address2 = filter var($_POST['address2'], FILTER SANITIZE STRING);

if ((!empty($address2)) && (preg match('/[a-z0-9\.\s\,\-]/i", $address2)) &8&
(strlen($address2) <= 30)) {
//Save the 2nd address
$address2trim = $address2;

' [
$errors = 'yes';

}else{

}

//Is the city present? If it is, sanitize it
$city = filter var($ POST['city'], FILTER SANITIZE STRING);
if (('empty($city)) &% (preg match('/[a-z\.\s]/i', $city)) &&
(strlen($city) <= 30)) {
//Save the city
$citytrim = $city;

$address2trim = NULL; // If missing or not valid do not save

telse{

}

//1s the state or country present? If it is, sanitize it
$state_country = filter var($_POST['state_country'], FILTER_SANITIZE_STRING

Cme ! .
$errors = 'yes';

262

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

if (('empty($state _country)) & (preg match('/[a-z\.\s]/i", $state_country))
88 (strlen($state_country) <= 30)) {
//Save the state or country
$state_countrytrim = $state_country;

telse{

}

//1s the zip code or post code present? If it is, sanitize it
$zcode_pcode = filter var($ POST['zcode pcode'], FILTER SANITIZE STRING);
$string length = strlen($zcode_pcode);
if ((!empty($zcode pcode)) 8& (preg match('/[a-z0-9\s]/i', $zcode pcode)) &&
($string_length <= 30) & ($string length >= 5)) {
//Save the zcode_pcode
$zcode_pcodetrim = $zcode pcode;

$errors = 'yes';

}else{
$errors = 'yes';

}

$brochure = filter var($_POST['brochure'], FILTER_SANITIZE STRING); /1#4
if($brochure != "yes") {$brochure = "no";} // if not yes, then no

$letter = filter var($ POST['letter'], FILTER SANITIZE STRING);

if($letter != "yes") {$letter = "no"; } // if not yes, then no

$comment = filter var($ POST['comment'], FILTER _SANITIZE STRING); /1#5
if (('empty($comment)) 8& (strlen($comment) <= 480)) {

// remove ability to create link in email

$patterns = array("/http/", "/https/", "/\:/","/NIN//", " S /")

$commenttrim = preg replace($patterns,” ", $comment);
telse{ // if comment not valid display error page

header("Location: $errorcommenturl”);

exit;

}

if (lempty($errors)) { // if errors display error page
header("Location: $errorurl”);

exit ; }
// everything OK send e-mail #6
$subject = "Message from customer " . $first_nametrim . " " . $last_nametrim;
$messageproper =
oo \n"
"Name of sender: $first nametrim $last nametrim\n" .
"Email of sender: $emailtrim\n" .
"Telephone: $phonetrim\n" .
"brochure?: $brochure\n" .
"Address: $addressitrim\n" .
"Address: $address2trim\n” .
"City: $citytrim\n” .
"Postcode: $zcode_pcodetrim\n" .
"Newsletter?:$letter\n" .
B L E PR P PP MESSAGE ---------------"omommo - \n\n"

$commenttrim .

263

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

mail($mailto, $subject, $messageproper, "From: \"$first nametrim $last nametrim\"
<$emailtrimy");

header("Location: $thankyouurl");

exit ;

>

Caution The form handler requires an e-mail server to reside on the machine in which the code executes.
Unless you installed your own e-mail server, this code will not execute on your computer. However, most web
hosting companies provide access to e-mail servers. You can upload this code to a hosting site. Then verify the
code to access the e-mail server with the hosting company. Sometimes there are minor but important changes
required to complete the process.

Explanation of the Code

This section explains the code.

// set the error and thank you pages #1
$formurl = "feedback form.php" ;

$errorurl = "feedback/error.php" ;

$thankyouurl = "feedback/thankyou.php" ;

$emailerrurl = "feedback/emailerr.php" ;

$errorcommenturl = "feedback/commenterror.php" ;

// set to the email address of the recipient

$mailto = "none@noone.com" ;

The dummy e-mail addresses and URLs will need to be replaced by real-world addresses and URLs.
Five files are assigned to variables. Four lines refer to pages containing error messages.

// Is first name present? If it is, sanitize it #2
$first name = filter var($ POST['first name'], FILTER _SANITIZE STRING);
if (('empty($first _name)) &8 (preg match('/[a-z\s]/i',$first name)) &&
(strlen($first name) <= 30)) {
//Save first name
$first nametrim = $first name;
}else{

}

$errors = 'yes';

Sanitation and validation of most variables are similar to the process-register-page code discussed in
Chapter 6. However, instead of creating an error array, an errors variable is set to yes to indicate there is a
problem. The e-mail and comment are the most vital information that needs to be gathered. Thus, we will
treat these variables differently.

// Check that an email address has been entered correctly #3
$emailtrim = filter var($ POST['email'], FILTER SANITIZE EMAIL);
if ((empty($emailtrim)) || (!filter var($emailtrim, FILTER VALIDATE EMAIL))

|| (strlen($emailtrim > 60))) {

264

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

// if email is bad display error page
header("Location: $emailerrurl”);
exit ;

If the e-mail is not valid, there is no reason to continue to attempt to send the message. Thus, the e-mail
error page is displayed to the user.

$brochure = filter var($_POST['brochure'], FILTER_SANITIZE_STRING); /144
if($brochure != "yes") {$brochure = "no";} // if not yes, then no

$letter = filter var($ POST['letter'], FILTER SANITIZE STRING);

if($letter != "yes") {$letter = "no"; } // if not yes, then no

If the user did not click the yes box for the brochure, we assume they did not want it and set the variable
to no. This also eliminates any other possible invalid values. We also do the same with the e-mail letter
variable.

$comment = filter var($ POST['comment'], FILTER _SANITIZE STRING); /145
if (('empty($comment)) 8& (strlen($comment) <= 480)) {

// remove ability to create link in email

$patterns = array("/http/", "/https/", "/\:/"," /NI, S /")

$commenttrim = preg replace($patterns,” ", $comment);
telse{ // if comment not valid display error page

header("Location: $errorcommenturl”);

exit;

If the comment is not properly formatted, again there is no reason to try to send the message. Thus,
we call an error page related to the comment. If the comment is formatted correctly, however, an attempt
might be made to include a URL link, and we will deactivate the URL link by removing the protocol header
(http, https). The preg_replace function will replace any of the formats shown in the patterns array with a
blank space, thus removing possible harmful entries. We are assuming the customer may have sent a link to
provide information. However, we don’t want it clickable for security reasons.

// everything OK send e-mail #6
$subject = "Message from customer " . $first nametrim . " " . $last nametrim;
$messageproper =

W T \n"

"Name of sender: $first_nametrim $last_nametrim\n" .

"Email of sender: $emailtrim\n" .

"Telephone: $phonetrim\n" .

"brochure?: $brochure\n" .

"Address: $addressitrim\n" .

"Address: $address2trim\n” .

"City: $citytrim\n" .

"Postcode: $zcode pcodetrim\n" .

"Newsletter?:$letter\n" .

B e L PR E MESSAGE --------cmommmmmmee o \n\n"
$commenttrim

NN = = = m o e \n" ;

265

CHAPTER 7 = MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

mail($mailto, $subject, $messageproper, "From: \"$first nametrim $last nametrim\"
<$emailtrimy");

header("Location: $thankyouurl");

exit ;

This block of code constructs the e-mail using the variables that have been sanitized and validated.
Note the full stops after each item; these are important. The code \n inserts a line break (or Enter) between
each item. This format is required when sending an e-mail. The last two lines send the e-mail using the PHP
function mail(). After the e-mail has been sent, the user is redirected to the “thank you” page.

The “Thank You” Page and the Error Messages

The “thank you” page confirms that the e-mail was sent successfully. We have provided a return button to allow
the user to keep using the site if they so choose. Figure 7-7 shows the “thank you” page, and Listing 7-7a shows the
code. You could choose to replace the Return to Home Page button with your main navigation menu.

Your Logo
Thank you for your inquiry. This is the
Page 2 We will email an answer to you shortly. information
column
Page 3
Information area
Page 4
Page 5

Return to Home Page

Copyright © Adrian West & Steve Prettyman 2018 Designed by Adrian West and Steve Prettyman Valid C55 & HTMLS
Figure 7-7. The “thank you” page message

Listing 7-7a. Creating the “Thank You” Page (thankyou.php)

<!DOCTYPE html>
<html lang="en">
<head>
<title>Thank you for your inquiry</title>
<meta charset="utf-8">
<meta name="viewport" content=
"width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css”
integrity=
"sha384-9gV04dYFwwWSFIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
</head>
<body>

266

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

<div class="container" style="margin-top:30px">

<!-- Header Section --»
<header class="jumbotron text-center row"
style=

"margin-bottom:2px; background:linear-gradient(white, #0073e6);
padding:20px;">
<?php include("'../includes/thankyou-header.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('../includes/nav.php'); ?>

</nav>
<!-- Center Column Content Section -->
<div class="col-sm-8">
<h3 class="text-center" >Thank you for your inquiry.</h3>
<h3 class="text-center" >We will email an answer to you shortly.</h3>
</div>
<!-- Right-side Column Content Section -->
<aside class="col-sm-2">
<?php include('../includes/info-col.php'); 2>
</aside>
</div>
<div class="row col-sm-12" style="padding-left: Opx; padding-bottom: 20px;">
<div class="col-sm-5"></div>
<nav class="col-sm-4 text-center">
<ul class="nav nav-pills">
<1li class="nav-item">
Return to Home Page
</1i>

</nav>
</div>
<!-- Footer Content Section -->
<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;">
<?php include('../includes/footer.php'); ?>
</footer>
</div>
</body>
</html>

If the e-mail message was not sent successfully, an explanatory error message will appear.

Why use error pages instead of echoing a piece of text to the screen? We found that many of our clients
prefer the distinct message, and the help that a page provides, rather than the usual small error messages in
red that can be overlooked or that are so often too brief. If you prefer to echo messages to the page, create an
$error array to hold the messages as we did in the registration page.

267

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

Listing 7-7b provides the code for the error message for empty or invalid fields.

Listing 7-7b. Creating the Page for Empty Field Errors (error.php)

<!DOCTYPE html>
<html lang="en">
<head>
<title>Error Message</title>
<meta charset="utf-8">
<meta name="viewport" content=
"width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css
integrity=
"sha384-9gV04dYFwwiSFIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGvFX0dIZ4"
crossorigin="anonymous">
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section -->
<header class="jumbotron text-center row"
style=
"margin-bottom:2px; background:linear-gradient(white, #0073e6);
padding:20px;">
<?php include("'../includes/thankyou-header.php'); ?>
</header>
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('../includes/nav.php'); ?>

</nav>
<!-- Center Column Content Section -->
<div class="col-sm-8">
<h4 class="text-center">
One or more of the essential items in the form has not been filled in.</h4>
<h4 class="text-center">
Essential items have an asterisk like this *</h4>
<h4 class="text-center">
Return to the form by clicking the back button on your browser

and then fill in the missing items.</h4>
</div>
<!-- Right-side Column Content Section -->
<aside class="col-sm-2">
<?php include('../includes/info-col.php'); ?>
</aside>
</div>

268

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

<!-- Footer Content Section -->

<footer class="jumbotron text-center row"

style="padding-bottom:1px; padding-top:8px;">
<?php include('../includes/footer.php'); ?>

</footer>

</div>

</body>

</html>

The other error pages include a similar format to this example and are not listed here. You can view
them from the downloaded files for this chapter.

Note You will need to add one more button to the main side menu (includes/nav.php). Label the button with
the words Contact Us and link it to the file feedback_form.php.

A Common Header

You probably have noticed that we have developed a lot of headers for our individual files. We can optionally
choose to handle all of our determination of buttons to display in one header by creating a universal header
that includes a case statement. Let’s take a look at the code in Listing 7-8.

Listing 7-8. Creating a Universal Header (headerl.php)

<div class="col-sm-2">

</div>
<div class="col-sm-8">
<h1 class="blue-text mb-4 font-bold">Header Goes Here</h1>
</div>
<nav class="col-sm-2">
<div class="btn-group-vertical btn-group-sm" role="group"
aria-label="Button Group">
<div class="btn-group-vertical btn-group-sm" role="group"
aria-label="Button Group">
// Case statement to determine which buttons to display #1
<?php
switch ($menu) {
case 1: //header.php

?>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'login.php'" >Login</button>
<button type="button" class="btn btn-secondary"
onclick="location.href =

'safer-register-page.php'">Register</button>
<?php
break;

269

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

case 2: //header_members_account.php
?>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'logout.php'" >Logout</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'edit your_ account.php'">
Your Account</button>
<button type="button" class="btn btn-secondary"
onclick="location.href =
'safer-register-password.php

>New Password</button>
<?php
break;

case 3: // header-thanks.php

>
<button type="button" class="btn btn-secondary"
onclick="location.href = "index.php'" >Cancel</button>
<?php
break;

case 4: // login-header.php
>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'login.php'" >
Erase Entries</button>
<button type="button" class="btn btn-secondary"
onclick="location.href =
'safer-register-page.php'">Register</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'index.php"'">Cancel</button>

<?php
break;

case 5: //; members-header.php

>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'logout.php'" >Logout</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'change-password.php'" >
New Password</button>
<?php
break;

case 6: //password-header.php
>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'register-password.php'" >
Erase Entries</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'index.php'">Cancel</button>
<?php
break;

270

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

case 7: //password-header.php
2>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'index.php'" >Home Page</button>
<?php
break;

case 8: //thankyou-header.php

?>
<!-- <button type="button" class="btn btn-secondary"
onclick="location.href = 'index.php'" >Home Page</button>-->
<?php
break;
case 9: //register-header.php
>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'register-page'" >
Erase Your Entries</button>
<button type="button" class="btn btn-secondary"
onclick="location.href = "index.php'">Cancel
</button>
<?php
break;
}
>
</div>
</nav>
Explanation of the Code
This section explains the code.
// Case statement to determine which buttons to display #1
<?php
switch ($menu) {
case 1: //header.php
?>
<button type="button" class="btn btn-secondary"
onclick="location.href = 'login.php'" >Login</button>
<button type="button" class="btn btn-secondary"
onclick="location.href =
'safer-register-page.php'">Register</button>
<?php
break;

The variable $menu is checked to determine which combination of buttons to display in the header.
To use this common header, two changes must occur in each of the files.

271

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

1. Avariable must be created in the file holding the number corresponding to the
set of buttons to be displayed. For example, in the file index.php, the following
code can be added to the top of the file:

<?php
$menu = 1;
?>

2. Theinclude statement that pulls in the header must also be updated to include
the new header. For example, in the index.php file (and all the files to be
updated), the update code would be as shown here:

include("include/header1.php");

The files in this chapter have not be updated to include the universal header. However, the user can
update them using the previous steps. For an example of the use of a common header, view the downloaded
files from Chapter 11.

Logging Exceptions and Error

For several chapters we have included the ability to handle exceptions and errors using catch blocks.
However, we have done nothing more than display a generic message. To complete our application, we
should provide the ability to be notified when problems occur. The easiest way to provide this ability is to
place error messages in a log file. PHP applications can log messages into the default PHP error file or in

an application-specific file. It is common for an application to have separate files for informational logs,
authentication (login) logs, error logs, and security logs. You can create a constant at the top of your program
code to indicate the location of your log file(s). This allows anyone who supports your code to quickly
determine the location of the file(s) and allows them to easily change the location when required.

define(ERROR_LOG, "errors.log");

Using this constant we can then send error information to the log file using the error_log function.
error log("A general error",3,ERROR_LOG);

This would send the message shown directly to the errors.log file. However, this does not give us enough
meaningful information. For example, we probably want to include the time and date of the occurrence and
a title indicating the type of message.
$date = date('m.d.y h:i:s");
$errormessage = "This is the error";
$eMessage = $date . " | User Error | " . $errormessage . "\n";
error log($eMessage,3,ERROR_LOG);

The code would produce the following:

07.04.2018 03:00:55 | User Error | This is the error

A standard text editor (Notepad++) or a log-monitoring software program can be used to view the
contents of a log file.

272

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

PHP also makes it easy to send an e-mail alert when something has been written to the log file. Of
course, your file must exist on a server that includes an e-mail server. We can add the e-mail information
into another error_log statement as follows:

error_log("Date/Time: $date - Serious Problem. Check error log for details", 1 ,
noone@helpme.com, "Subject: User Errors \nFrom: Error Log <errorlog@helpme.com>" . "\r\n");

The first parameter specifies the message of the e-mail. The second parameter informs the error_log to
e-mail this information. The third parameter provides the “To” e-mail address. The fourth parameter is an
extra header field. This field is commonly used to include the subject of the e-mail and the e-mail address
that sent the message. The “From” address must be included or the message will not be sent.

In the downloaded code for this chapter, we have included the error_log code to send errors to an
error_log and to send an e-mail when there are problems. The snippet of this code is shown here:

catch(Exception $e) // We finally handle any problems here
// print "An Exception occurred. Message: "
print "The system is busy please try later";
$date = date('m.d.y h:i:s");
$errormessage = $e->getMessage();
$eMessage = $date . " | Exception Error | " , $errormessage . |[\n";
error_log($eMessage,3,ERROR_LOG);
// e-mail support person to alert there is a problem
error_log("Date/Time: $date - Exception Error, Check error log for
details", 1, noone@helpme.com, "Subject: Exception Error \nFrom: Error Log
<errorlog@helpme.com>" . "\r\n");

. $e->getMessage();

The format of the Error catch block would be similar, with the difference of changing the titles to
indicate that it is an error and not an exception. We could also change it to save the errors in a different log
file. This code is commented out in the download files until you are ready to use it.

Now that you have built-in exception handling and error handling, before upgrading your programs to
production, you need to edit the php.ini file to turn off error reporting to the user.

When you are ready, you will need to locate the php.ini configuration file. In XAMPP you can easily find
the file by going into the Control Panel and clicking the config button to the right of the Apache server, as
shown in Figure 7-8.

273

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

XAMPP Control Panel v3.2.2 [Compiled: Nov 12th 2015] - O X
XAMPP Control Panel v3.2.2 J cont
Modules r
Netstat
Service Module PID(s) Port{s) Actions ®
Apache :g;:g B0, 443 Stop Admin ‘ Confin I | nne ‘ Shell]
Apache (httpd.conf)
MySQL 3s2 3306 Stop Admin c

Apache (httpd-ssl.conf)

FileZila Start Admin c Apache (httpd-xampp.conf)

Mercury Start Admin c PHP (php.ini)

= ~= — d phpMyAdmin (config.inc.php)

: [| - o <Browse> [Apache]

0 AM [main prerequisites foun

0AM [main] Initializing Modules el

0 AM [main] Starting Check-Timer <Browse> [phpMyAdmin]
A [main] Control Panel Ready

/A [Apache] Attempting to start Apache app..
'3 AM [Apache] Status change detected: running
8 AM [mysql] Attempting to start MySQL app...
0 AM [mysql] Status change detected: running

Figure 7-8. Finding the php.ini configuration file

Click the php.ini menu selection to open it. For easyPHP you will have to dig down into the
development server folder to find the php.ini file. It should be in a location similar to the link shown here:

C:\Users\yourcomputername\EasyPHP-Devserver-17\EasyPHP-Devserver-17\eds-binaries\php\
php713vc14x86x170718155219

Of course, your version name and the build numbers will be different than shown. Once you find the
file, open it with Notepad++ or another text editor.

Immediately save the current version of the config file with another name (and remember where you
saved it) just in case you make a mistake and need to revert to the original settings.

Locate this line: display_errors = On. Change the setting to the following: display_errors = Off. Save the
file. Then turn the Apache server off and on. Your error messages should now be directed to the error log
instead of the web page. This, of course, does not include any error messages that were created for the user
with echo statements (such as your e-mail is missing).

Now we might be ready to move our files to a remote production server. Let’s look at the process to
accomplish this.

Migrating the Database and Tables to a Remote Host

Having created a database and table(s) using phpMyAdmin, how can we transfer them to a hosting
company? The process for migrating a database from XAMPP or easyPHP to a remote host worries beginners
more than any other aspect of database development. This is because MySQL/MariaDB manuals and
Internet tutorials rarely provide proper explanations for the procedure.

274

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

For this tutorial, we chose to use the finalpostal database, which is included in the users.sql file included
with this chapter.

Caution You will need to determine which operating system is used in your chosen hosting package. Linux
and Windows require a slightly different migration procedure.

A Puzzling Error Message

You may experience an occasional problem when trying to transfer a database to another computer. An error
message sometimes appears saying that the table already exists. This is weird because there is definitely

not a table in that empty database. The solution is to access the XAMPP or easyPHP folder on the first
computer and then drill down to the MySQL/MariaDB folder and then the Data folder. Save a copy of the
somefilename.frm file on a flash drive (memory stick) or in the cloud. Now copy that file into the same data
folder on the destination computer, and the problem will be solved. You should regularly save copies of the

* frm files as well as the SQL dumps in case you need to recover data after the database has been corrupted.
For other error messages, copy and paste the message into a search engine (like Google) to discover
suggested solutions.

Creating and Exporting the SQL File

The first stage for migrating a database consists of creating a SQL export file. You will be able to export two
types of dumps: for the tables only or for the database and tables. We will be using the tables-only file. If your
database is large, you should import tables individually. We will use phpMyAdmin to export the file. The
exported SQL file is a simple text file with the name format of filename.sql, although other file types can be
chosen for the exported file. The content of the file and the process will be explained next.

To Create a Dump File of a Table or Tables

Open a browser and in the address bar type http://1localhost/phpmyadmin/.
In the left panel of phpMyAdmin, click the database containing the tables to be exported. Then click the
Export tab to display the page shown in Figure 7-9.

275

CHAPTER 7 = MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

phpMyAdmin
SEle e

Recent Favorites

& MNew

=|| admintable

. New
+Ll4 prices
+L 14 users
= 1 finalpostal

. o New
+. 14 prices
) W users
#._| | information_schema
—. | migrate

|- d New

+-ia prices

+_lr users
| mysql
+.. 1 performance_schema
+.. i phpmyadmin
L. postaldb
#L (4 test

£ Server: 127.0.0.1 » @ Database: migrate

W Strucwre L SQL L Search J Query &3 Export [} Import 4”7 Operations

Exporting tables from "migrate” database

Export templates:

New template: Existing templates:

Template: | -- Select a template -- |

_update

Export method:

@ Quick - display only the minimal options

O Custom - display all possible options
Format:

sqQL et

L]

. Delete

Privileges

Figure 7-9. The screen for dumping the database table

Select the Quick option and ensure that the format is SQL. Then click the Go button. Depending on
your browser and settings, you will be asked whether to open or save the file, as shown in Figure 7-10.

Opening admintable.sql @

You have chosen to open
[£] admintable.sql

from: http:/flocalhost

which is a: sgl File (4.3KB)

What should Firefox do with this file?
O g
(O) ool - |

[J Do this automatically for files like this from now on.

ox) (oo)

Figure 7-10. Choose to save the SQL file

Choose to save the file and click OK. Save the file in a folder where you can access it to upload it to the
host later. The default location, in Windows, of all downloaded files is the Downloads folder.

276

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

What Does a SQL Dump Look Like?

Examine the users.sql file in your text editor (such as Notepad++).
You will see many commented-out lines. SQL supports three comment styles as follows:

e Aline beginning with a hash symbol like this: #some text
e Aline beginning with a double dash followed by a space like this: -- some text

e Ablock of text between tags like this:

/*some text
some text
some text*/

An example of the dump for the tables in the finalpostal database is shown next (your dump might be
slightly different). This is the code in the users.sql file provided with the chapter files.

-- phpMyAdmin SQL Dump
-- version 4.8.0
-- https://www.phpmyadmin.net/

-- Host: 127.0.0.1

-- Generation Time: Dec 31, 2017 at 06:40 PM
-- Server version: 10.1.22-MariaDB

-- PHP Version: 7.1.4

This code specifies the versions of applications on the original computer. This is for information only
and is in comments.

SET SQL_MODE = "NO_AUTO VALUE_ON_ZERO";
SET AUTOCOMMIT = 0;

START TRANSACTION;

SET time_zone = "+00:00";

/*140101 SET @OLD_CHARACTER_SET CLIENT=@@CHARACTER_SET CLIENT */;
/*¥140101 SET @OLD_CHARACTER SET RESULTS=@@CHARACTER SET RESULTS */;
/*140101 SET @OLD COLLATION CONNECTION=@@COLLATION CONNECTION */;
/*140101 SET NAMES utf8mbg */;

Notice that the utf8 version is included in these comments:

-- Database: “finalpost®

-- Table structure for table “prices”

277

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

CREATE TABLE “prices™ (
“oneyeargb” decimal(6,0) UNSIGNED NOT NULL,
“oneyearus™ decimal(6,0) UNSIGNED NOT NULL,
“fiveyeargb™ decimal(6,0) UNSIGNED NOT NULL,
“fiveyearus™ decimal(6,0) UNSIGNED NOT NULL,
‘militarygb™ decimal(6,0) UNSIGNED NOT NULL,
“militaryus™ decimal(6,0) UNSIGNED NOT NULL,
“u21gb” decimal(6,0) UNSIGNED NOT NULL,
“u21us” decimal(6,0) UNSIGNED NOT NULL,
“minpricegb™ decimal(6,0) UNSIGNED NOT NULL,
“minpriceus” decimal(6,0) UNSIGNED NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

This is the actual SQL code that creates the prices table:

-- Dumping data for table “prices’

INSERT INTO “prices™ (“oneyeargb™, ~oneyearus™, ~fiveyeargb™, “fiveyearus™, “militarygb~,
‘militaryus™, “u2igb™, “u2ius’, “minpricegb”, “minpriceus’) VALUES
('30‘, ‘40', l125l, I140I’ ‘5', ‘8', l2|, l3l’ ‘15', '20‘);

This is the SQL code that loads the data into the prices table:

-- Table structure for table “users”

CREATE TABLE “users™ (
“userid” mediumint(6) UNSIGNED NOT NULL,
“title® tinytext NOT NULL,
“first name™ varchar(30) NOT NULL,
“last_name™ varchar(40) NOT NULL,
“email” varchar(50) NOT NULL,
“password” char(60) NOT NULL,
“registration _date’ datetime NOT NULL,
“class™ char(20) NOT NULL,
“user_level™ tinyint(2) UNSIGNED NOT NULL,
“address1” varchar(50) NOT NULL,
“address2” varchar(50) DEFAULT NULL,
“city” varchar(50) NOT NULL,
“state country™ char(25) NOT NULL,
“zcode_pcode™ char(10) NOT NULL,
“phone™ char(15) DEFAULT NULL,
“paid” enum('No','Yes') NOT NULL,
“secret™ varchar(30) DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

278

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

This is the code that creates the users table:

-- Dumping data for table “users”

INSERT INTO “users” (Tuser id", “title’, “first name”, “last name’, “email”, “password™,
‘registration date’, "class’, “user_level , “addressi’, “address2”, “city’, “state_country’,
“zcode pcode™, “phone™, “paid”) VALUES

(1, 'Mr', 'Mike', 'Rosoft', 'miker@myisp.com', '$2y$10$UiiBhmXca.0/bwopveFg8uInuX.
EVrecinUQYQG546WjAWWZLINoe', '2017-12-06 08:43:41', '30', 0, '4 The Street', 'The Village',
"Townsville', 'USA', 'WA', '0123777888', 'Yes'),

(32, 'Mr', 'James', 'Smith', 'jsmith@myisp.co.uk', '$2y$10$Yu.c/cw/TSFa9vcMBGAfAe5vzyOwp3
SZarBVc/9vEksfp.F8BzSiW', '2017-12-29 11:58:51', '30', 0, '2 The Street', ", 'Townsville',
"UK', 'EX24 6PS', '01234777888', 'Yes');

The previous code loads data into the users table. Only the first and last records are shown to save
space.

-- Indexes for dumped tables

-- Indexes for table “users”

ALTER TABLE “users”
ADD PRIMARY KEY (“userid’);

This code defines user_id as the primary key:

-- AUTO_INCREMENT for dumped tables

-- AUTO_INCREMENT for table “users”

ALTER TABLE “users”
MODIFY “user_id" mediumint(6) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=35;COMMIT,;

This code refines the primary key to the settings requested in the original design:
/*140101 SET CHARACTER_SET CLIENT=@OLD_CHARACTER_SET CLIENT */;

/*140101 SET CHARACTER_SET RESULTS=@OLD_CHARACTER_SET RESULTS */;
/*140101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

279

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

The next steps accomplish the following:

e Examining the destination server (the host) and preparing it to receive the SQL file
and the contents of the htdocs or eds-www folder

e Uploading the SQL file (or use the import feature on the remote host) and website
files to the host

e Importing the SQL file using phpMyAdmin in the host

Investigate the Remote Host’s Server

We will assume that you have purchased space for your website and registered a domain name either with
your host provider or with another party. Many providers allow you to choose a hosting package that uses
Linux/Unix or a Microsoft web server. While many websites are hosted on Unix servers, this is a common
preference; it not a requirement.

Before choosing your host provider, make sure that packages they provide include PHP, phpMyAdmin,
and MySQL (or MariaDB). Also, especially if you are selecting a Unix operating system, make sure that
Apache is provided. PHP and MySQL can now also interface with Microsoft’s web server. However, the host
provider can choose to use Apache with a Microsoft server, as you may have implemented on your computer.
If you are not sure whether PHP and MySQL (or MariaDB) are installed at the host, type the following in a
text editor and save it as phpinfo.php:

<?php
phpinfo();
2>

Your will want to either save this phpinfo file in a secure location or remove it after testing to prevent
anyone from seeing what is installed on your server.

Use your FTP client, or the host provided process to upload files, to load this file and then openitina
browser (enter a URL like http://yourwebsitename.com/phpinfo.php). You will see a table like the one in
Figure 7-11. Scroll down the table, and you should see details of the MySQLi installation on the host’s server.
If you see a version of MySQLi installed and this program ran, then you should be able to upload and run the
programs from this book.

280

http://yourwebsitename.com/phpinfo.php

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

System Windows NT ADRIAN-3CEEE1C0 5.1 build 2800 (Windows XP Home Editon Service
Sack 3) 583

Build Date Jan 10 2012 18:15:58

Compiler MSVCS (Visual Ce+ 2008)

Architecture xe5

Configure csonpt nologo configure s —enatie-snapshot-buls —tisable-isap -snable-tebug-
Command pack “—disable-Eapl —without-mssal —without-pio-mssal —without-pilned -with-
pdo-oci=D\php-sdicoracielinstantchent10\sdic. shared™ "—with-ociE=D:\php-
sdk\oraclelinstantchent10\sdk shared”™ "—with-ocig-11g=D:\php-
sdkoratigunstantclent! isd shared “—gnable-objgct-out-dirs ol “-gnable-com-

Jotner” “—with i~ ~_disable-stats e

Server APl (Apache 2.0 Handler
Virtual Directory |enabled

Support

Configuration |C:\WINDOWS

File (php.ini)

Path

Loaded C:\Program Files\EasyPHP-5.3. S\apache\php.ini
Configuration

File

Scan this dir for |(none)

additional .ini

files

Additional .ini |(nong)

files parsed

PHP APl 20020828

PHP Extension |20030828
Zend Extension |220050828

Zend Extension |API220050828.TS.VCS
Build

PHP Extension |API20020828.TS.VC3
Build

Debua Build no

Figure 7-11. The result of opening phpinfo.php in a server

Caution Some basic hosting packages do not accept databases. In this case, you will have to upgrade to a
more expensive package. Check the product range on your intended host before proceeding.

Using the GUIs on a Remote Host’s Server

Read the documentation or contact a service representative for your host provider to determine how to
access phpMyAdmin or a similar type of program to create, upload, and modify MySQL/MariaDB databases.
Your host provider may include a control panel, like Figure 7-12, or may provide another way to access
phpMyAdmin.

281

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

Databases A
»\\\ 4(_ . !]
=3 SN\ S
MySsaL M\J\‘ .&?Amm MySO
MySQLE® MySQL® phpMyAdmin Remote
Databases Database MySQL
Wizard

Figure 7-12. The database section of the control panel

To install the database, follow these steps:

e Open phpMyAdmin and create an empty database. In this example, we will create
the finalpostal database.

When creating the finalpostal database, either the resulting database will have the name finalpostal or
the host will add a prefix to the database name. Hosts that add a prefix nearly always append the website
owner’s user ID for accessing the control panel. Let’s assume the owner’s user ID is mywebsite; the host
might create the database name as mywebsite_finalpostal. In this example, we will assume that the database
name has the prefix myusername.

e Now you must immediately protect the newly created database by creating a user ID
and a password. Do this by using phpMyAdmin as described in previous chapters.
(Some hosts will automatically provide the user ID—if that’s the case, use that one.)

Create a user with the following details:
e User: webmaster (or a name provided by the host)
e Password: c0ff33p0t
e Host: (the name of your website URL)

The password in a real-world database must be much more complex than c0ff33p0t. Make a careful note
of the database name, password, and user.

Connecting to the Database on the Remote Host

Now that we know the name of the empty database (in this example, it is myusername_finalpostal), we can
amend the connection file to suit the remote host. Do not create this in XAMPP’s htdocs or easyPHP’s eds-
www folder on your computer. If you do, you will no longer be able to access the finalpostal database from
your database-driven pages on your computer’s server. Use a text editor such as Notepad++ to create the file
and store the new mysqli_connect.php file anywhere except in the htdocs or eds-www folder. The amended
file is not included in the downloadable files because it would be unique for your database. The code might
be as shown in the next snippet of code.

The Snippet of Code for Connecting to the New Database (mysqli_connection.php)

<?php

// Create a connection to the admintable database and set the encoding
// The user name might be provided by the host.

// If not, use the name from your XAMPP version

Define ('DB_USER', 'webmaster');

Define ('DB_PASSWORD', 'coff33pot');

282

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

Define ('DB_HOST', 'www.yourwebsite.com');

Define ('DB_NAME', 'myusername_admintable');

// Make the connection

$dbcon = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB NAME);
// Set the encoding...optional but recommended

mysqli set charset($dbcon, 'utf8');

You now have all the following items necessary for migrating the database-driven website to the
remote host:

e Anaccount and a domain name registered with the remote host

e Anewly created empty database located on the host’s server

e The SQL dump files for the tables

e The folder containing the includes and the folder containing the images
e The modified mysqli_connect.php file

The main PHP and HTML files need an amendment before they can be uploaded, and this amendment
is described in the next section.

Securely Uploading the mysqli_connection.php File

For maximum security, the database connection file should be located outside the root folder. The file is
then not directly accessible via the website. Make sure the folder in which it resides is secured from outside
access.

Most hosting companies provide the ability to use an FTP program to upload and change files on their
servers. There are many free FTP programs available, including FileZilla (https://filezilla-project.org/).
The FTP program settings that will work for your site will depend on the security settings provided by the
hosting company. You will also need a user ID, password (which may or may not be different from your
normal user ID and password to access your host account), and your URL or TCP/IP address. You will be
restricted to access only your folders and files. Figure 7-13 shows an example FTP window that includes a
typical folder structure for a Linux/Unix remote host.

283

https://filezilla-project.org/

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

=Y, v i3
Name Size Type % Modified
ih8 greenh.php 4.51 KB PHP Script File 05/03/2013 11:14:00
: 13 bytes FTPQUOTA ... 10/02/2013 03:18:00
@] Jastlogin 13 bytes LASTLOGIN... 26/12/2012 18:24:00
= .contactemail 27 bytes CONTACTE... 09/05/2012
bashrc 124 by... BASHRCFle 24/08/2011
.bash_profile 176 by... BASH_PROF... 24/08/2011
.bash_logout 33 bytes BASH_LOG... 24/08/2011
I .cpanel 4.00 KB File Folder 26/12/2012 19:50:00
O Dublic_htm! > 4.00 KB File Folder 24/12/2012 15:55:00
[4.00 KB File Folder 12/05/2012
) .trash 4.00 KB File Folder 12/05/2012
Dtmp 4.00 KB File Folder 05/05/2012
) .softaculous 4.00 KB File Folder 05/05/2012
Dwww 11 bytes File Folder 13/04/2012
() access-logs 34 bytes File Folder 13/04/2012
() .cpaddons 4.00 KB File Folder 23/12/2011
2y mail 4.00 KB File Folder 09/11/2011
) .sqgmaildata 4.00 KB File Folder 20/10/2011
I .sgmailattach 4.00 KB File Folder 19/10/2011
2 public_ftp 4.00 KB File Folder 24/08/2011
) .htpasswds 4.00 KB File Folder 24/08/2011

Figure 7-13. Typical files and folders for a Linux/Unix environment as shown in an FTP program’s window

In Figure 7-13, the database connection file (circled) has been renamed as greenh.php and uploaded
outside the public_html root folder (circled). This folder exists within Linux/Unix operations systems to
house any websites displayed to the public. On a Microsoft web server, this folder may be named www,
htdocs, or similar. The user of your website will not have access to any files that do not reside in a public
folder (public_html). Your host might also only allow you access to this public folder and not access to the
root level, as shown in Figure 7-13.

If you can locate the connection file (greenh.php) outside the public folder (public_html) on the host,
none of your current interactive pages will be able to find it. To solve this, use your code editor to open every
file that contains a mysqli_connect.php link and run a Find and Replace All operation to amend its location
as follows.

Find mysqli_connect.php and replace it with ../greenh.php. The symbols ../ tell the pages that the file is
located one level above the current folder. For connecting to the database on your own computer/server, you
may have used require ('mysqli_connect.php'); as provided in the example files for this book. Remember,
that the user will not normally see the link to the connection file, because any PHP code is executed on the
server and only the results, such as information pulled from the database, are displayed to the user. However,
we do want to be as secure as possible just in case the unexpected happens.

Now that the connection file is safer and the interactive pages have been modified to match, you can
upload the HTML, CSS, and PHP pages to the remote host.

284

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

Uploading the Interactive Pages to the Host
The final steps are as follows:

e The public folder that will hold your web pages does not include an htdocs or eds-
www folder. These folder names are specific to the development package (XAMPP
or EasyPHP) that was used to create the pages. The actual folder names are not
necessary in a live environment. The web server knows that all publicly available
web pages reside in the public folder (public_html, www, or htdocs). Therefore, you
need to use your FTP client (FileZilla) to upload the HTML, CSS, and PHP pages
from your finalpostal’s htdocs or eds-www folder into the public folder in the host’s
server. Because you already uploaded an amended and renamed mysqli_connect.php
file, take great care not to upload the unmodified version.Now use your FTP client to
create a subfolder (such as SQL) in your public folder. Upload the SQL files that will
be used to install the tables into the database.

e Open and sign into phpMyAdmin (or the similar host-provided program) on the
remote server.

e In phpMyAdmin, on the left panel, click the name of the newly created empty
database, and click the Import tab.

e You will be asked to select the SQL file to be imported. Browse to the public_html
folder, then to the subfolder (SQL), and find each uploaded SQL file. Open it (or
them) and then click Go.

e Your public folder might have a default index. html file. Your new index.php file must
replace the HTML file; otherwise, index.html will load instead of your index.php file.
Rename the index.html file at the host as old-index.html or delete it. The web server
will search for all index files with different extensions. If it finds an index file with an
.html extension, it will attempt to display that file as the main page for the website. If
that file does not exist, it will look for other index files, such as index.php.

Now view your uploaded interactive website online by typing your website’s URL into the address field
of a browser. Note, if you decided to load your files under a subfolder instead of directly in the public folder,
include that folder name in your URL, such as http://yourwebsite.com/finalpostal/. You should see
your home page, and from there you can test the website. Make sure to test all of your pages that interact
with the database to ensure that your database connections are correct.

Be aware that you might have to wait a little while for some hosts to update their server cache (memory)
to display your web page changes. Web pages are displayed using Domain Name System (DNS) servers.
These servers convert the website name to an actual TCP/IP numerical address that uniquely identifies the
location of your website. If you made changes to your URL address or the index page, the DNS servers will
also gradually update this information.

As with any computer work, backups are an essential precaution against hardware or software failure.
These backup files also will provide the ability to roll back to an earlier version of your files, if you discover
some major coding issues.

285

http://yourwebsite.com/finalpostal/

CHAPTER 7 © MIGRATE TO A HOST AND BACK UP YOUR WEBSITE DATABASE

Backing Up Your Database

While you are learning to create and use databases and websites that use databases, these four steps are
essential:

1. Continue writing in your notebook or a software note-keeping system.
Be sure to update your flowchart.

Use the Export tab in phpMyAdmin to back up your tables.

Eal

Back up your htdocs or eds-www folder.

Recording important steps and details such as usernames and passwords can save a lot of grief. While
creating many experimental databases and variations of those databases, you cannot possibly remember
the details of each one. Also, you will not remember all changes you have made from day to day (or week to
week). Record the details of each stage of changes you have completed and what you intended to do next.
This will especially be important if you must stop for an extended period of time (maybe to update some
other clients’ websites). Clients never seem to request updates singly; they come in bunches, with four or five
clients clamoring for updates at the same time.

Also record useful website URLSs. If you come across a helpful tip in a book or blog, make a note of it.
This can save you from having to crawl through your shelf of books or many blogs to find the item again.

A ring-back notebook is ideal because you can insert dividers to help you find where you wrote that vital bit
of information. But if you are not old-school, an electronic notebook will also be a good choice.

For backups, use phpMyAdmin (or the database management system provided by your host) to export
SQL dumps for the tables from each database. Then save them to a USB flash drive or other cloud location so
that you can recover your tables from a known good timeframe in case they become corrupted.

Make a copy of the htdocs or eds-www folder on a flash drive or on a cloud drive so that you have
the most recent versions of successful and tested web pages. Store them (and your SQL files) in multiple
locations so you do not suffer when a hard disk or OS failure occurs. Also, consider creating a XAMPP or
easyPHP environment on another computer. Extra work is entailed in keeping each copy of the website
up-to-date, but if a computer dies, you can continue working on another computer. Peace of mind is a
wonderful thing.

You should also set up the automatic backup system that every website host provides to ensure that
your data is automatically backed up and can be automatically recovered if something happens.

Summary

In this chapter, we added some last-minute improvements suggested by the client and the membership
secretary. These included allowing registered members to update their own details. The client also asked
for an inquiry form for the website. All these additions to the website were described and listed. The chapter
provided some extra features you can add to your website, including the ability to log errors. The chapter
concluded with a full description of the procedures for migrating a database to a host and backing up
database tables.

In the next chapter, we will learn how to create a product catalog for a real estate agent.

286

CHAPTER 8

Create a Product Catalog

In the previous chapters, you have learned the basics of PHP and MySQL/MariaDB. These concepts have
provided a foundation that can be used to create a full database-driven website. In this chapter, we will

use these skills and an example product catalog to create a fully functional database-driven site. Most
e-commerce websites incorporate a catalog to display products and services. Some websites use catalogs to
display items that cannot be purchased over the Internet, such as tourist attractions or houses. The tutorials
in this chapter assume a real estate agency is offering various types of houses in a limited region. Real estate
is an excellent example of a website that has a catalog for the user to browse but not actually purchase
anything. Buying a house (for most people) over the Internet is impractical. Sensible buyers will view a
property and its location before even considering the purchase.

Because so many people are involved in the purchase and sale of a house, their actions must all be
carefully coordinated. The parties involved include the seller, the buyer, the real estate agent, separate
lawyers for the buyer and seller, the buyer’s and seller’s banks or mortgage companies, and the buyer’s
surveyor. In addition, there will probably be a chain of events involved—for example, the sellers cannot
proceed with the transaction until they have found and agreed to buy another house. Similarly, buyers
cannot proceed until they have a firm offer on their current house. These dependencies highlight the
reasons why providing just a house catalog on a real estate website is logical. Attempting to provide all the
different transactions that must occur for the sale to be complete would be complicated and impractical.

After completing this chapter, you will be able to

e Design and prepare a database and administration plan
e Create areal estate database and table
e Create a searchable home page where users can find a suitable house

e Create a page for the administrator to view the entire stock of houses or search for
and view a specific house

e Create code that display pages that provide the full specification of each property
listed

e (Create an inquiry form for users interested in viewing a house

Preparing the Database and Administration Plan

As with any project, we must involve the user (owner) in the development process. A user who has been
engaged in the complete life cycle of the development process is much more likely to be happy with the final
product. To begin the process, we must first gather any important information that will determine the design
and limitations of the completed site.

© Adrian W. West and Steve Prettyman 2018 287
A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,
https://doi.org/10.1007/978-1-4842-3843-1_8

CHAPTER 8 © CREATE A PRODUCT CATALOG

After our meeting with the real estate agency owner, we have agreed on the following priorities:

e The mostimportant page is the search page. This must engage the user by enabling
them to quickly find any houses in which they are interested.

e The following are the top priorities when searching for a house:
e Location
e Price
e Number of bedrooms
e Typeofhouse
Therefore, the search page will contain fields for these four items:

e The approximate location of a house will be disclosed, but the street name and
house number must not be disclosed. This prevents users from bypassing the real
estate agent and going directly to the house owner. In addition, this provides security
to the home owner, and the agent, as no one will have access to the house location
unless escorted by an agent. Any potential clients will already be screened by the real
estate office before being shown a house for security and financial reasons.

e The term Vacant Possession will not be used. A house that is empty is a magnet for
miscreants. Vacant houses can be vandalized, be illegally occupied, or provide a
security risk for the selling agent and their clients.

e The real estate agent’s photographer will provide a thumbnail image (.jpg, .gif, or
.png file) for each house. Thumbnail images will be 150 pixels wide with a maximum
height of 120 pixels. The photographer also will provide enlarged versions of the
photographs for the full specification pages; these will be standardized at 350 pixels
wide. The photographer will take extra caution to ensure that no latitude, longitude,
or other directional indications are embedded in the image itself.

Caution A catalog always contains images, but the real estate’s administrator might not be able to handle
them. The real estate company administrator would need to place new images in the appropriate folders on the
remote host via an FTP client. The administrator would also need basic HTML and CSS skills to format text for
house descriptions. We will assume that the administrator does not have these skills. Thus, the solution we will
adopt is to ask the webmaster to administer the contents of the site.

First, we need to create the new database.

Creating a New Database

To create a new database, follow these steps:

1. Inthe htdocs folder within xampp or in the EasyPHP folder eds_wwuw, create a
new folder named estate.

2. Download the files for Chapter 8 from the book’s link at Apress.com and unzip
them in your new estate folder.

288

http://apress.com

10.

11.

12.

CHAPTER 8 © CREATE A PRODUCT CATALOG

In the address field of a browser, enter localhost/phpmyadmin/ to access
phpMyAdmin.

Click the Databases tab and create a database named estatedb. Choose utf8_
general_ci from the pull-down collation list and then click Create.

Click the Privileges tab and then scroll down and click Add new user.
Enter these details:

e Username: smeeton

e Password: L1ghthOus3

e Host: Localhost

In the left panel, click the box next to the database estatedb.

Do not enter anything on the next screen, but click the Import tab.

Click the Browse button and navigate to the estate folder and the SQL dump file
houses.sql.

Click the houses.sql file and then click the Open button. The field will fill with the
URL of the dump file.

Ensure that the Character set in the pull-down menu is utf-8 and that the Format
is shown as SQL.

Click Go.

Creating the File for Connecting to the Database

Name the file mysqli_connect.php. If you are using the download files, this file is already created for you and
can be found in the folder named estate.

<?php

// Create a connection to the migrate database and to MySQL
// Set the encoding to utf-8

// Set the database access details as constants

Define ('DB_USER', 'smeeton');

Define ('DB_PASSWORD', 'Lighthous3');

Define ('DB_HOST', 'localhost');

Define ('DB_NAME', 'estatedb');

// Make the connection:

$dbcon =

new mysqli(DB_HOST, DB_USER, DB PASSWORD, DB_NAME);

// Set the encoding...optional but recommended
mysqli_set_charset($dbcon, 'utf8');

2>

The houses table and its content (along with a users table) were created when you imported and ran the

houses.sql file previously. Verify the houses table created has the columns shown in Table 8-1.

289

CHAPTER 8 © CREATE A PRODUCT CATALOG

Table 8-1. The Attributes for the houses Database Table

Column Name Type Length/Value Default Attributes NULL Index Al
ref number MEDIUMINT 6 None UNSIGNED O Primary
location TINYINT 60 None O 0
price DECIMAL 9,2 None O O
type TINYTEXT 50 None O d
mini_description =~ VARCHAR 100 None O 0
bedrooms TINYINT 2 None O 0
thumb VARCHAR 45 None O 0
full_description VARCHAR 600 None O Od
full_picture VARCHAR 45 None O 0
status TINYTEXT 30 None O 0

The house reference number will be used by viewers when they inquire about a property. This value will
also be used to display details about the house when the user clicks the Details link.

The column type MEDIUMINT (when unsigned) allows integers from 0 to 8,388,606. This size will
provide the real estate company with a lot of space for potential inquires.

TINYTEXT allows up to 255 characters. This provides plenty of flexibility to describe the bedrooms.

DECIMAL allows prices up to the limit set by the first number shown in the table. The second number
indicates the number of decimal places. The size 9,2 means that when entering nine figures, such as
123456789, the recorded result will be 1234567.89. This allows inquires for up to almost 410 million! The
column thumb holds the URL of an image—for example, images/thumbs/house_01.jpg. We have allowed
45 characters in the thumbnail image column because the file names for thumbnails are often long—for
instance, images/thumbs/bungalow_South_Devon_150px.png.

The full_description column will contain the detailed description of the house. The administrator can
enter HTML and CSS to control the format of the text in this field. The full_picture column hosts the URL link
for each house’s enlarged image.

The status column will indicate whether the house is available, under offer, withdrawn from the market,
or sold.

Security

As previously described, an unskilled administrator would not be able to cope with the preparation of
images and might not be capable of using an FTP program to place new images inside the appropriate folder
at the remote host. Because these tasks must be performed by the webmaster, the webmaster will be the
administrator. The skilled webmaster can use phpMyAdmin for any changes.

Any administration pages that are created also need to be secured with a user ID and password. These
pages would include session code (security guard) similar to examples we have seen in previous chapters.
The downloadable files for this chapter include a users table, a register page, and a login page.

290

CHAPTER 8 © CREATE A PRODUCT CATALOG

No login menu button is provided in the website. Only the administrator knows that this exists, and they
will enter localhost/estate/login.php to access the login page.

The users table includes our administrator Jack Smith from the previous chapter whose information can
be used to access any administration page. Jack’s sign-in information is as follows:

E-mail: jsmith@outcook.com

Password: D0g3b@dy

Based on the agreed specifications, the required pages will be as follows:

The home page, which includes a house search ability for the user (index.php).

The search results page, which displays the houses selected by the user’s search
criteria.

A full-specification page, which displays the details of each individual house.
The user accesses this information by clicking a link on the search results page.

The Contact Us page, which will be used for user inquiries.

An administration page, which will be provided so that the webmaster can
conveniently view the whole stock of houses.

Another administration page, which will allow the webmaster to search for and view
a specific house.

The administrator can also add new houses. Only the webmaster knows the URL for
this page, and it is not accessible from the website. As an additional precaution, the

admin page will not include the word admin in the page title; it has the less obvious
name advert.php.

None of the preceding pages allows the list of houses to be edited or deleted. The administrator will use
phpMyAdmin to edit and delete houses. We can now create a home page for the real estate website.

2901

CHAPTER 8 * CREATE A PRODUCT CATALOG

Creating a Home Page with Search Capability

Figure 8-1 shows the home page.

Search for your dream / < iated in the beautiful
green rolling countryside of Devon,

house England, UK About Us

IMPORTANT: S n item in ALL fields

otherwise the ch will not succeed FAQs

Contact Us

Home Page

- Select -

Figure 8-1. The home page for a real estate website

The green background for the pages in this tutorial is a CSS3 gradient. The area within the white borders
has a transparent background so that the gradient can be seen.

The home page has four pull-down menus to eliminate user-input errors and ensure that only
acceptable data is entered into the database table. To save space and provide better security, the database in
this tutorial is simplified by restricting the choices in these pull-down menus. British prices and terminology
are used in the menus. In the United States, different terminology is used; for instance, the term semi-
detached might be replaced by side-by-side duplex. In the United Kingdom, a bungalow is a single-story
building, whereas a house has two or more stories. For an American real estate agent, you would also replace
the currency entity £ with the dollar entity $.

Although we limited the drop-down choices severely to save space and code and increase security, a
real-world house catalog would adopt the same principle but use a more extensive choice of location, price,
and type of house.

292

CHAPTER 8 © CREATE A PRODUCT CATALOG

In the body of the home page, the code for the main menu (menu.php) is given in the following snippet:

<div style="padding-top: 10px; padding-bottom: 10px; padding-right: 15px;">
<nav class="float-right navbar navbar-expand-md navbar-dark">
<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#collapsibleMenu1">

</button>
<div class="btn-group-vertical btn-group-sm collapse navbar-collapse"
id="collapsibleMenu1"
role="group" aria-label="Button Group">
<ul class="navbar-nav flex-column" style="width: 140px;">
<1i class="nav-item">
<a class="btn btn-primary"
style="background:#559a55; border: 5px outset #559a55;" href="#"
role="button">About Us
</1i>
<1i class="nav-item">
<a class="btn btn-primary" style="background:#559a55; border: 5px
outset #559a55;"
href="#" role="button">FAQs
</1i>
<1i class="nav-item">
<a class="btn btn-primary" style="background:#559a55; border: 5px
outset #559a55;"
href="contact.php" role="button">Contact Us
</1i>
<li class="nav-item">
<a class="btn btn-primary" style="background:#559a55; border: 5px
outset #559a55;"
href="index.php" role="button">Home Page
</1i>

</div>
</nav>
</div>

In the downloadable menu file, the About Us and FAQs links are dead because no target pages have

been made available for those two links in this tutorial.
We will now examine the header for the home page and the majority of the web pages.

The Header for the Majority of the Pages

The header code is changed to include the header file as follows:
<header>

<?php include('includes/header.php'); ?>

</header>

The main style sheet formats the header and provides the background image.

293

CHAPTER 8 © CREATE A PRODUCT CATALOG

The Home Page Code

Let’s now examine the home page, which also doubles as a search page (Listing 8-1).

Listing 8-1. Creating the Home Page (index.php)

<!DOCTYPE html>
<html lang="en">
<head>
<title>Estate Home Page</title>
<meta charset="utf-8">
<meta name="viewport" s
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwiSFIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGvFX0dIZ4"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="transparent.css">
</head>

<body>

<div class="container" style="margin-top:10px">
<!-- Header Section -->

<header>

<?php include('includes/header.php'); ?>
</header>

<!-- Body Section -->
<div class="content mx-auto" id="contents">
<div class="row mx-auto" style="padding-left: opx; height: auto;">
<!-- Center Column Content Section -->
<div class="col-sm-12 text-center"
style="padding:0px; margin-top: 5px;">
<!--Start of admin add paintings content-->
<div class="row">
<div class="col-sm-4">
<h4>Search for your dream house</h4>
<h6>IMPORTANT: Select an item in
ALL fields otherwise the search will not succeed</h6>
<form action="found houses.php" method="post"
name="searchform" id="searchform">
<div class="form-group row form-control-sm no-gutters"
style="padding: opx;">
<div class="col-sm-3"></div>
<div class="col-sm-6" style="padding: opx;">
<label for="location" class="col-form-label text-right">
Location:</label>
<select id="location" name="location" class="form-control"
required>
<option selected value="">- Select -</option>
<option value="South_Devon">South Devon</option>

294

CHAPTER 8 © CREATE A PRODUCT CATALOG

<option value="Mid Devon">Mid Devon</option>
<option value="North Devon">North Devon</option>
</select>
</div>
</div>
<div class="form-group row form-control-sm no-gutters"
style="padding: opx;" >
<div class="col-sm-3"></div>
<div class="col-sm-6" style="padding: opx;">
<label for="price" class=" col-form-label text-right">
Maximum Price:</label>
<select id="price" name="price" class="form-control"
required>
<option selected value="">- Select -</option>
<option value="200000">£200,000</option>
<option value="300000">£300,000</option>
<option value="400000">£400,000</option>
</select>
</div>
</div>
<div class="form-group row form-control-sm no-gutters"
style="padding: opx;" >
<div class="col-sm-3"></div>
<div class="col-sm-6" style="padding: opx;" >
<label for="type" class="col-form-label text-right">
Type:</label>
<select id="type" name="type" class="form-control"
required>
<option selected value="">- Select -</option>
<option value="Det-bung">Detached Bungalow</option>
<option value="Semi-det-bung">
Semi-detached Bungalow</option>
<option value="Det-house">Detached House</option>
<option value="Semi-det-house">
Semi-detached House</option>
</select>
</div>
</div>
<div class="form-group row form-control-sm no-gutters"
style="padding: opx;">
<div class="col-sm-3"></div>
<div class="col-sm-6" style="padding: opx;">
<label for="bedrooms" class="col-form-label text-right">
No. of Bedrooms:</label>
<select id="bedrooms" name="bedrooms" class="form-control"
style="margin: Opx;" required>

<option selected value="">- Select -</option>
<option value="1"

1">1</option>
<option value=

2">2</option>

295

CHAPTER 8 © CREATE A PRODUCT CATALOG

<option value="3">3</option>
<option value="4">4</option>
</select>
</div>
</div>
<div class="form-group row form-control-sm ">
<label for="" class="col-sm-3 col-form-label"></label>
<div class="col-sm-6 text-center "style="padding: opx;" >
<input id="submit" class="btn btn-primary" type="submit
name="submit" value="Search">

</div>
</div>
</div>
<div class="col-sm-4">
<h6>All houses are situated in the beautiful green rolling countryside
of Devon, England, UK</h6>

</div>
<div class="col-sm-4">
<?php include ('includes/menu.php'); ?>
</div>
</div>
</div>
</div>
</div>
<div class="row mx-auto" style="padding-left: opx; height: auto;">
<div class="col-sm-12 text-center" style="padding:0px; margin-top: 5px;">
<footer>
<?php include ('includes/footer.php'); ?>
</footer>
</div>
</div>
</div>
</body>
</html>

The code for the index page is similar to code we have seen in other chapters. No additional explanation
isneeded.

Displaying the Catalog

After the user enters the search criteria into the home page fields (index.php as shown in Figure 8-1), clicking
the Search button will reveal the selected houses, as shown in Figure 8-2.
Enter the following details into the home page to see the selected houses as displayed in Figure 8-2:

e Location: South Devon
e Max Price: £400,000
e Type: Detached house

e Bedrooms: 4

296

CHAPTER 8 © CREATE A PRODUCT CATALOG

Note that all thumbnail images will be stored in a subfolder under the images folder named thumbs. All
full-size pictures, used in the full description pages (explained later), will be stored in the subfolder pictures
under the images folder. When the user clicks the Details link, a full description of the house selected is
displayed.

Ref.

1003

1007

1009

To arrange a viewing please use the the Contact Us button on the menu and
quote the reference number.

Location Thumb

South_Devon

South_Devon

South_Devon

Features Bedrooms Details Status
Located on the outskirts of a 4 Details Available
thriving town. Stunning rural
views,
A town house with rural views. 4 Details Available
Located close to shops.
A town house with character 4 Details Available

Contact Us.

Home Page

Copyright © Adrian West & Steve Prettyman 2017 Designed by Adrian West and Steve Prettyman Valid CSS & HTMLS

Figure 8-2. The houses selected by the search criteria are displayed

The search criteria resulting in the display shown in Figure 8-2 were as follows:

Location: South Devon
Max Price: £400,000
Type: Detached house

Bedrooms: 4

297

CHAPTER 8 © CREATE A PRODUCT CATALOG

Note if you click the Details link for house 1003, you will see the full details for that house. If you click the
Details link for house 1007, you will see an example of the full details with the default picture.

Listing 8-2 gives the code for displaying the found houses.
The main menu is removed so that the table can span the width of the page. To enable the user to return
to the home page, a Home Page button has been added to the header.

Listing 8-2. Creating the Results Page (found_houses.php)

<?php

session_start();

// Data from valid source? #1
if ((empty($_SESSION['user level'])) && (!isset($_SESSION['previous url']) or

($_SESSION['previous url'] != "index")))

{ header("Location: index.php");

exit();

}

else

{
if (lempty($_SESSION['user level'])) {
$user_level = $ SESSION['user level'];

if(($user level == 1) 8& (!empty($_POST['ref number'])))

{
$ref number = htmlspecialchars($ POST['ref number'], ENT QUOTES);
}
} else { $user level = 0; }
}
define('ERROR_LOG',"errors.log");
>

<!DOCTYPE html>
<html lang="en">
<head>
<title>Found Houses Page</title>
<meta charset="utf-8">
<meta name="viewport" content=
"width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css”
integrity=
"sha384-9gV04dYFwwWSFIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="transparent.css">
</head>
<body>
<div class="container" style="margin-top:10px">
<!-- Header Section --»
<header>

298

CHAPTER 8

<?php
if ($user level == 0)
{

include("includes/header found houses.php");

else if($user level==1)

{

include('includes/header_4btn.php');

}

>

</header>

<!-- Body Section -->

<div class="content mx-auto" id="contents">

<div class="row mx-auto" style="padding-left: Opx; height: auto;">

<!-- Center Column Content Section -->

<div class="col-sm-12 text-center"

style="padding:20px; margin-top: 5px;">

<!--Start of admin add paintings content-->

<div class="row">

<h3>To arrange a viewing please use the Contact Us button

on the menu and quote the reference number.</h3>

<?php

// This script retrieves all the records from the houses table

try {

require ('mysqli_connect.php'); // Connect to the database.

// Make the query:

$query = "SELECT ref number, location, thumb, price, ";

$query .= "mini_description, type, bedrooms, ";

$query .= "status FROM houses ";

if(($user level == 1) & (lempty($ _POST['ref number']))) {

$query .= "WHERE ref number=? ";

} else {

$query .= "WHERE location= ? AND ";

$query .= "(price <= ?) AND (price »>= (? - 100000)) AND ";

$query .= "type= ? AND bedrooms= ? ORDER BY ref number ASC ";

}

$q = mysqli_stmt_init($dbcon);

mysqli_stmt_prepare($q, $query);

// bind values to SQL Statement

if(($user level == 1) 8& (lempty($_POST['ref number']))) {
mysqli stmt bind param($q, 's', $ref number);

} else {

$location = htmlspecialchars($_POST['location'], ENT_QUOTES);
$price = htmlspecialchars($_POST['price'], ENT_QUOTES);

$type = htmlspecialchars($_POST['type'], ENT_QUOTES);
$bedrooms = htmlspecialchars($ POST['bedrooms'], ENT_QUOTES);
mysqli stmt bind param($q, 'sssss', $location, $price, $price,
$type, $bedrooms);

}

CREATE A PRODUCT CATALOG

#2

299

CHAPTER 8 © CREATE A PRODUCT CATALOG

// execute query

mysqli stmt_execute($q);

$result = mysqli stmt get result($q);

// SELECT is safe execution - read only

if ($result) { // If it ran OK, display the records.

// Table header.

>

<table class="table table-responsive table-striped"

style="background: white;color:black;">

<tr>

<th scope="col">Ref.</th>

<th scope="col">Location</th>

<th scope="col">Thumb</th>

<th scope="col">Price</th>

<th scope="col">Features</th>

<th scope="col">Bedrooms</th>

<th scope="col">Details</th>

<th scope="col">Status</th>

</tr>

<?php

while ($row = mysqli_fetch_array($result, MYSQLI_ASSOC)) {
// Remove special characters that might already be in table to
// reduce the chance of XSS exploits
$ref number = htmlspecialchars($row['ref number'], ENT QUOTES);
$thumb = htmlspecialchars($row['thumb'], ENT_QUOTES);
$price = htmlspecialchars($row['price'], ENT_QUOTES);
$mini_description =

htmlspecialchars($row['mini description'], ENT QUOTES);
$bedrooms = htmlspecialchars($row['bedrooms'], ENT_QUOTES);
$status = htmlspecialchars($row['status'], ENT _QUOTES);

echo '<tr>
<td scope="row">' . $row['ref number'] . '</td>
<td scope="row">"' . $row['location'] . '</td>';
if ($row['thumb'] == "")
{
echo '<td scope="row">";
}
else {
echo'<td scope="row"> </td>';
}
echo'<td scope="row">"' . $row['price’'] . '</td>
<td scope="row">" . $row['mini_description'] . '</td>
<td scope="row">' . $row['bedrooms'] . '</td>
<td scope="row">

<a href="house_details.php?ref number=" . $row['ref number'] .
"">Details</td>
<td scope="row"> ' . $row['status'] . '</td>
</tr>';
}

300

//#3

CHAPTER 8 © CREATE A PRODUCT CATALOG

echo '</table>'; // Close the table.
mysqli free result ($result); // Free up the resources.
} else { // If it did not run OK.
// Public message:
echo '<p class="center-text">
The current users could not be retrieved.';
echo 'We apologize for any inconvenience.</p>';
// Debugging message:
//echo '<p>' . mysqli_error($dbcon) . '

Query: ' . $q . '</p>';
//Show $q is debug mode only
} // End of if ($result). Now display the total number of records/members.
mysqli close($dbcon); // Close the database connection.

catch(Exception $e) // We finally handle any problems here
{
// print "An Exception occurred. Message: " . $e->getMessage();
print "The system is busy please try later";
// $date = date('m.d.y h:i:s');
// $errormessage = $e->getMessage();
// $eMessage = $date . " | Exception Error | " , $errormessage . |\n";
// error log($eMessage,3,ERROR_LOG);
// e-mail support person to alert there is a problem
// error log("Date/Time: $date - Exception Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Exception Error \nFrom:
// Error Log <errorlog@helpme.com>" . "\r\n");

}

catch(Error $e)

{

// print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try later";
// $date = date('m.d.y h:i:s');
// $errormessage = $e->getMessage();
// $eMessage = $date . " | Error | " , $errormessage . |\n";
// error log($eMessage,3,ERROR_LOG);
// e-mail support person to alert there is a problem
// error log("Date/Time: $date - Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Error \nFrom: Error Log
// <errorlog@helpme.com>" . "\r\n");
}
>
<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<div class="col-sm-12 text-center" style="padding:0px; margin-top: 5px;">
<h5 class="text-center">No houses displayed? Sorry we have nothing
that matches your requirements at the moment</h5>
</div>
</div>
</div><!-- End of table display content -->
</div>
</div>
</div>

301

CHAPTER 8 © CREATE A PRODUCT CATALOG

<div class="row mx-auto" style="padding-left: Opx; height: auto;">

<div class="col-sm-12 text-center" style="padding:0px; margin-top: 5px;">
<footer>

<?php include ('includes/footer.php'); 2>

</footer>

</div>

</div>

</body>

</html>

Explanation of the Code

This section explains the code.

<?php
session_start();
// Data from valid source? #1
if ((empty($_SESSION['user level'])) 8& (!isset($_SESSION['previous url']) or
($_SESSION['previous_url'] != "index")))
{ header("Location: index.php");
exit();
}
else
{
if (lempty($_SESSION['user level'])) {
$user level = $ SESSION['user level'];

if(($user level == 1) 8& (lempty($_POST['ref number'])))

{
$ref number = htmlspecialchars($ POST['ref number'], ENT QUOTES);
}
} else { $user level = 0; }
}
define('ERROR_LOG',"errors.log");
2>

This security guard checks for the existence of the previous_url session variable and the value
of index. This check allows only the index file to call this page and pass content to it. The index page
requires a selection for all drop-down boxes. It also restricts what values are passed to this page by using
these drop-down lists.

// Make the query: #2
$query = "SELECT ref number, location, thumb, price, ";
$query .= "mini_description, type, bedrooms, ";

$query .= "status FROM houses ";

if(($user level == 1) 8& (lempty($_POST['ref number']))) {
$query .= "WHERE ref number=? ";

} else {

$query .= "WHERE location= ? AND ";

$query .= "(price <= ?) AND (price >= (? - 100000)) AND ";
$query .= "type= ? AND bedrooms= ? ORDER BY ref number ASC ";

302

CHAPTER 8 © CREATE A PRODUCT CATALOG

If the user is not an administrator, the entries provided by the drop-down menus are assigned to the
SQL query. If the user is an administrator, the WHERE clause will contain the house reference number,
which is provided on an administration form that we will explore soon.

The price needs some explanation. The statement is as follows:

(price <= ?) AND (price >= (?'-100000)

If the price was simply <= ?, a search using a maximum price of £400,000 would display every house
valued at £400,000 or less. People looking for a house with maximum price of £400,000 would not be
interested in houses at, say, £280,000 or £120,000. Therefore, the following statement is used to give a
minimum price that is £100,000 below the searcher’s maximum:

AND (price >= (?-100000)

The display is ordered by ascending reference numbers; however, you could change this to order it by
price in descending order.

if ($row['thumb'] == "") /7#3
{
echo '<td scope="row">";
}
else {
echo'<td scope="row"> </td>";
}

If there is no link to a thumbnail picture in the database, a default picture is used. This may occur if the
agent decides to post the house for sale before the photographer has had a chance to take pictures.

The Header for the Page of Search Results

Figure 8-3 shows the header.

Contact Us

Figure 8-3. One of the two buttons is a Contact Us button so that the user can request an appointment to view
the house

303

CHAPTER 8 © CREATE A PRODUCT CATALOG

Listing 8-3 gives the code for the header.

Listing 8-3. Creating the Search Result Header (header_found_houses.php)

<div class="jumbotron text-center row mx-auto" id="includeheader">
<div class="col-sm-10">
<h1 class="text-left">Devon Real Estate</h1>
<h2 class="text-center">Try our award winning service</h2>
</div>
<nav class="col-sm-2">
<div class="btn-group-vertical btn-group-sm" role="group"
style="width: 140px;" aria-label="Button Group">
<button type="button" class="btn btn-secondary" id="buttons"
onclick="location.href = 'contact.php'" >Contact Us</button>
<button type="button" class="btn btn-secondary" id="buttons"
onclick="location.href = 'index.php'">Home Page</button>
</div>
</nav>
</div>
<img id="rosettel" alt="Rosette" title="Rosette" height="127"
src="images/rosette-128.png" width="128">

Now, let’s create the details page. This page is accessed by clicking the link provided for an individual
house in the found_houses.php page.

Creating the House Details Page

The house details page provides a more comprehensive description of the house. The page pulls this
additional information from the database when the user clicks the Details link. This page is called either
by the index page or by the administrators search page, which will be explained soon. Figure 8-4 shows
the page.

304

CHAPTER 8 © CREATE A PRODUCT CATALOG

Try our award winning service

Details for House Reference No 1003 To arrange a viewing
; utUs

please click the Contact Us
button and quote the FAQS
reference number 1003

£400000.00 Contact Us

A large and superbly presented Home Page
detached house located in a beautiful
valley in South Devon. Four good size

bedrooms, all en-suite. Three generous
reception rooms, luxury kitchen and
main bathroom.

Double Garage with radio operated
doors. parking space for three cars in
front of the house. Large landscaped
rear garden (approximately one acre)
with green house, summer house and

hot tub. Neat front garden with rockery.

Figure 8-4. House details for house 1003 (house_details.php)

The found_houses page passes the house reference number (via GET) to the house_details page. This
value is then used to retrieve the detailed description of the house.

If there is no link to a picture in the database, a default picture is used. This may occur if the agent
decides to post the house for sale before the photographer has had a chance to take pictures.

Listing 8-4 shows the code for the house details page.

Listing 8-4. House Details Page (house_details.php)

<?php
session start();
// Data from valid source? #1
if (('empty($SESSION['user level'])) 8&
(!isset($_SESSION['previous url'])
or ($ SESSION['previous url'] != "index")))
{ header("Location: index.php");
exit();
}
define('ERROR_LOG', 'errors.log');
>

305

CHAPTER 8 © CREATE A PRODUCT CATALOG

<!DOCTYPE html>
<html lang="en">
<head>
<title>House Details Page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,
initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwhSjIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="transparent.css">
</head>
<body>
<div class="container" style="margin-top:10px">
<!-- Header Section --»
<header>
<?php include('includes/header.php'); ?>
</header>
<!-- Body Section -->
<div class="content mx-auto" id="contents">
<div class="row mx-auto" style="padding-left: 10px; height: auto;">
<!-- Center Column Content Section -->
<div class="col-sm-12 text-center" style="padding:20px; margin-top: 5px;">
<!--Start of admin add paintings content-->
<div class="row">
<div class="col-sm-5" style="background-color: white; padding-top: 10px;">
<?php
try {
$ref number = htmlspecialchars($ GET['ref number'], ENT QUOTES);
require ('mysqli_connect.php'); // Connect to the database.
// Make the query: #2
$query = "SELECT price, full description, full picture ";
$query .= "FROM houses WHERE ref number=?";
$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// bind values to SQL Statement
mysqli stmt bind param($q, 's', $ref number);
// execute query
mysqli stmt_execute($q);
$result = mysqli stmt get result($q);
if ($result) { // If it ran OK, display the records.
$row = mysqli fetch array($result, MYSQLI ASSOC);
>
<h5 style="color:green">
Details for House Reference No
<?php echo $ref number; ?>
</h5>

306

CHAPTER 8 © CREATE A PRODUCT CATALOG

<?php

echo '<img class="img-fluid float-left" alt="house reference '
$ref number;

echo '" src=""';

if ($row['full picture']=="")

{echo 'images/pictures/default.jpg"/>";}

else { echo $row['full picture'];

echo '">';

}

>

</div>

<div class="col-sm-4"

style=" background-color: white; color:black; padding-top: 10px;">

<h4 style="color:green;">

To arrange a viewing please click the Contact Us button
and quote the reference number

<?php echo $ref _number . '</h4>";

echo '<p>£";

echo $row['price'] . '</p>';

echo $row['full description'];

>
</div>
<?php
mysqli free result ($result); // Free up the resources.
}
else { // If it did not run OK.
// Message:
echo '<p class="error">The record could not be retrieved. ';
echo 'We apologize for any inconvenience.</p>";
// Debugging error message:
//echo '<p>' . mysqli_error($dbcon) . '

Query: ' . $q . '</p>';
}

mysqli_close($dbcon); // Close the database connection.

catch(Exception $e) // We finally handle any problems here

// print "An Exception occurred. Message: " . $e->getMessage();
print "The system is busy please try later";
// $date = date('m.d.y h:i:s');

// $errormessage = $e->getMessage();

// $eMessage = $date . " | Exception Error | " , $errormessage . |\n";

// error_log($eMessage,3,ERROR_LOG);

// e-mail support person to alert there is a problem

// error log("Date/Time: $date - Exception Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Exception Error \n

//From: Error Log <errorlog@helpme.com>" . "\r\n");
}
catch(Error $e)
{

// print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try later";

/7143

307

CHAPTER 8 © CREATE A PRODUCT CATALOG

// $date = date('m.d.y h:i:s');
// $errormessage = $e->getMessage();
// $eMessage = $date . " | Error | " , $errormessage . |\n";
// error log($eMessage,3,ERROR_LOG);
// e-mail support person to alert there is a problem
// error_log("Date/Time: $date - Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Error \nFrom:
// Error Log <errorlog@helpme.com>" . "\r\n");
}
>
<div class="col-sm-3">
<?php include ('includes/menu.php'); ?>
</div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>

Explanation of Code

This section explains the code.

<?php

session_start();
// Data from valid source? #1
if (('empty($SESSION['user level'])) 8& (!isset($_SESSION['previous url'])
or ($ SESSION['previous url'] != "index")))
{ header("Location: index.php");
exit();
}
define('ERROR_LOG', 'errors.log');
?>

The security guard again requires that the data selected was from the index page, which in turn was
also passed to the found houses page. A regular user can get here only if they started with the index page
and clicked the details link in the found_houses page. Once an administrator signs in to the login page, it
redirects them to the advert page. The session is not closed by the code to allow the user to return to the
found houses page and click another link if available.

// Make the query: #2
$query = "SELECT price, full description, full picture ";
$query .= "FROM houses WHERE ref number=?";

$q = mysqli_stmt_init($dbcon);

mysqli stmt prepare($q, $query);

308

CHAPTER 8 © CREATE A PRODUCT CATALOG

// bind values to SQL Statement
mysqli stmt bind param($q, 's', $ref number);

The house reference number was passed via the link in the found_houses page. The house_details page
uses this reference number to pull a full description of the house from the database.

Note The administrator is responsible for controlling the format of the data. The administrator would use
HTML and/or CSS to ensure that data is properly displayed. Since these skills might not be known by a real
estate employee, this duty has been assigned to the web administrator.

echo src=""; /743
if ($row['full picture']=="")

{echo 'images/pictures/default.jpg"/>";}

else { echo $row['full picture'];

echo "">';

If the link to the full size picture does not exist in the database, a default picture is provided.
Now let’s add some pages to help our administrator add and view a house.

Creating the Admin/Adding a House Page

Figure 8-5a shows the administrator’s page.

About Us

FACE

Contact Us

Home Page

Figure 8-5a. The admin and add-a-house page

309

CHAPTER 8 * CREATE A PRODUCT CATALOG

Figure 8-5a shows the administrator’s page (advert.php). This is a page for adding new houses to the
houses table in the database.

Let’s examine the elements on the administrator’s page. The page contains four pull-down menus, three
of which are replicas of the pull-downs in the index page; these are location, type, and number of bedrooms.
The status menu is the fourth pull-down menu and is used to inform the user whether the house is available,
under offer, or already sold. The price field is not a pull-down because house values are rarely set at precisely
£400,000 or £300,000 or £200,000.

Concerning the status, you might wonder why we would enter Sold. Why not delete the house from the
database if it is sold? Real estate agents do this for two reasons.

e Prospective buyers might have used the site at some earlier date and were attracted
by a particular house. Later, when they see that the house is sold, they would have no
need to contact the agent to see if it still on the market.

e If prospective visitors see several sold houses listed on the website, they will be
confident that the agent is actively selling houses.

The administrator will use phpMyAdmin to delete sold houses after a suitable time interval.

Assuming that the thumbnail images are in the subfolder thumbs under the folder images, the URL for
the image must be entered by the administrator in the following format:
c://estate/images/thumbs/house06.gif

The price must be entered (without currency symbols) in this format: 300000.

The full-size images are in the subfolder pictures under the folder images, and the URL must be entered
in the following format:

c://estate/images/pictures/fullhouse06.gif

The fields are filled out by the administrator, and when they click the Add button, the details are
inserted into the houses table in the database. A confirmation message is given, as shown in Figure 8-5b.

View Houses

The house was successfully added!!
Add Another?

Home Page

I Another House?

Figure 8-5b. Showing the confirmation message

310

CHAPTER 8

Listing 8-5 gives the code for the administrator’s page.

Listing 8-5. Creating the Administator’s Page (advert.php)

<?php
session_start();

if (lisset($ SESSION['user level']) || ($_SESSION['user level'] != 1))

{
header ("Location: login.php");
exit();

}

define('ERROR_LOG', 'errors.log');

if ($_SERVER['REQUEST METHOD'] == 'POST") {
//require("cap.php");

}

>

<!DOCTYPE html>

<html lang="en">

<head>
<title>Add Home Page</title>
<meta charset="utf-8">

CREATE A PRODUCT CATALOG

<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">

<!-- Bootstrap CSS File -->
<link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"

integrity=

"sha384-9gVQ4dYFwwiSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiu1FwO5qRGVFX0dIZ4"

crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="transparent.css">
<script src="https://www.google.com/recaptcha/api.js'></script>
</head>
<body>
<div class="container" style="margin-top:10px">
<!-- Header Section -->
<header>

<?php include('includes/header_advert.php'); ?>
</header>
<?php

// This script is a query that INSERTs a record in the houses table.

// Check that form has been submitted:

if (($_POST['submit'] == 'Add")) {
// only accept values from same site via post

try {
$errors = array(); // Initialize an error array.
require('mysqli_connect.php'); // Connect to the db.
// Check for a location

$location = filter var($ POST['location'], FILTER _SANITIZE STRING);

if ((empty($location)) || ($location == '- Select -')) {
$errors[] = 'You forgot to enter the location.';
} else {

311

CHAPTER 8 © CREATE A PRODUCT CATALOG

if (($location ==

"South Devon") ||

($location == "Mid Devon") ||
($location == "North Devon"))
{
// OK
} else {
$errors[] = "Invalid location";
}

}

// Has a price been entered?
$price = filter_var($_POST['price'], FILTER_SANITIZE_NUMBER_INT);
if ((empty($price)) || (strlen($price) > 15)) {
$errors[] ='You forgot to enter the price.' ;
}

/1 check type
$type = (filter var($_POST['type'], FILTER SANITIZE STRING));
if ((empty($_POST['type'])) || ($_POST['type'] == '- Select -')) {
// user could choose - Select - by mistake

$errors[] = 'You forgot to enter the type of house.';
} else {
if (($type == "Det-bung") ||
($type == "Sem-det-bung") ||
($type == "Det-house") ||
($type == "Semi-det-house"))
{
/70K
} else {

$errors[] = "Invalid type";

}

}
// Check for brief description

$mini descriptiontrim = filter var($ POST['mini description'], FILTER SANITIZE STRING);
if (('empty($mini descriptiontrim)) 8& (preg match('/[a-z0-9\.\I\?\s\,\-]/i", $mini_
descriptiontrim)) &8&

(strlen($mini_descriptiontrim) <= 120)) {

$mini description = $mini_descriptiontrim;

telse{
$errors[] = 'Missing description. Only numeric, alphabetic, period, comma, dash and
space. Max 120.';

// Check for number of bedrooms

$bedrooms = filter var($ POST['bedrooms'], FILTER SANITIZE NUMBER INT);
if ((empty($bedrooms)) || ($bedrooms == '- Select -')) {
$errors[] = 'You forgot to enter the number of bedrooms';
} else {
if (($bedrooms == "1") ||
($bedrooms == "2") ||
($bedrooms == "3") ||
($bedrooms == "4"))
{
// 0K

312

CHAPTER 8 © CREATE A PRODUCT CATALOG

} else {
$errors[] = "Invalid number of bedrooms";
}

}

// Check if a thumbnail url has been entered
$thumb = filter var($_POST['thumb'], FILTER SANITIZE URL);
if ((empty($thumb)) || (strlen($thumb > 45))) {
// thumbnail link is optional
$thumb = NULL;
}
// Check if full description has been entered
$full descriptiontrim =
filter var($_POST['full description'], FILTER SANITIZE STRING);
if (('empty($full descriptiontrim)) 8&
(preg_match('/[a-z0-9\.\I\?2\s\,\-]/1", $full descriptiontrim)) &&
(strlen($full descriptiontrim) <= 400)) {
$full description = $full descriptiontrim;
telse{
$errors[] =
'Missing description. Only numeric, alphabetic, period, comma, dash and space. Max 30.";
}
// full picture
$full picture = filter var($ POST['full picture'], FILTER SANITIZE URL);
if ((empty($full picture)) || (strlen($full picture) > 45)){
// optional
$full_picture = NULL;
}

// Check for status of the house
$status = filter var($ POST['status'], FILTER SANITIZE STRING);
if ((empty($status)) || ($status == '- Select -')) {
$errors[] = 'You forgot to select a status';
} else {
if (($status == "Available") ||
($status == "Under offer") ||
($status == "Withdrawn") ||
($status == "Sold"))

{

// 0K
} else {

$errors[] = "Invalid status";
}

}
if (empty($errors)) { // If everything's OK.
// Register the house in the database
// Make the query:
$query = "INSERT INTO houses (ref number, location, price, type, mini_description,
bedrooms, ";
$query .= "thumb, status, full description, full picture) ";
$query .= " VALUES ";

$query .= "(" ', 7, 2,2,2,2,2,2,2,2)";

313

CHAPTER 8 © CREATE A PRODUCT CATALOG

$q = mysqli stmt_init($dbcon);

mysqli stmt prepare($q, $query);

// use prepared statement to ensure that only text is inserted

// bind fields to SQL Statement

mysqli_stmt_bind_param($q, 'sssssssss', $location, $price, $type, $mini_description,
$bedrooms,

$thumb, $status, $full description, $full picture);

// execute query

mysqli stmt_execute($q);

if (mysqli_stmt affected rows($q) == 1) {
// Good
header ("location: another.php");

} else { // If it did not run OK.

// Message:

$errorstring = 'System Error ';

$errorstring .= 'The house could not be added due to a system error. ';

$errorstring .= 'We apologize for any inconvenience.';

// Debugging message:

// echo '<p>' . mysqli error($dbcon) . '

Query: ' . $q . '</p>';

} // End of if ($r) IF.
mysqli_close($dbcon); // Close the database connection.
exit();

} else { // Report the errors.

$errorstring = 'Error!’;

$errorstring .= ' The following error(s) occurred:
';

foreach ($errors as $msg) { // Print each error.

$errorstring .= " - $msg
\n";
}
$errorstring .= 'Please try again.';
}// End of if (empty($errors)) IF.
} /7 try
catch(Exception $e) // We finally handle any problems here
{

// print "An Exception occurred. Message: "
print "The system is busy please try later";
// $date = date('m.d.y h:i:s');

// $errormessage = $e->getMessage();

// $eMessage = $date . " | Exception Error | " , $errormessage . |\n";

// error_log($eMessage,3,ERROR_LOG);

// e-mail support person to alert there is a problem

// error_log("Date/Time: $date - Exception Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Exception Error \nFrom: Error Log

. $e->getMessage();

//<errorlog@helpme.com>" . "\r\n");
}
catch(Error $e)
{

// print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try later";

// $date = date('m.d.y h:i:s');

// $errormessage = $e->getMessage();

// $eMessage = $date . " | Error | " , $errormessage . |\n";

314

CHAPTER 8 © CREATE A PRODUCT CATALOG

// error log($eMessage,3,ERROR_LOG);

// e-mail support person to alert there is a problem

// error_log("Date/Time: $date - Error, Check error log for

// details", 1, noone@helpme.com, "Subject: Error \nFrom:

// Error Log <errorlog@helpme.com>" . "\r\n");

}
} // End of the main Submit conditional.
>
<div class="content mx-auto" id="contents" style="padding-top:10px">
<!-- Body Section -->
<div class="row" style="padding-left: opx;">

<div class="col-sm-8">
<form action="advert.php" method="post" name="advert" id="advert">
<!--START OF TEXT FIELDS-->
<div class="form-group row'>

<label for="" class="col-sm-4 col-form-label text-right"></label>
<div class="col-sm-8 text-center">

<h3>Add a House</h3>

<h5>

<?php

If (lempty($errorstring)) {

echo $errorstring;
}

?></h5>
</div>
</div>
<div class="form-group row">
<label for="location" class="col-sm-4 col-form-label text-right">
Location:</label>
<div class="col-sm-8">
<select id="location" name="location" class="form-control" required>
<option value="">- Select -</option>
<option value="South_Devon">South Devon</option>
<option value="Mid Devon">Mid Devon</option>
<option value="North Devon">North Devon</option>
</select>
</div>
</div>
<div class="form-group row">
<label for="price" class="col-sm-4 col-form-label text-right">Price:</label>
<div class="col-sm-8">
<input type="num" class="form-control" id="price" name="price"
placeholder="Price" maxlength="15"
pattern="[0-9\.]*"
title="Numbers only max of 120 characters"
value=
"<?php if (isset($_POST['price']))
echo htmlspecialchars($_POST['price'], ENT_QUOTES); 2>" >
</div>
</div>

315

CHAPTER 8 © CREATE A PRODUCT CATALOG

<div class="form-group row">

<label for="type" class="col-sm-4 col-form-label text-right">
Type:</label>
<div class="col-sm-8">

<select id="type" name="type" class="form-control" required>

</div>
</div>

<option
<option
<option
<option
<option

value=
value=
value=
value=
value=

</select>

>- Select -</option>

"Det-bung">Detached Bungalow</option>
"Sem-det-bung">Semi-detached Bungalow</option>
"Det-house">Detached House</option>
"Semi-det-house">Semi-detached House</option>

<div class="form-group row">
<label for="thumb" class="col-sm-4 col-form-label text-right">Thumbnail URL</label>
<div class="col-sm-8">
<input type="url" class="form-control" id="thumb" name="thumb"
placeholder="Thumbnail URL" maxlength="45"
value=
"<?php if (isset($_POST['thumb']))
echo htmlspecialchars($ POST['thumb'], ENT QUOTES); ?>" >

</
</di

div>
V>

<div class="form-group row">

<label for="" class="col-sm-4 col-form-label text-right"></label>

<div class="col-sm-8 text-center">

<label for="comment">Please enter your Brief Description below</label>

<textarea class="form-control" id="mini_description"
name="mini_description" rows="3" cols="40"
pattern="[a-zA-Z0-9][a-zA-Z0-9\s\.\,\-\2\ !]*"
title="Alphabetic, numbers, comma, ., -, ?, !, space only max of 120 characters"
value=
" <?php if (isset($_POST['mini description']))
echo htmlspecialchars($ POST['mini description'], ENT QUOTES); 2>" >

</div
</div

</texta
>
>

rea>

<div class="form-group row">

<label for="bedrooms" class="col-sm-4 col-form-label text-right">
Bedrooms:</label>

<div class="col-sm-8">

<select id="bedrooms" name="bedrooms" class="form-control" required>

</div>
</divy>

316

<option
<option
<option
<option
<option

</select>

value="">- Select -</option>
value="1">1</option>
value="2">2¢</option>
value="3">3</option>
value="4">4</option>

CHAPTER 8 © CREATE A PRODUCT CATALOG

<div class="form-group row">
<label for="" class="col-sm-4 col-form-label text-right"></label>
<div class="col-sm-8 text-center">
<label for="comment">Please enter your Full Description below</label>
<textarea class="form-control" id="full description" name="full description"
rows="10" cols="40"
pattern="[a-zA-Z0-9][a-zA-Z0-9\s\.\,\-\2\!]*"
title="Alphabetic, numbers, comma, ., -, ?, !, space only max of 400
characters"
value=
"<?php if (isset($_POST['full description']))
echo htmlspecialchars($_POST['full description'], ENT QUOTES); 2>" >
</textarea>
</div>
</div>
<div class="form-group row">
<label for="full picture" class="col-sm-4 col-form-label text-right">Full Picture URL</label>
<div class="col-sm-8">
<input type="url" class="form-control" id="full picture" name="full picture"
placeholder="Full Picture URL" maxlength="45"
value=
"<?php if (isset($_POST['full picture']))
echo htmlspecialchars($ POST['full picture'], ENT_QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="status" class="col-sm-4 col-form-label text-right">
Status:</label>
<div class="col-sm-8">
<select id="status" name="status" class="form-control" required>
<option value="">- Select -</option>
<option value="Available">Available</option>
<option value="Under offer">Under offer</option>
<option value="Withdrawn">Withdrawn</option>
<option value="Sold">Sold</option>
</select>
</div>
</div>
<div class="form-group row">
<label class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<div class="float-left g-recaptcha" style="padding-left: 50px;"
data-sitekey="6LcrQIwUAAAAAPX1rAkLUPdpY5qwS9rXF1j46fhq"></div>
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8 text-center">
<input id="submit" class="btn btn-primary" type="submit" name="submit" value="Add">
</div>
</div>

317

CHAPTER 8 © CREATE A PRODUCT CATALOG

</form><!-- End of the add house content. -->

</div>
<!-- Left-side Column Menu Section -->
<nav class="col-sm-4">
<?php include('includes/menu.php'); ?>
</nav>
</div>
</div>
<div>

<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<div class="col-sm-12 text-center" style="padding:0px; margin-top: 5px;">

<footer>
<?php include ('includes/footer.php'); ?>
</footer>
</div>
</div>
</div>
</div>
</body>
</html>

The HTML5 code uses the required attribute to make sure the user enters information in the required
fields. The drop-down boxes allow the user to select only from a list of items. This provides good validation
because invalid entries cannot be entered. Once the user has entered information in the form, the
information received from textboxes is validated. The coding used is similar to code used in a previous
chapter. Thus, we won't repeat the explanation here.

You will have noticed that the header for the administrator’s page differs from the general header. We
will examine this next.

The Header for the Administrator’s Page

Three of the admin pages need two extra buttons because the wide table display fills the content area,
leaving no room for the main menu.
Figure 8-6 shows the two extra buttons.

View Houses

Figure 8-6. Showing the two extra menu buttons

318

CHAPTER 8 © CREATE A PRODUCT CATALOG

Listing 8-6 gives the code for the administrator’s header.

Listing 8-6. Creating the Header with One Extra Button (header_3btn.php)

<div class="jumbotron text-center row mx-auto" id="includeheader">
<div class="col-sm-10">
<h1 class="text-left">Devon Real Estate</h1>
<h2 class="text-center">Try our award winning service</h2>
</div>
<nav class="col-sm-2">
<div class="btn-group-vertical btn-group-sm" role="group"
style="width: 140px; margin-top:-25px;"
aria-label="Button Group">
<button type="button" class="btn btn-secondary" id="buttons"
onclick="location.href = 'advert_houses.php'" >
View Houses</button>
<button type="button" class="btn btn-secondary"” id="buttons"
onclick="location.href = 'advert _search.php'">
Search</button>
<button type="button" class="btn btn-secondary" id="buttons"
onclick="location.href = 'index.php'">Home Page</button>
</div>
</nav>
</div>
<img id="rosette1" alt="Rosette" title="Rosette" height="127"
src="images/rosette-128.png" width="128">

The administrator can view the entire stock using a paginated display. This is discussed next.

319

CHAPTER 8 * CREATE A PRODUCT CATALOG

Administrator’s View of the Entire Stock of Houses for Sale

Figure 8-7 shows the first page of the full-stock view.

View Houses

Home Page

Houses displayed four at-a-time

Location Thumb Price Features Bedrooms Status

Mid_Devon 250000.00 Well presented semi-detached house in pleasant 2 Available

North_Devon 290000.00 Delightful semi- detached house in a pleasanturban 2
d—

North_Devon 280000.00 Recently built house in an attractive location with full 3 Available
E amenities, including school, general stores

Mid_Devon 270000.00 Located in a delightful village with post office and

M general stores. Landscaped rear garden. Rural v

Figure 8-7. One of the pages in a full-stock display

Listing 8-7a shows the code for displaying the stock of houses.
The code for the full-stock display uses a table and pagination similar to those described in previous
chapters. Therefore, no explanation of the code will be given.

320

CHAPTER 8 © CREATE A PRODUCT CATALOG

Listing 8-7a. Creating a Paginated Table of the Entire Stock of Houses (advert_houses.php)

<?php
session_start();
if (lisset($ SESSION['user level']) || ($_SESSION['user level'] != 1))

{
header("Location: login.php");

exit();
}
define('ERROR_LOG', 'errors.log');
>

<!DOCTYPE html>
<html lang="en">
<head>
<title>Admin View All Houses</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwhSjIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="transparent.css">
<script src="https://www.google.com/recaptcha/api.js'></script>

</head>
<body>
<div class="container" style="margin-top:10px">
<!-- Header Section -->
<header>

<?php include('includes/header 3btn.php'); ?>
</header>

<div class="content mx-auto" id="contents" style="padding-top:10px">
<!-- Body Section -->
<div class="row" style="padding: 10px;">
<div class="col-sm-12">
<h4 class="text-center">Houses displayed four at-a-time</h4>

<h5>
<?php
If ('empty($errorstring)) {

echo $errorstring;

}
2>

</h5>

<?php
try {

// This script retrieves all the records from the users table.
require ('mysqli_connect.php'); // Connect to the database.
//set the number of rows per display page

$pagerows = 4;

// Has the total number of pages already been calculated?

321

CHAPTER 8 © CREATE A PRODUCT CATALOG

if (isset($_GET['pages'])) {

$pages = (filter var($ GET['pages'], FILTER SANITIZE NUMBER INT));
} else {

//use the next block of code to calculate the number of pages

//First, check for the total number of records

$query = "SELECT COUNT(ref_number) FROM houses";

$result = mysqli query ($dbcon, $query);

$row = mysqli fetch array ($result, MYSQLI NUM);

$records = $row[0];

//Now calculate the number of pages

if ($records > $pagerows){ //if the number of records will fill more than one

page
//Calculate the number of pages and round the result up to the nearest
integer
$pages = ceil ($records/$pagerows);
telse{
$pages = 1;

}//page check finished. Declare which record to start with
If (isset($_GET['start'])) {
$start = (filter var($ GET['start'], FILTER SANITIZE NUMBER_INT));
} else {
$start = 0;
}

// Make the query:
$query = "SELECT ref number, location, thumb, price, mini_description, bedrooms, status ";
$query .= "FROM houses ORDER BY ref number DESC LIMIT ?, ?";
$q = mysqli stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// use prepared statement to ensure that only text is inserted
// bind fields to SQL Statement
mysqli stmt bind param($q, 'ii', $start, $pagerows);
// execute query
mysqli_stmt_execute($q);
$result = mysqli stmt get result($q);
if ($result) { // If it ran OK, display the records.
// Table header.
echo '<table class="table table-striped table-sm" style="color: black; background-
color:white;">
<tr>
<th scope="col">Ref-Num</th>
<th scope="col">Location</th>
<th scope="col">Thumb</th>
<th scope="col">Price</th>
<th scope="col">Features</th>
<th scope="col">Bedrooms</th>
<th scope="col">Status</th>
</tr>';

322

CHAPTER 8 © CREATE A PRODUCT CATALOG

// Fetch and print all the records:

while ($row = mysqli fetch array($result, MYSQLI ASSOC)) {
// Remove special characters that might already be in table to
// reduce the chance of XSS exploits
$ref number = htmlspecialchars($row['ref number'], ENT QUOTES);
$location = htmlspecialchars($row['location’], ENT_QUOTES);

$thumb = htmlspecialchars($row['thumb'], FILTER FLAG NO ENCODE QUOTES);

$price = htmlspecialchars($row['price'], ENT QUOTES);

$mini_description = htmlspecialchars($row['mini description'], ENT QUOTES);

$bedrooms = htmlspecialchars($row['bedrooms'], ENT QUOTES);
$status = htmlspecialchars($row['status'], ENT QUOTES);
echo '<tr>
<td scope="row">' . $ref number . '</td>
<td scope="row">"' . $location . '</td>
<td scope="row"></td>
<td scope="row">' . $price . '</td>
<td scope="row">' . $mini_description . '</td>
<td scope="row">"' . $bedrooms . '</td>
<td scope="row">"' . $status . '</td>
</tr>';
}
echo '</table>'; // Close the table.
mysqli free result ($result); // Free up the resources.
} else { // If it did not run OK.
// Message:

$errorstring = '<p class="text-center">The record could not be retrieved.

$errorstring .= 'We apologize for any inconvenience.</p>';
// Debugging message:
//echo '<p>" . mysqli error($dbcon) . '

Query: ' . $q . '</p>';
} // End of if ($result). Now display the total number of records/houses
$q = "SELECT COUNT(ref number) FROM houses";
$result = mysqli _query ($dbcon, $q);
$row = mysqli_fetch_array ($result, MYSOLI_NUM);
$houses = (filter var($row[0], FILTER SANITIZE NUMBER_INT));
mysqli close($dbcon); // Close the database connection.
echo "<p class="text-center' style='color:black'>Total found: $houses</p>";
if ($pages > 1) {
echo '<h5 class="text-center">';
//What number is the current page?
$current page = ($start/$pagerows) + 1;
//1f the page is not the first page then create a Previous link
if ($current page !'= 1) {
echo '<a href="advert houses.php?start=" . ($start - $pagerows) .
$pages . '"

>Previous ';
}
//Create a Next link
if ($current_page != $pages) {
echo '<a href="advert houses.php?start=" . ($start + $pagerows) .
$pages . '">Next ';

"8pages=" .

"8pages=" .

323

CHAPTER 8 © CREATE A PRODUCT CATALOG

echo '</h5>";
}

}
catch(Exception $e) // We finally handle any problems here

// print "An Exception occurred. Message: "
print "The system is busy please try later";
// $date = date('m.d.y h:i:s');

// $errormessage = $e->getMessage();

// $eMessage = $date . " | Exception Error | " , $errormessage . |\n";

// error log($eMessage,3,ERROR_LOG);

// e-mail support person to alert there is a problem

// error_log("Date/Time: $date - Exception Error, Check error log for

// details", 1, noone@helpme.com, "Subject: Exception Error \nFrom: Error Log
// <errorlog@helpme.com>" . "\r\n");

. $e->getMessage();

catch(Error $e)

{
// print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try later";
// $date = date('m.d.y h:i:s');
// $errormessage = $e->getMessage();
// $eMessage = $date . " | Error | " , $errormessage . |\n";
// error log($eMessage,3,ERROR_LOG);
// e-mail support person to alert there is a problem
// error_log("Date/Time: $date - Error, Check error log for
// details", 1, noone@helpme.com, "Subject: Error \nFrom: Error Log <errorlog@helpme.
com>" . "\r\n");
}
>
</div><!-- End of table display content -->
</div>
</div>

<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<div class="col-sm-12 text-center" style="padding:0px; margin-top: 5px;">
<footer>
<?php include ('includes/footer.php'); 2>
</footer>
</div>
</div>
</div>
</body>
</html>

The administrator can also search for individual records by using the house reference number, as
described in the next section.

324

CHAPTER 8 © CREATE A PRODUCT CATALOG

The Administrator’s Search Page

Figure 8-8 shows the administrator’s search page.

View Houses
Contact Us

Add a House

Try our award winning service

Search for a record
Enter the Reference Number

Reference Number

Search

Figure 8-8. The administrator can search for a specific house

Notice that an additional menu selection has been added to the header for the search page. You can
view the code for the new header by opening the header_4btn.php file in your editor. Listing 8-8 gives the
code for the administrator’s search page.

Listing 8-8. The Administrator’s Search Page (advert_search.php)

<?php

session start();

if (lisset($ SESSION['user level']) || ($_SESSION['user level'] != 1))

{
header("Location: login.php");
exit();

}

>

<!DOCTYPE html>

<html lang="en">

<head>
<title>Admin Search Page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity="sha384-9gV04dYFwwhSjIDZnLEWnXCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
Crossorigin="anonymous">

325

CHAPTER 8 © CREATE A PRODUCT CATALOG

<link rel="stylesheet" type="text/css" href="transparent.css">
<script src="https://www.google.com/recaptcha/api.js'></script>
</head>
<body>
<div class="container" style="margin-top:10px">
<!-- Header Section -->
<header>
<?php include('includes/header_4btn.php'); ?>
</header>
<div class="content mx-auto" id="contents" style="padding-top:10px">
<!-- Body Section -->
<div class="row" style="padding-left: opx;">
<div class="col-sm-10">
<form action="found_houses.php" method="post" name="find" id="find">
<!--START OF TEXT FIELDS-->
<div class="form-group row'>
<label for="" class="col-sm-4 col-form-label text-right"></label>
<div class="col-sm-8 text-center">
<h3>Search for a record</h3>
<h5>Enter the Reference Number</h5>
<h5>
<?php
If (lempty($errorstring)) {
echo $errorstring;
}

>
</h5>
</div>
</div>
<div class="form-group row">
<div class="col-sm-2"></div>
<label for="ref number" class="col-sm-4 col-form-label text-right">Reference Number:
</label>
<div class="col-sm-4">
<input type="num" class="form-control" id="ref number" name="ref number"
placeholder="Reference Number" maxlength="30"
pattern="[0-9]*"
title="Numbers only max of 30 characters"
value=
"<?php if (isset($_POST['ref number']))
echo htmlspecialchars($ _POST['ref number'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8 text-center">
<input id="submit" class="btn btn-primary" type="submit" name="submit" value="Search">
</div>
</div>

326

CHAPTER 8 © CREATE A PRODUCT CATALOG

</form><!-- End of the add house content. -->
</div>
</div>
</div>
<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<div class="col-sm-12 text-center" style="padding:0px; margin-top: 5px;">
<footer>
<?php include ('includes/footer.php'); ?>
</footer>
</div>
</div>
</body>
</html>

When the Search button is clicked, the record relating to the house reference number is displayed.

The Result of a Search

Figure 8-9 shows that any specified house can be displayed by the administrator.

View Houses

Contact Us

Add a House

Home Page

To arrange a viewing please use the the Contact Us button on-the menu and
quote the reference number.

Ref. Location Thumb Price Features Bedrooms Details Status
1003 South_Devon 400000.00 Located on the outskirts of a 4 Details Available
thriving town. Stunning rural
views.,

No houses displayed? Sorry we have nothing that matches your requirements at the moment

Figure 8-9. The record is selected and displayed

327

CHAPTER 8 © CREATE A PRODUCT CATALOG

The found_houses.php page, previously explained, is called to display the individual house by
reference number.
$query = "SELECT ref number, location, thumb, price, mini_description, type, bedrooms, ";
$query .= "status FROM houses ";
if(($user level == 1) 8& (!empty($_POST['ref number']))) {
$query .= "WHERE ref number=? ";

} else {

$query .= "WHERE location= ? AND ";

$query .= "(price <= ?) AND (price »= (? - 100000)) AND ";
$query .= "type= ? AND bedrooms= ? ORDER BY ref number ASC ";
}

This snippet of code from the found houses page will use the reference number, instead of multiple
fields, to pull the specific record specified by the administrator.

<?php
if ($user_level == 0)
{

include("includes/header found houses.php");

else if($user level==1)
{
include('includes/header_4btn.php');

}

>

This block of code at the top of the found houses page will individualize the page displayed to include the
administrator header instead of the general header for all users. This will provide the administrator buttons to
view other pages. The remainder of the code works the same as when viewed by a visitor to the site.

Note The found houses page contains no way of editing or deleting a house. The page exists purely so that
the user can check the details of a house. The webmaster is the administrator and is the only person allowed
to edit or delete a house. Many database management systems (DBMSs) have the ability to quickly create
input and edit pages that the administrator can use, by dragging and dropping table fields onto a form. The free
versions of MySQL and MariaDB do not have this feature. However, you will find that Microsoft Access does
provide form generation. If quick form generation is not available, the administrator can also use phpMyAdmin
to enter or modify data.

The Contact Us Page

Figure 8-10 shows an example of a suitable Contact Us page. This is a cut-down version of the Contact Us
page from Chapter 7.

328

CHAPTER 8 © CREATE A PRODUCT CATALOG

Contact us to Arrange a Viewing

Address: 1 The Street, Townsville, AA6 8PF,
Tel: 01111 800777

To contact us: Please use this form and click
the Send button at the bottom Contact Us

Essential items are marked with an asterisk I Home Page

Your Name
Your E-mail

Phone Number

To request a viewing please enter the reference
number of the house below

Reference Number

Please enter your message below

Copyright © Adrian West & Steve Prettyman 2017 Designed by Adrian West and Steve Prettyman Valid CSS & HTHLS

Figure 8-10. The Contact Us page

329

CHAPTER 8 © CREATE A PRODUCT CATALOG

Listing 8-10a gives the code that displays the form.

Listing 8-10a. Creating the Contact Us Page (contact.php)

<!DOCTYPE html>
<html lang="en">
<head>
<title>Contact Us Form</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity="sha384-9gV04dYFwwhSjIDZnLEWnXCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<script src="https://www.google.com/recaptcha/api.js'></script>
<link rel="stylesheet" type="text/css" href="transparent.css">
</head>
<body>
<div class="container" style="margin-top:30px">
<!-- Header Section --»>
<header>
<?php include('includes/header.php'); 2>
</header>
<!-- Body Section -->
<div class="content mx-auto" id="contents">
<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<!-- Center Column Content Section -->
<div class="col-sm-12 text-center" style="padding:Opx; margin-top: 5px;">
<div class="row" style="padding-left: opx;">
<!-- Left-side Column Menu Section -->
<div class="col-sm-8">
<form action="contact-handler.php" method="post" name="feedbackform" id="feedbackform">
<!-- Validate Input -->
<div class="form-group row">
<div class="col-sm-4"></div>
<div class="col-sm-8">
<h4 class="text-center">Contact us to Arrange a Viewing</h4>
<h5 class="text-center">Address:
1 The Street, Townsville, AA6 8PF, Tel: 01111 800777</h5>
<h5 class="text-center">To contact us:
Please use this form and click the Send button at the bottom.</h5>
<h5 class="text-center">Essential items are marked with an asterisk</hs>
</div>
</div>
<!--START OF TEXT FIELDS-->
<div class="form-group row">
<label for="username" class="col-sm-4 col-form-label text-right">Your Name*:</label>
<div class="col-sm-8">

330

CHAPTER 8 © CREATE A PRODUCT CATALOG

<input type="text" class="form-control" id="username" name="username"
pattern="[a-zA-Z][a-zA-Z\s]*" title="Alphabetic and space only max of
30 characters"
placeholder="Your Name" maxlength="30" required
value=
"<?php if (isset($_POST['username']))
echo htmlspecialchars($_POST['username'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="useremail" class="col-sm-4 col-form-label text-right">E-mail*:</label>
<div class="col-sm-8">
<input type="email" class="form-control" id="useremail" name="useremail"
placeholder="Your E-mail" maxlength="60" required
value=
"<?php if (isset($_POST['useremail']))
echo htmlspecialchars($ POST['useremail'], ENT QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="phone" class="col-sm-4 col-form-label text-right">Telephone*:</label>
<div class="col-sm-8">
<input type="tel" class="form-control" id="phone" name="phone"
placeholder="Phone Number" maxlength="30"
value=
"<?php if (isset($_POST['phone']))
echo htmlspecialchars($_POST['phone'], ENT_QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label text-right"></label>
<h5 class="col-sm-8 text-center">To request a viewing please enter the reference
number of the house below</h5>
</div>
<div class="form-group row">
<label for="address1" class="col-sm-4 col-form-label text-right">
House Reference Number*:</label>
<div class="col-sm-8">
<input type="num" class="form-control" id="ref number" name="ref number"
pattern="[0-9]*"
title="Numbers only max of 30 characters"
placeholder="Reference Number" maxlength="30" required
value=
"<?php if (isset($_POST['ref number']))
echo htmlspecialchars($ POST['ref number'], ENT QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label text-right"></label>

331

CHAPTER 8 © CREATE A PRODUCT CATALOG

<div class="col-sm-8 text-center">
<label for="comment" style="color:white;">Please enter your message below</label>
<textarea class="form-control" id="comment" name="comment" rows="8" cols="40"
value="<?php if (isset($ POST['comment']))
echo htmlspecialchars($ POST['comment'], ENT QUOTES); 2>" >
</textarea>
</div>
</div>
<div class="form-group row">
<label class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<div class="g-recaptcha" style="margin-left: 8opx;"
data-sitekey="6LcrQIwUAAAAAPX1rAkLUPdpY5qwS9rXF1j46fhq"></div>
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label"></label>
<div class="col-sm-8 text-center">
<input id="submit" class="btn btn-primary" type="submit" name="submit" value="Send">
</div>
</div>
</form>
</div>
<div class="col-sm-4">
<?php include ('includes/menu.php'); ?>
</div>
</div>
</div>
</div>
</div>
<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<div class="col-sm-12 text-center" style="padding:0px; margin-top: 5px;">
<footer>
<?php include ('includes/footer.php'); ?>
</footer>
</div>
</div>
</div>
</body>
</html>

The format of the form and the verification of the information is similar to the code explained in
Chapter 7. Therefore, we will not repeat the explanation in this chapter.
We will now examine the contact form handler in Listing 8-10b.

Listing 8-10b. Creating the Contact Form Handler (contact_handler.php)

<?php

// Feedback form handler

// set the error and thank you pages
$formurl = "feedback/feedback form.html" ;
$errorurl = "feedback/error.html" ;

332

CHAPTER 8 © CREATE A PRODUCT CATALOG

$thankyouurl = "feedback/thankyou.html" ;

$emailerrurl = "feedback/emailerr.html" ;

$errorcommenturl = "feedback/commenterror.html" ;

// set to the email address of the recipient

$mailto = "none@noone.com" ;

// Is first name present? If it is, sanitize it

$username = filter var($ POST['username'], FILTER SANITIZE STRING);

if (('empty($username)) 8& (preg match('/[a-z\s]/i',$username)) &&
(strlen($username) <= 30)) {
//Save user name
$usernametrim = $username;

telse{

$errors = 'yes';
}

// Check that an email address has been entered correctly
$useremailtrim = filter var($_POST['useremail'], FILTER SANITIZE EMAIL);
if ((empty($useremailtrim)) || (!filter var($useremailtrim, FILTER VALIDATE EMAIL))
|| (strlen($useremailtrim > 60))) {
// if email is bad display error page
header("Location: $emailerrurl”);
exit ;
}
// Is the phone number present? if so, sanitize it
$phone = filter var($ POST['phone'], FILTER SANITIZE STRING);
if (('empty($phone)) &3 (strlen($phone) <= 30)) {
//Sanitize and validate phone number
$phonetrim = (filter_var($phone, FILTER_SANITIZE_NUMBER_INT));
$phonetrim = preg replace('/[%0-9]/", “, $phonetrim);
telse{
$phonetrim
}
/

$ref_number = filter var($_POST['ref_number'], FILTER_SANITIZE_STRING);
if (('empty($ref number)) &8 (preg match('/[0-9]/', $ref number)) 8&&
(strlen($ref number) <= 30)) {
//Save the 1st address
$ref numbertrim = $ref number;
}else{
$errors = 'yes';
}

$comment = filter var($ POST['comment'], FILTER SANITIZE STRING);
if (('empty($comment)) 8& (strlen($comment) <= 320)) {
// remove ability to create link in email
$patterns = array("/http/", "/https/", "/\:/","ININITT " w7 ")
$commenttrim = preg replace($patterns,” ", $comment);
telse{ // if comment not valid display error page
header("Location: $errorcommenturl”);
exit;

NULL; // if not valid or missing do not save

333

CHAPTER 8 © CREATE A PRODUCT CATALOG

if (lempty($errors)) { // if errors display error page
header("Location: $errorurl");
exit ; }

// everything OK send e-mail

$subject = "Message from customer " . $usernametrim;
$messageproper =
. \n"
"Name of sender: $usernametrim\n" .
"Email of sender: $useremailtrim\n" .
"Telephone: $phonetrim\n" .
"Ref Number: $ref_numbertrim\n" .
B L LR P e MESSAGE ---------mmmmmmmmm oo \n\n" .
$commenttrim
AN N = o m e e e e e e \n" ;

mail($mailto, $subject, $messageproper, "From: \"$usernametrim\" <$useremailtrim>");
header("Location: $thankyouurl");
exit ;

>

When the message is sent, a “thank you” page appears. If information was entered incorrectly or
required information is missing, an error message will be displayed. Since this code is like the code in
Chapter 7, please review the explanation there. Remember that this code will not execute unless it resides on
a server that includes the ability to send e-mails via program code.

Note The “thank you” page and the error message pages are included in the downloadable files, and they
are like those in Chapter 7.

Summary

In this chapter, you learned how to plan a database for a real estate catalog. We created a home page in
which users could search for a suitable house. We produced a house details page to provide the user with
more specifics from the database. We provided the administrator with a page so that they could add new
houses. We produced a page that allowed the administrator to view the entire stock of houses or to search for
and view a specific house. We created an inquiry form for users who want to personally inspect a house.

In the next chapter, you will learn how to extract data from multiple tables by joining them, how to create
a form to allow payments by check, and how to implement an economical method for printing online forms.

334

CHAPTER 9

Join Multiple Tables and
Other Enhancements

Database-driven websites can benefit from the three practical enhancements described in this chapter. For
instance, multiple tables can give more specific search results and are essential for the administration of
forums and e-commerce sites, membership fees can be paid by check as well as by using PayPal and credit/
debit cards, and check payments can be accompanied by printable application forms.

After completing this chapter, you will be able to

e Create multiple tables using phpMyAdmin

e Understand the difference between inner and outer joins
e Join multiple tables using phpMyAdmin

e Join multiple tables using program code

e Provide printable online forms

Introduction to Multiple Tables

The previous chapters displayed information from one table at a time. Sometimes databases use several
tables that can be related to each other. These databases are called relational databases. Data from each
table can be joined (combined) to form virtual tables that can be displayed in a browser. In this tutorial, we
will concentrate entirely on the process of joining tables. For simplicity and clarity, the website for these
tutorials will be stripped of several features, such as logging in and administration. The buttons for these
functions will appear on the headers, but they will be dead links.

You may wonder why we need more than one table. Why not put all the data in one table? We could use
one huge table, but it would lead to no end of trouble. A great deal of information would be entered many
times, causing the database to be inefficient, and the administration would be time-consuming and tedious.

As an example, suppose we had an e-commerce website selling telephones and intercoms. We could
have a set of records as shown in Table 9-1.

© Adrian W. West and Steve Prettyman 2018 335
A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,
https://doi.org/10.1007/978-1-4842-3843-1_9

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

Table 9-1. A Table with Many Duplicate Entries

Order_id Customer Name Address Product Stock
1006 Charlie Smith 3 Park Road Townsville TV77 99]P Phone 123 1
1007 Charlie Smith 3 Park Road Townsville TV77 99JP Intercom 456 4
1008 Robert Bruce 4 Linden Street Urbania UT88 66XY Intercom 456 5
1009 Nellie Dean 7 Elm Avenue Milltown MT 78 88WZ Phone 456 6
1010 Robert Bruce 4 Linden Street Urbania UT88 66XY Phone 678 1
1011 Nellie Dean 7 Elm Avenue Milltown MT78 88WZ Intercom 396 3
1012 Charlie Smith 3 Park Road Townsville TV77 99]P Phone Dock A2 4

This single table containing the latest orders has many problems.

On different dates, Charlie Smith has ordered three items, and his address is repeated three times. If he
changed his address, we would need to amend three rows in the table. Charlie’s name and address should be
kept in a separate table; this would allow us the ability to change his address only once. Stock levels usually
change. We currently would have to scroll through the records to determine the lowest stock level for a
particular item. The stock level and the product description should be kept in another table so only one table
would need updating when the stock level changes. The user and the administrator can then easily see an
accurate figure for the stock level when the product is displayed.

Normalization

The process of eliminating duplicates and other maintenance problems is called normalization. Table 9-1
contains items that illustrate very bad practices. The first name and last name should be in separate columns.
The address should be split into separate columns for street, town, and ZIP code or postal code. This process
is known by the rather clumsy name of atomicity because, like atoms, the data is separated into minimal
components. It is then atomic or indivisible.

Normalization is achieved by applying rigorous atomicity and splitting the data into several tables,
instead of using just one table, so that each table has a specific and singular purpose. Also, the information
in each table must have closely related data, such as first name, last name, and e-mail address; if the
customer changes his or her e-mail address, you have to amend only one record. Normalization allows a
database to be easily extended so that it can hold more types of information. For instance, a table could be
added to hold the colors of the phones, or you could have a table for dispatch dates.

Normalization can be difficult to understand at first, but you will be automatically normalizing your
tables if you apply atomicity and then group closely related data into separate tables. By breaking data down
to the lowest level, you allow for future growth and better data control, and you leave yourself more options
in the future to modify and manipulate the data. Being able to have a one-to-many relationship on multiple
tables ensures less data redundancy.

Note In most cases, properly designed database tables are in (at least) third normal form (3NF).

336

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

A table is considered to be in first normal form (1NF) when it has a relationship as defined by the
following requirements.

e Each cell holds a single value.

e All column values are of the same type.

e Each column is uniquely identified (column name).
e The columns can be in any order.

e Therows can be in any order.

e Eachrow contains unique data.

Atable is in second normal form (2NF) if the table is in INF and includes a primary key that uniquely
identifies each row. A table is in third normal form if it is in 2NF and there are no columns that are defined
(dependent) on other column. The data is atomic or indivisible. Additionally, tables can be classified as
fourth normal form (4NF) and fifth normal form (5NF). However, these classifications go beyond the scope
of this book.

There are situations in which a database administrator may reduce normalization and duplicate data
across tables. This can increase efficiently of data retrieval in heavily used databases, such as inventory
databases for major department stores.

Let’s now create a database with two tables.

Creating the Database and Tables

For the first part of this tutorial, we will create a database to contain two small tables. In phpMyAdmin,
create a database called birdsdb and then set up a user and a password as follows:

1. Inthe htdocs folder within XAMPP or in the EasyPHP folder eds_www), create a
new folder named birds.

2. Download the files for Chapter 9 from the book’s page at Apress.com and unzip
them in your new birds folder.

3. Start XAMPP or EasyPHP, and in the address field of a browser enter localhost/
phpmyadmin/ to access phpMyAdmin.

4. Click the Databases tab and create a database named birdsdb. From the pull-
down Collation list, choose utf8_general_ci and then click Create.

5. Click the Privileges tab and then scroll down and click Add new user.
6. Enter these details:

e Username: faraday

e Password: Dynam01831

e Host: Localhost

e Database name: birdsdb

7. Click Go.

337

http://apress.com

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

Viewing the Connection File

The file mysqli_connect.php has the following code:

<?php

// Create a connection to the migrate database and to MySOL
// Set the encoding to utf-8

// Set the database access details as constants

define ('DB_USER', 'faraday');

define ('DB_PASSWORD', 'Dynam01831');

define ('DB_HOST', 'localhost');

define ('DB_NAME', 'birdsdb');

// Make the connection:

$dbcon = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB NAME);
// Set the encoding...optional but recommended

mysqli set charset($dbcon, 'utf8');

We have not provided dump files for the birds, location, and rsvinfo tables; therefore, you must create
and populate the tables manually. This will not be tedious because the tables are very small.

Click the database birdsdb in the left panel of phpMyAdmin to manually create a table named birds
with four columns and the attributes shown in Table 9-2.

Table 9-2. The birds Table

Column Name Type Length/Value Default Attributes NULL Index Al
bird_id MEDIUMINT 4 None UNSIGNED | PRIMARY
bird_name TINYTEXT 60 None O O
rarity TINYTEXT 60° None O O
best_time TINYTEXT 60 None O d

The birds table contains a column named bird_id. This column is configured as the PRIMARY KEY.
You will see a pop-up dialog as shown in Figure 9-1; remember to not enter a size as you have already
defined it in the column description.

Add index x

Index name: g PRIMARY]

Index choice: & PRIMARY B
+ Options
Column Size

% | bird_id [mediumint] v | |

Cancel

Figure 9-1. Setting a primary index
338

CHAPTER 9 JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS
We now need to create the additional table named location.

Creating a Second Table

Click the database birdsdb in the left panel of phpMyAdmin to manually create a table named location with
four columns and the attributes shown in Table 9-3. A pop-up window (like Figure 9-1) will display to allow
you to confirm that location_id is the PRIMARY KEY. Just click Go to confirm the information.

Table 9-3. The Attributes for the location Table

Column Name Type Length/Value Default Attributes NULL Index Al
location_id MEDIUMINT 4 None UNSIGNED O PRIMARY
location TINYTEXT 60 None O O
location_type TINYTEXT 60 None O O
bird_id MEDIUMINT 4 None UNSIGNED O O

Important In the location table, make sure item bird_id has the same name, length, and type as bird_id in
the birds table. In our example, they both have the same name (bird_id), the same length (4), and the same type
(MEDIUMINT). This is vital for joining and displaying data from multiple tables.

Foreign Keys

Under normal circumstances, you would not expect to see an item named bird_id in a table for location
details. The bird_id item in the location table is called a foreign key. By including the column bird_id in both
tables, we will be able to combine and display selected data from the two tables; we achieve this with a JOIN
statement, which we will explain shortly.

Caution Do not enter data in the tables. We will do this later when the tables have been prepared for
joining.

Meanwhile, we must begin with some preparation.

Preparing the Tables for Joining

Now the indexes need to be set for the location table. The column location_id is already indexed because
itis a primary key. The foreign key named bird_id in the location table will be indexed. In phpMyAdmin,
click the location table in the left panel. Select the Structure tab, and in the right panel check the box next to
the bird_id column. Scroll down to the Indexes button, and you will see the message indicating the primary
index is defined but no foreign key is defined.

Scroll back up and then click Index at the bottom right of Figure 9-2 (shown circled). If you checked
the box to the left of bird_id, then the index will be automatically created for you. Scroll down to the Indexes
area. You should now see both the primary key and the bird_id indexes.

339

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

B 8| O localhost/ 127001 /b X | + v - o x
& O @ @ localhost/phy ure T = L’
php My Admin M Server 127001 5 @ Database: birdsdb » [Table: location A
oElo@e | SQL 4 Search #¢ Inset =} Export [« Import
Recent Favorites
= o ¥ Table structure 42 Relation view
=i Now =
3 5 admintable A # Name Type Collation Attributes Null Default Comments Extra Action
L:_ | birdsdb I [0 1 location_id > mediumint(4) UNSIGNED No None AUTO_INCREMENT .7 Change §
l—_d :’; [J 2 location tinytext utf®_general_di No None o Change §
‘___i Tocation [] 3 location_type tinytext utf8_general_ci No None &7 Change §
+. | catalog & 4 bird_id mediumint(4) UNSIGNED No None & Change §
= .] Check all With selected: || Browse 7"Change @ Drop > Primary [4i Unique
shoanlosen, e = andnacd e

B S s o fos stz 200 = = 7 5

Figure 9-2. Creating an index for the foreign key

Populating the Two Tables

As previously stated, because we do not have a page for registering birds or locations, we need to populate
them manually using phpMyAdmin. This will not be tedious because the tables contain very few items. Also,
for your own adaptations of the book’s websites, you will not be provided with SQL dump files for the birds
and locations tables. Therefore, learning how to use phpMyAdmin to populate tables is essential.

To populate the birds table, in phpMyAdmin click the database birdsdb (circled in Figure 9-3) in the left
column and then click the Structure tab. You will see the two tables in the right pane.

PhngAdmin 7 Server 127 0.0.1 » @ Database: birdsdb
HElOIIS S 4 Structure [SQL 4 Search (4 Query =} Export [&l Import #* Operations =° Privileges ¥ More
Recent Favorites
= 6o ~— Filters

= Containing the word: |

able « Action
s | |Browse s Stucture & Searﬁ Empty @ Drop

) location gy | |Browse e Structure ¢ Search e Insert £ Empty @ Drop
2tables Sum

Rows @ Type Collation
= InnoDB utfé general ci

2 InnoDB utfS_general_ci

Size Overheat
16 kig

16 KiB

4 InnoDB utf8_general _ci 32 vis (]

Figure 9-3. Using phpMyAdmin to populate the birds table

Check the box next to the birds table (circled in Figure 9-3) and then in the birds record (row) click the
Insert icon (circled in Figure 9-3). The Insert page will now appear, as shown in Figure 9-4.

340

phpMuAdmin |=
agien@e

Recent Favorites

5 New
‘}-_L_'; admintable
(=1 birdsdb

] Browse

Qo Column

bird_id mediumint{4) unsigned w |

Type

bird_name tinytext
. rarity tinytext
best_time timytext

W Structure [SQL -, Search ¥t Insert =} Export [l Import =t Privileges J” Ope

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

Function Null Value

)

Quiner

Figure 9-4. The Insert tab showing the details inserted for the Goldeneye duck

On the left you will see the table columns listed: bird_name, rarity, and best_time. In the text fields on
the right you will be able to populate those items. As an example, you will see in Figure 9-3 that we have
entered Goldeneye, Common, and Winter.

Use the data in Table 9-4 to repeat this procedure for the other birds.

Table 9-4. The birds Table

bird_id bird_name rarity best_time
1 Goldeneye Common Winter

2 Wryneck Rare Summer
3 Avocet Common Winter

4 Moorhen Common Any time

341

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS
Now continue to use phpMyAdmin and click the location table in the left panel. Use phpMyAdmin to
populate the location table; the procedure is the same as the one you just used to populate the birds table.

Use the data shown in Table 9-5.

Table 9-5. The location Table

location_id location location_type bird_id
1 southpark Ponds 4
2 Westlands Estuary 3
3 Lakeland Lakes 1
4 Moorfield Moorland 2
5 Heathville Heath 2

Now that both tables are populated and indexed, we can learn how to join them so that the data can be
combined and displayed on a screen.

Note The bird_id values in the location table must match an existing bird_id value in the birds table to
properly retrieve the data. If your auto-incremented numbers for the bird_id in the birds table are not the same
as in Table 9-4, make adjustments in the bird_id column in the location table to match your values. The bird_id
column was populated based on the habitat of the birds. Moorhens inhabit ponds, avocets prefer estuaries,
goldeneye ducks are found mainly on lakes, and wrynecks live on moorlands and heaths.

Joining Data from the Two Tables

The phpMyAdmin application provides a neat procedure for joining the data from two or more tables. Try
the following steps:

1. Open phpMyAdmin and click birdsdb in the left panel.

2. Click the Designer tab; if you don’t see the Designer tab, click the More pull-
down tab and click Designer.

3. Youshould see the two tables; drag them around using your mouse so that they
are roughly in the positions shown in Figure 9-5.

342

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

p h p M y A d m fn I 7Server 127.0.0.1 » [Database: birdsdb
agsleonee e Structure] SQL 4 Search J Query =} Export [Import 4 Operations
Recent Favorites —
=
& New 2]
+_ | admintable —
&
] Y birdsdb birds | fe birdsdb location
= 9 bird_id : mediumint(4) unsigned ¢ location_id : mediumint(4) unsigned
0 bird_name : tinytext | @ location : tinytext
i o rarity : tinytext | 0 location_type : tinytext
(] o best_time : tinytext | w bird_id : mediumint(4) unsigned
2
i=l
D

Figure 9-5. Positioning the tables ready for joining

4. On the vertical tool bar, click the Create relationship icon, which is shown circled
in Figure 9-5.

5. Click bird_id in the birds table and then click bird_id in the location table. If you
do this in the wrong order (i.e., click location first), you will see an error message.

6. You will see a pop-up panel, as shown in Figure 9-6.

Create relationship
FOREIGN KEY

on delete - v
on update -- Vv
C_ oK) _ Cancel

Figure 9-6. The pop-up dialog for specifying the type of relationship

From the pull-down menus, select RESTRICT in both field and then click OK.

Note MySQL and MariaDB allow several options when creating relationships between tables. These options
are based on what to do when an update or delete occurs to the parent table (birds) and how this will affect
the child table (locations). When reading data (SELECT), the actual relationship does not matter. The actual
determination of how the information is pulled from the tables is determined by the SQL statement itself.

343

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

The following options are available:

e Cascade: Changes will occur throughout all tables as required. For example, if the
bird_id value is changed in the birds table, it will also change the corresponding IDs
in the locations table. These changes can cascade down through multiple tables
depending on the foreign key relationships. If the bird_id value is removed from the
birds table, the corresponding records in the locations table will be removed.

e Set NULL: Any change to the parent table, birds, could result in a NULL value being
placed in the related primary key of the child table, locations. If a bird_id value in the
birds table is changed or deleted, the corresponding bird_id value in the locations
table will be changed to NULL.

e Restrict: The DMBS will not make updates or deletes unless the same SQL statement
handles both the parent table, birds, and the child table, locations. If a SQL statement
attempts to change only the parent table foreign key value without also changing the
related primary key in the child table, the statement will be rejected. Also, if a SQL
statement tries to remove a parent table record or foreign key without removing (or
changing) the related record (or primary key) from the child table, the statement will
be rejected.

Our example sets both the delete and update values to restrict, which would provide the administrator
with feedback if somehow the birds table was changed without corresponding changes occurring in
the locations table. While this chapter covers how to read data from multiple tables, you can test how
these relations affect the tables by changing them and attempting to update or delete records within
phpMyAdmin.

7. Youwill see the tables linked (related), as shown in Figure 9-7.

phpMyAdm".n A [7iServer 127 001 » @ Database: birdsdb

aElo B e W Structure L] SQL 4 Search [Query =} Export [« Import J” Operations
Recent Favoriles o Untitled ™
8 New R o

'+ admintable

Ed &
5

3N]
g, M=
ﬂ+__, ca_lalog (i'a-)
=]
&3 Mo birdsdb birds '. . fio birdsdb location j
o 9 bird_id : mediumint(d) unsigned " # location_id : mediumint(4) unsigned
/J:-> |@ hrfi_nafne : tinytext \ @ location : tinytext
| @ rarity :_tlnyle_xt @ location_type : tinytext
(%) | @ best_time : tinytext | 4 # birds_id : mediumint(4) unsigned
G
(7]
@

Figure 9-7. The tables are now related

8. Save the link by clicking the Save icon circled in Figure 9-7.

We will now use phpMyAdmin to create a third table named reserves_info; this table will contain
information about the reserves such as access to bird hides (shelters) and the entrance fee, if any.

344

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

Creating the Third Table

Click the database birdsdb in the left panel of phpMyAdmin to manually create a table named reserves_info
with five columns and the attributes in Table 9-6. Verify the primary key as shown previously.

Table 9-6. The Structure and Attributes for the reserves_info Table

Column Name Type Length/Value Default Attributes NULL Index Al
reserses_id MEDIUMINT 4 None UNSIGNED [PRIMARY
bird_hides ENUM ‘yes, ‘no’ None O O
entrance_member TINYTEXT 60 None Od O
entr_non_member TINYTEXT 60 None O O
location_id MEDIUMINT 4 None UNSIGNED [INDEX O

Important Follow the same procedure as previously shown for bird_id in the location table and make
location_id an index.

Using the Insert tab in phpMyAdmin, populate the reserves_info table with the data given in Table 9-7.

Table 9-7. The Data for the reserves_info Table (Entrance Refers to the Entrance Fee)

reserves_id bird_hides entrance_member entr_non_member location_id
1 yes free £1 1
2 yes £1 £2 2
3 yes free £1 3
4 no free free 4
5 no free free 5

Note The location_id value in the reserves_info table must match a location_id value in the location table.
If your values are different than shown in Table 9-5 and Table 9-7, make the needed adjustments so the values
match.

When you have created and populated the reserves_info table, in phpMyAdmin click the birdsdb
database name on the left side of the page. Then click the Designer tab to display the current relationships
between the tables. You will see the first two tables with their connecting link, but you may not see the
third table.

In this case, click the topmost icon on the vertical toolbar (circled in Figure 9-8), and a list of tables will
appear in a new panel on the right. The third table will be listed, but its box will not be checked. Check the
third table’s box to make the table appear. Slide the third table around so that it is roughly positioned above
and to the left of the other two tables, as shown in Figure 9-8.

345

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

B EJE localhost /127.001 /b X | + - (m] *
« = O @ (@ localhost/p Jdb_designer.php?db bxd = 2 =
phpMyAdmfﬂ B [MServer 127.0.0 1 » @ Databace® birdsdb it:]
HEleSe ¥ Swuctwre [SQL 4 Search i Query =3 Export [} Import J* Operations = Plhrllegns

Recent Favorites

&) 5o

p VY bigdsdb rsv._info ! © [2] birdsdb.birds
e 9 resv_id - mediumint{d) unsigned & [bi tion
D % bird_hides : enum(’Yes''No’) ¢ [=] birdsdb.rsv_in
. @ entr_memb : tinytext "]

E] @ entr_n_memb : timylext < bidadn location |

=1 # location_id : mediumint{4 ned | @ location_id : mediumint(4) unsigned

: (v birdsdb birds 7 gln_califml_lype:ﬁ,ﬂm .

k4 4 bird_id : mediumini(4) unsigned *— # bird_id : mediumint(4) unsigned |

a 1 bird_name : tinytext

g 1 rarity : tinytext

0 best_time : tinytext
Q
~| m| Console| ™
<

Figure 9-8. Displaying and positioning the third table in Designer view

The third table will not be linked, as shown in Figure 9-8.
We now need to create a relationship between the location table and the reserves_info table.

1. Inthe vertical toolbar, click the Create a relationship icon (shown circled in
Figure 9-9).

2. Clicklocation_id in the location table and then click the location_id in the
reserves_info table. If you do this in the wrong order (i.e., if you click location_id
in the reserves_info table first), you will see an error message.

3. When the Foreign key pop-up appears, select RESTRICT in both fields and
click Go.

You should now see the tables linked, as shown in Figure 9-9.

phpMyAdmin
oo &ae J Structure] SQL 4 Search | Query =) Export (o) Import J* Operations =7 Privileges ¥ More
Recent Favorites _ - —
= ®
b= & New G e
+___1 admintable . ’ e birdsdb.birds
(SL; birdsdb v birdsdb rsv_info | © [£ birdsdb.location
S # resv_id : mediumint(4) unsigned birdsdb.rsv_info
[—d :m o bird_hides : enum(Yes''No’) © -
J_-%' = . @ entr_memb : tinytext
b} location) 0 entr_n_memb - tinytext 8 . —
- rsv_info # location_id : mediumint(4) unsigned »——__ M & . bidsdblocation
.7 catalog - . ¥ location_id : mediumint{4) unsigned

@ location : tinytext
o location_type : tinytext
1 u bird_id : mediumint{4) unsigned

o birdsdb birds

@ bird_id : mediumint(4) unsigned *
@ bird_name : tinytext

@ rarity : tinytext

@ best_time : tinytext

boo - pRgCpERD

Figure 9-9. Creating and saving the relationship between the second and third tables

346

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

Creating Pages to Display the Data from Your Joined Tables

The joined tables are virtual tables in the database management system (DBMS) and cannot be seen by the
public.

We will now create some pages so that your tables can be displayed in public browsers. In addition to a
home page, we will create pages to display the table of birds, the location of the reserves, two joined tables,
and three joined tables. These pages are included in the downloadable files for Chapter 9.

The Home Page

Figure 9-10 shows the home page for our website.

" The Devon Bir& Rééervés

Help Save Our Devon Birds From Extinction This is the
The Devon bird reserves were established in an effort Become a member information
to combat the massive decline in the bird population. and support our column
The Reserves Farmers (the self proclaimed Guardians of the cause Information area

Countryside!) spray insecticides, weed killers and
pesticides that kill the birds' main source of food. They
Join 3 Tables also rip out the hedges that provide the birds with
nesting sites and their means of travelling safely from
field to field. Any birds that survive will probably be
shot to satisfy a blood lust for living targets

The annual membership
fee includes free or
reduced entrance fees to

Jom 2 Tables

the reserves, a free

Home Page

quarterly magazine, news
updates and more.

Footer goes here

Figure 9-10. The home page

Listing 9-10 shows the code for the home page.

Listing 9-10. The Code for the Home Page (index.php)

<!DOCTYPE html>
<html lang="en">
<head>
<title>Birds Home Page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1,
shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css”

347

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

integrity=
"sha384-9gV04dYFwwWSFIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="birds.css">
</head>
<body>
<div class="container" style="margin-top:30px;border: 3px black solid;">
<!-- Header Section --»
<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px; padding:20px;background-color:#CCFF99;">
<?php include('includes/header.php'); ?>
</header>
<!-- Body Section -->
<div class="content mx-auto" id="contents">
<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('includes/nav.php'); ?>

</nav>
<!-- Center Column Content Section -->
<div class="col-sm-8 row" style="padding-left: 30px;">
<h2 style="padding-left: 50px; padding-top: 20px;">
Help Save Our Devon Birds From Extinction</h2>
<div class="col-sm-8 text-left">
<p>The Devon bird reserves were established in an effort to combat the massive decline in
the bird population. Farmers (the self proclaimed Guardians of the Countryside!) spray
insecticides, weed killers and pesticides that kill the birds' main source of food. They
also rip out the hedges that provide the birds with nesting sites and their means of
travelling safely from field to field. Any birds that survive will probably be shot to
satisfy a blood lust for living targets</p>
</div>
<div class="col-sm-4">
<h4 class="text-center">
Become a member and support our cause</h4>
<p class="text-left">
The annual membership fee includes free or reduced entrance fees to the reserves,
a free quarterly magazine, news updates and more.
</p>
</div>
</div>
<!-- Right-side Column Content Section -->
<aside class="col-sm-2" style="padding-top: 20px;
padding-right: opx;">
<?php include('includes/info-col.php'); ?>
</aside>
</div>

348

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

<!-- Footer Content Section -->
<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;
background-color:#CCFF99;">
<?php include('includes/footer.php'); ?>
</footer>
</div>
</body>
</html>

This code is like other index pages we have discussed. Thus, we have provided no additional
explanation here.
Listing 9-10a shows the CSS style sheet for the website.

Listing 9-10a. The Code for the Style Sheet (birds.css)

body {text-align:center; background-color:#CCFF99; color:green;
font-family: "times new roman";

font-size: 120%; margin: auto; }

#container {margin:auto; border:5px black solid; }

header {color:white; background-color:#CCFF99;}

}

label { color: black; }

#submit {margin: opx; background:#559a55; border: 5px
outset #559a55; width: 140px;}

#includemenu {padding-top: 10px; padding-bottom: 10px;
padding-right: opx;}

#includefooter {background:#68CE53; padding-top: 5px;
padding-bottom: 5px; margin: Opx;}

#includeheader { height:auto; background:#95b522;
margin-bottom: Opx; padding:Opx;
background:url('images/header3.jpg');
background-repeat:no-repeat;}

#contents {background-color:transparent ;margin-top: -7px;
color: black; margin: Opx; padding: Opx;}

#buttons {background:#559a55; border: 5px outset #559a55;}

The Main Menu for the Pages

The buttons on the main menu will enable the general public to view the individual tables and the joined
tables. Figure 9-10 shows this menu. The menu is stored in the includes folder, and Listing 9-10b gives the code.

Listing 9-10b. The Main Menu (nav.php)

<div style="padding-top: 10px; padding-bottom: 10px; padding-right: 15px;">
<nav class="float-left navbar navbar-expand-md navbar-dark">
<button class="navbar-toggler" type="button"
data-toggle="collapse" data-target="#collapsibleMenu1">

</button>

349

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

<div class="btn-group-vertical btn-group-sm collapse navbar-collapse"
id="collapsibleMenu1" role="group" aria-label="Button Group">
<ul class="navbar-nav flex-column" style="width: 140px;">
<1i class="nav-item">
<a class="btn btn-primary" id="buttons"
title="Page Two" href="#" role="button">
About Us
</1i>
<1i class="nav-item">
<a class="btn btn-primary" id="buttons"
title="The Birds" href="birds.php"
role="button">The Birds
</1i>
<li class="nav-item">
<a class="btn btn-primary" id="buttons"
title="The Reserves" href="reserves.php"
role="button">The Reserves
</1i>
<li class="nav-item">
<a class="btn btn-primary" id="buttons"
title="Page Five" href="join-2.php"
role="button">Join 2 Tables
</1i>
<li class="nav-item">
<a class="btn btn-primary" id="buttons"
title="Page Six" href="join-3.php"
role="button">Join 3 Tables
</1i>
<1li class="nav-item">
<a class="btn btn-primary" id="buttons"
title="Return to Home Page" href="index.php"
role="button">Home Page
</1i>
</div>
</nav>
</div>

The Header for All the Pages

The header for all the pages contains two menu buttons. You can see this header in Figure 9-10.
Listing 9-10c gives the code for the header.

Listing 9-10c. The Code for the Header (includes/header.php)

<meta name="viewport" content="width=device-width, initial-scale=1">
<script src=
"https://ajax.googleapis.com/ajax/1ibs/jquery/3.3.1/jquery.min.js">
</script>

350

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

<script src=
"https://cdnjs.cloudflare.com/ajax/1ibs/popper.js/1.14.0/umd/popper.min.js">
</script>
<script src=
"https://maxcdn.bootstrapcdn.com/bootstrap/4.1.0/js/bootstrap.min.js">
</script>
<div class="col-sm-8" style="color: white; padding-top: 5%;">
<div class="h1 display-4 text-left" >The Devon Bird Reserves</div>
</div>
<div class="col-sm-4" style="padding-top: 10px; padding-bottom: 10px;">
<nav class="float-right navbar navbar-expand-md navbar-dark">
<button class="navbar-toggler" type="button"
data-toggle="collapse" data-target="#collapsibleMenu">

</button>
<div class="btn-group-vertical btn-group-sm collapse navbar-collapse"
id="collapsibleMenu" role="group" aria-label="Button Group">
<ul class="navbar-nav flex-column" style="width: 140px;">
<li class="nav-item">
<a class="btn btn-primary" id="buttons" href="#"
role="button">Login
</1i>
<1i class="nav-item">
<a class="btn btn-primary" id="buttons"
href="member_reg.php" role="button">Register
</1i>

</div>
</nav>
</div>

Now let’s look at some birds.

The Page for Viewing the Birds

Figure 9-11 shows the display for viewing the birds table.

351

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

Register

The Birds that can be seen on our Reserves

AboutUs This is the
Birds Name Rarity Best Time information
The Burds
column
The Reserves Avocet Common Winter
Information area
Join 2 Tables Golden Eye Common ‘Winter
doind Tl Moorhen Common Anytime
Wryneck Rare Summer

Footer goes here

Figure 9-11. The table of birds
Listing 9-11 gives the code for the bird table display.

Listing 9-11. Creating a Display for the Bird’s Table (birds.php)

<?php
define('ERROR_LOG', 'errorlog.log');
>
<!DOCTYPE html>
<html lang="en">

<head>
<title>Birds Home Page</title>
<meta charset="utf-8">
<meta name="viewport" content=
"width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.
min.css"
integrity="sha384-9gV04dYFwwhSjIDZnLEWnXCjeSWFphIiwGPXr1jddIhOegiulFwO5qR
GvFX0dJz4"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="birdsi.css">
</head>
<body>

<div class="container" style="margin-top:30px;border: 3px black solid;">
<!-- Header Section -->
<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px; padding:20px;background-color:#CCFF99;">

<?php include('includes/header.php'); ?>

352

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

</header>
<!-- Body Section -->
<div class="content mx-auto" id="contents">
<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('includes/nav.php'); ?>

</nav>
<!-- Center Column Content Section -->
<div class="col-sm-8 row" style="padding-left: 30px;">
<h2>The Birds that can be seen on our Reserves</h2>
<?php
try
{
// This script retrieves all the records from the birds table
require ('mysqli_connect.php'); // Connect to the database
// Make the query:
$q = "SELECT bird name, rarity, best time FROM birds ORDER BY bird name ASC";
$result = mysqli _query ($dbcon, $q); // Run the query
if ($result) { // If it ran OK, display the records
// Table header
?>
<table class="table table-striped" style=
"background: white;color:black;">

<tr>
<th scope="col">Birds Name</th>
<th scope="col">Rarity</th>
<th scope="col">Best Time</th>
</tr>

<?php
// Fetch and print all the records
while ($row = mysqli_fetch_array($result, MYSQLI_ASSOC)) {
$bird name = htmlspecialchars($row['bird name'], ENT_QUOTES);
$rarity = htmlspecialchars($row['rarity'], ENT QUOTES);
$best time = htmlspecialchars($row['best time'], ENT_QUOTES);
echo '<tr>
<td scope="row">' . $bird name . '</td>
<td scope="row">" . $rarity . '</td>
<td scope="row">' . $best time . '</td>
</t
}
echo '</table>'; // Close the table
mysqli_free result ($result); // Free up the resources
} else { // If it did not run OK
// Message
echo '<p class="text-center">
The current birds could not be retrieved. ';
echo 'We apologize for any inconvenience.</p>';
// Debugging message

353

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

//echo '<p>' . mysqli_error($dbcon) . '

Query:

$q . '</p>';
} // End of if ($result)

mysqli_close($dbcon); // Close the database connection.

}

catch(Exception $e) // We finally handle any problems here
{

// print "An Exception occurred. Message:
print "The system is busy please try later";
// $date = date('m.d.y h:i:s');

/! $errormessage = $e->getMessage();

/! $eMessage = $date . " | Exception Error | " , $errormessage

// error_log($eMessage,3,ERROR_LOG);

// e-mail support person to alert there is a problem
// error log("Date/Time: $date - Exception Error,

// Check error log for details", 1, noone@helpme.com,
// "Subject: Exception Error \nFrom: Error Log

// <errorlog@helpme.com>" . "\r\n");
}
catch(Error $e)
{
// print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try later";
// $date = date('m.d.y h:i:s');
// $errormessage = $e->getMessage();
// $eMessage = $date . " | Error | " , $errormessage .
// error log($eMessage,3,ERROR_LOG);
// e-mail support person to alert there is a problem
// error_log("Date/Time: $date - Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Error \nFrom:
// Error Log <errorlog@helpme.com>" . "\r\n");
}

>
</div><!-- End of the view birds page content. -->
<!-- Right-side Column Content Section -->
<aside class="col-sm-2" style=
"padding-top: 20px; padding-right: opx;">
<?php include('includes/info-col.php'); ?>
</aside>
</div>
<!-- Footer Content Section -->
<footer class="jumbotron text-center row"
style="padding-bottom:1px;
padding-top:8px;background-color:#CCFF99;">
<?php include('includes/footer.php'); ?>
</footer>
</div>
</div>
</body>
</html>

This page can be viewed by clicking the Birds menu button on the home page.

354

. $e->getMessage();

. |\n";

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

Explanation of the Code

You have seen all this code in earlier chapters. Therefore, we are not providing any additional explanation
here.

We will now examine the locations table, which is the second table for this tutorial. It can be viewed by
clicking the menu button The Reserves.

The Page for Viewing the Locations and Habitats of the Reserves

Figure 9-12 shows the display for viewing the reserve’s location table.

" The Devon Bird R.eservés

The location and habitat of the Devon Bird Reserves o
About Us This is the
T Location Location Type information
column
T Rosrues Southpark Ponds
Information area
Join 2 Tables Wetlands Estuary
Lakeland Lakes
Home Page
Moorfield Moorland
Heathville Heath
Footer goes here

Figure 9-12. Showing the location and type of reserve

Listing 9-12 gives the code for displaying the location and habitat of the reserves.

Listing 9-12. Creating the Page for Displaying the Locations and Habitats of the Reserves (reserves.php)

<?php
define('ERROR_LOG', 'errorlog.log');

>
<IDOCTYPE html>
<html lang="en">
<head>

<title>Reserves Page</title>

<meta charset="utf-8">

<meta name="viewport" content=

"width=device-width, initial-scale=1, shrink-to-fit=no">

355

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity="sha384-9gVQ4dYFwwiSjIDZnL EWnxCjeSWFphIiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="birdsi.css">
</head>
<body>
<div class="container" style="margin-top:30px;border: 3px black solid;">
<!-- Header Section -->
<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px; padding:20px;
background-color:#CCFF99;">
<?php include('includes/header.php'); ?>
</header>
<!-- Body Section -->
<div class="content mx-auto" id="contents">
<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('includes/nav.php'); ?>

</nav>
<!-- Center Column Content Section -->
<div class="col-sm-8 row" style="padding-left: 30px;">
<h2>The location and habitat of the Devon Bird Reserves</h2>
<?php
try {
// This script retrieves all the records from the users table
require ('mysqli_connect.php'); // Connect to the database
// Make the query:
$q = "SELECT location, location_type FROM location ORDER BY ";
$q .= "location_id ASC";
$result = mysqli query ($dbcon, $q); // Run the query
if ($result) { // If it ran OK, display the records
// Table header

>
<table class="table table-striped"
style="background: white;color:black;">
<tr>
<th scope="col">Location</th>
<th scope="col">Location Type</th>
</tr>
<?php

// Fetch and print all the records
while ($row = mysqli fetch array($result, MYSQLI ASSOC)) {
$location = htmlspecialchars($row['location'], ENT_QUOTES);
$location_type = htmlspecialchars($row['location type'], ENT QUOTES);
echo '<tr>
<td scope="row">' . $location . '</td>

356

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

<td scope="row">"' . $location_type . '</td>
</tr>';
}
echo '</table>'; // Close the table
mysqli_free result ($result); // Free up the resources
} else { // If it did not run OK
// Message
echo '<p class="text-center">
The current locations could not be retrieved. ';
echo 'We apologize for any inconvenience.</p>';
// Debugging message
//echo '<p>" . mysqli_error($dbcon) . '

Query:
/1 °%q . '</p>";
} // End of if ($result)
mysqli close($dbcon); // Close the database connection.

catch(Exception $e) // We finally handle any problems here
// print "An Exception occurred. Message: "
print "The system is busy please try later";
// $date = date('m.d.y h:i:s");
/! $errormessage = $e->getMessage();
// $eMessage = $date . " | Exception Error | " , $errormessage .
//]\n";
// error_log($eMessage,3,ERROR_LOG);
// e-mail support person to alert there is a problem
// error log("Date/Time: $date - Exception Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Exception Error
//\nFrom: Error Log <errorlog@helpme.com>" . "\r\n");

. $e->getMessage();

catch(Error $e)

{
// print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try later";
// $date = date('m.d.y h:i:s");
// $errormessage = $e->getMessage();
// $eMessage = $date . " | Error | " , $errormessage . |\n";
// error_log($eMessage,3,ERROR_LOG);
// // e-mail support person to alert there is a problem
// error log("Date/Time: $date - Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Error \nFrom:
// Error Log <errorlog@helpme.com>" . "\r\n");
}
>

</div><!-- End of the view birds page content. -->
<!-- Right-side Column Content Section -->
<aside class="col-sm-2" style="padding-top: 20px;
padding-right: opx;">
<?php include('includes/info-col.php'); ?>
</aside>
</div>

357

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

<!-- Footer Content Section -->
<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;

background-color:#CCFF99;">
<?php include('includes/footer.php'); ?>

</footer>

</div>

</div>

</body>

</html>

We will now show the display for two joined tables. Later in the chapter we will provide a more in-depth
discussion on how to join tables.

Displaying Data from the Joined Tables

When the two tables are joined, some data from each of the tables birds and location will be displayed, as
shown in Figure 9-13.

The location and habitat of the Devon Bird Reserves i
This is the
Location Bird Name Rarity Best Time information
column
Southpark Moorhen Common Anytime .
Information area
Join 2 Tables Wetlands Avocet Common Winter
Jon 3 Tebles Lakeland Golden Eye Common Winter
Home Page
Moorfield Wryneck Rare Summer
Heathville Wryneck Rare Summer
Footer goes here

Figure 9-13. Displaying two joined tables

358

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

Listing 9-13 shows the code for displaying selected data from the two joined tables.

Listing 9-13. Creating the Page for Displaying Selected Data from Two Joined Tables (join-2.php)

<?php

2>

define('ERROR_LOG', 'errorlog.log');

<!DOCTYPE html>
<html lang="en">

<head>

</head>

<body>

<title>Two Tables Page</title>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">

<!-- Bootstrap CSS File -->

<link rel="stylesheet"

ref="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity="sha384-9gVQ4dYFwwhSFIDZnLEWnXxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX
0dJz4"
crossorigin="anonymous">

<link rel="stylesheet" type="text/css" href="birdsi.css">

<div class="container" style="margin-top:30px;border: 3px black solid;">
<!-- Header Section -->
<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px; padding:20px;background-color:#CCFF99;">
<?php include('includes/header.php'); ?>
</header>
<!-- Body Section -->
<div class="content mx-auto" id="contents">
<div class="row mx-auto" style="padding-left: opx; height: auto;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('includes/nav.php'); ?>

</nav>
<!-- Center Column Content Section -->
<div class="col-sm-8 row" style="padding-left: 30px;">
<h2>The location and habitat of the Devon Bird Reserves</h2>
<?php
try {
// This script retrieves all the records from the birds table
require ('mysqli_connect.php'); // Connect to the database
// Make the query:
$q = "SELECT location.location, birds.bird name, birds.rarity, birds.best time
FROM location INNER JOIN birds ON location.bird id=birds.bird id";
$result = mysqli_query ($dbcon, $q); // Run the query
if ($result) { // If it ran OK, display the records
// Table header
>

359

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

<table class="table table-striped" style="background:
white;color:black;">

<tr>
<th scope="col">Location</th>
<th scope="col">Bird Name</th>
<th scope="col">Rarity</th>
<th scope="col">Best Time</th>
</tr>

<?php
// Fetch and print all the records
while ($row = mysqli_fetch_array($result, MYSQLI_ASSOC)) {
$location = htmlspecialchars($row['location’], ENT QUOTES);
$bird name = htmlspecialchars($row['bird name'], ENT_QUOTES);
$rarity = htmlspecialchars($row['rarity'], ENT_QUOTES);
$best time = htmlspecialchars($row['best time'], ENT QUOTES);
echo '<tr>
<td scope="row">' . $location . '</td>
<td scope="row">' . $bird name . '</td>
<td scope="row">"' . $rarity . '</td>
<td scope="row">' . $best _time . '</td>
</tr>';
}
echo '</table>'; // Close the table
mysqli free result ($result); // Free up the resources
} else { // If it did not run OK
// Message
echo '<p class="text-center">The current birds or locations could not be
retrieved. ';
echo 'We apologize for any inconvenience.</p>";
// Debugging message
//echo '<p>' . mysqli_error($dbcon) . '

Query: ' . $q . '</p>';
} // End of if ($result)
mysqli_close($dbcon); // Close the database connection

}
catch(Exception $e) // We finally handle any problems here
{
// print "An Exception occurred. Message: " . $e->getMessage();
print "The system is busy please try later";
// $date = date('m.d.y h:i:s");
// $errormessage = $e->getMessage();
// $eMessage = $date . " | Exception Error | " , $errormessage . |\n";
// error_log($eMessage,3,ERROR_LOG);
// e-mail support person to alert there is a problem
// error log("Date/Time: $date - Exception Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Exception Error \nFrom: Error Log
// <errorlog@helpme.com>" . "\r\n");
}
catch(Error $e)
{

// print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try later";

360

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

// $date = date('m.d.y h:i:s');
// $errormessage = $e->getMessage();
// $eMessage = $date . " | Error | " , $errormessage . |\n";
// error log($eMessage,3,ERROR_LOG);
// e-mail support person to alert there is a problem
// error_log("Date/Time: $date - Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Error \nFrom:
// Error Log <errorlog@helpme.com>" . "\r\n");
}

>

</div><!-- End of the view birds page content. -->

<!-- Right-side Column Content Section -->
<aside class="col-sm-2" style="padding-top: 20px; padding-right: opx;">

<?php include('includes/info-col.php'); ?>

</aside>

</div>

<!-- Footer Content Section -->

<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;background-color:#CCFF99;">

<?php include('includes/footer.php'); ?>

</footer>

</div>

</div>

</body>

</html>

Note that the order of the items following the ON word can be reversed, and you will get the same result.
For example, the following:

ON location.bird id=birds.bird id)" ;
can be written as follows:
ON birds.bird_id=location.bird id";

You can view the two joined tables by clicking the Join 2 Tables menu button. You will be able to see that
the table contains data from both tables, as shown in Figure 9-13.

The SQL ON keyword joined the two tables by linking the related bird_id fields together. Let’s take some
time to discuss how and why we join tables together.

We will now create an environment for displaying three virtual joined tables. These pages will be
accessible by menu buttons in the home page.

Note As previously mentioned, joined tables are virtual tables. They cannot be seen until they are displayed
in a browser. The pages in this tutorial are designed specifically to demonstrate the results of joining tables.
The table displays are selected by clicking buttons on the menu. A real-world website would not have buttons
labeled Join 2 Tables and Join 3 Tables. These labels are for your convenience only.

361

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

Creating a Page to Display the Three Joined Tables

Previously we created the joined relationship of the three tables in our database using myPhpAdmin, as
shown in Figure 9-14.

phpMyAdmm B rTSever 127.0.0.1 » @ Database: birdsdb
aEle e ¥ Structure [SQL | 4 Search) Query =3 Export () Import J* Operations =7 Privileges ¥ More
Recent Favorites | e e
= e
% New =) (TN =]
+_ 1| admintable . .) & [birdsdb.birds
L = birdsdb) u o birdsdb rsv_info | £ [birdsdb.location
4 ¢ resv_id : mediumint(4) unsigned [2] birdsdb.rsv_info
= ::: Q @ bird_hides : enum('Yes', No') © =
j‘—y !. ﬁ © entr_memb : tinytext
b location (E) 0 entr_n_memb : tinytext . :
+Lle rsv_info — # location_id : mediumint(4) unsigned F‘-\._ﬂﬂ ~ birdsdb location, .
+L 1| catalog (=] : . ¥ location_id : mediumint{4) unsigned
Q @ location : tinytext
- - o location_type : tinytext
] o i birds 4 y bird_id - mediumint(4) unsigned
= ¢ bird_id : mediumint(4) unsigned * :
(i) |u bird_name : tinytext
Q @ rarity ; limytext
|:; best_time : tinytext
o !
Fo

Figure 9-14. Creating and saving the relationship between the second and third tables

We will now create a page to select and display data from the three tables. The principle is quite logical:
first join two tables to produce a virtual table and then join that to the third table. The syntax for a query for
joining and selecting data from three tables is as follows:

$g= "SELECT some column, some other column, another column «
FROM table1 «
INNER JOIN table2 USING (the key that links tablel and table2) «
INNER JOIN table3 USING (the key that links table2 and table3) ";

Let’s select some data from our three joined tables to display on the web page.
$q = "SELECT bird name, best time, location, bird hides, entrance_member, «
entr_non_member FROM birds «
INNER JOIN location USING (bird id) «
INNER JOIN reserves info USING (location id) ";

The results from executing this SQL statement are displayed in Figure 9-15.

362

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

" The Devon Bira R.e'ser\?és

The location and habitat of the Devon Bird Reserves s
About Us This is the
— Birds Best Location Bird Entrance Entrance Non- information
Name Time Hides Member Member column
The Reserves :
Moorhen Anytime Southpark yes free 1 R
Join 2 Tables
) Avocet Winter Wetlands yes 1 2
Join 3 Tables
Home Page Golden Winter Lakeland ves free 1
Eye
Wryneck Summer Moorfield no free free
Wryneck Summer Heathville no free free
Footer goes here

Figure 9-15. Three tables joined and displayed in a browser

The page displaying this table can be viewed by clicking the Join 3 Tables menu button from the index

page.
Listing 9-15 shows the code for this page.

Listing 9-15. Creating the Page for Displaying Three Joined Tables (join-3.php).

<?php
define('ERROR_LOG', 'errorlog.log');
>
<!DOCTYPE html>
<html lang="en">
<head>
<title>Three Tables Page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity="sha384-9gV04dYFwwhSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGv
FX0dJz4"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="birdsi.css">
</head>

363

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

<body>
<div class="container" style="margin-top:30px;border: 3px black solid;">
<!-- Header Section -->
<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px; padding:20px;background-color:#CCFF99;">
<?php include('includes/header.php'); ?>
</header>
<!-- Body Section -->
<div class="content mx-auto" id="contents">
<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('includes/nav.php'); ?>

</nav>
<!-- Center Column Content Section -->
<div class="col-sm-8 row" style="padding-left: 30px;">
<h2>The location and habitat of the Devon Bird Reserves</h2>
<?php
try {
require ('mysqli_connect.php'); // Connect to the database
// Make the query:
$q = "SELECT bird name, best time, location, bird hides,
entrance_member, entr non_member FROM birds
INNER JOIN location USING (bird id)
INNER JOIN reserves info USING (location_id)";
$result = mysqli _query ($dbcon, $q); // Run the query
if ($result) { // If it ran OK, display the records
// Table header
?>
<table class="table table-responsive table-striped"
style="background: white;color:black;">
<tr>
<th scope="col">Birds Name</th>
<th scope="col">Best Time</th>
<th scope="col">Location</th>
<th scope="col">Bird Hides</th>
<th scope="col">Entrance Member</th>
<th scope="col">Entrance Non-Member</th>
</tr>
<?php
// Fetch and print all the records
while ($row = mysqli_fetch_array($result, MYSQLI_ASSOC)) {
$bird name = htmlspecialchars($row['bird name'], ENT_QUOTES);
$best time = htmlspecialchars($row['best time'], ENT_QUOTES);
$location = htmlspecialchars($row['location'], ENT QUOTES);
$bird hides = htmlspecialchars($row['bird hides'], ENT_QUOTES);
$entrance_member = htmlspecialchars($row['entrance member'],
ENT_QUOTES);

364

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

$entrance non_member = htmlspecialchars($row[entr non_
member'], ENT_QUOTES);
echo '<tr>
<td scope="row">' . $bird_name . '</td>
<td scope="row">' . $best time . '</td>
<td scope="row">' . $location . '</td>
<td scope="row">' . $bird hides . '</td>
<td scope="row">' . $entrance_member . '</td>
<td scope="row">' . $entrance_non_member . '</td>
</tr>';
}
echo '</table>'; // Close the table
mysqli free result ($result); // Free up the resources
} else { // If it did not run OK
// Message
echo '<p class="error">The current data could not be retrieved. ';
echo 'We apologize for any inconvenience.</p>';
// Debugging message
echo '<p>' . mysqli error($dbcon) . '

Query: ' . $q . '</p>';
} // End of if ($result)
mysqli_close($dbcon); // Close the database connection

catch(Error $e)

{
// print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try later";
// $date = date('m.d.y h:i:s");
// $errormessage = $e->getMessage();
// $eMessage = $date . " | Error | " , $errormessage . |\n";
// error log($eMessage,3,ERROR_LOG);
// e-mail support person to alert there is a problem
// error log("Date/Time: $date - Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Error \nFrom: Error Log
<errorlog@helpme.com>" .
//"\1\n");

}
?>

</div><!-- End of the view birds page content. -->
<!-- Right-side Column Content Section -->
<aside class="col-sm-2" style="padding-top: 20px; padding-right: opx;">
<?php include('includes/info-col.php'); ?>
</aside>
</div>
<!-- Footer Content Section -->
<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;background-color:#CCFF99;">
<?php include('includes/footer.php"); 2>
</footer>
</div>
</div>
</body>
</html>

365

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

Explanation of the Code

This section explains the code.

$q = "SELECT bird name, best _time, location, bird hides,
entrance_member,
entr_non_member FROM birds
INNER JOIN location USING (bird id)
INNER JOIN reserve info USING (location id)";

The code is similar to the code for two tables except for an additional INNER JOIN statement.

We selected some data (but not all) from the three joined tables. Six items were selected from three
tables using the SELECT query.

We will now learn how to add an alternative method of paying for goods or membership fees using a
check instead of PayPal or debit/credit cards.

Payments by Check

There are still customers who prefer to pay by check because either they do not have a PayPal account or
they prefer not to disclose their debit/credit card details over the Internet. Check payments usually need to
be accompanied by a printed form, which contains information explaining why the payment has been sent.
This form usually contains the customer’s name, address, e-mail address, telephone number, and other
related information such as a payment number.

This tutorial uses a simplified printable form for an organization that requires online registration; the
form requires the user’s full details, together with a choice of payment methods. This is ideal for websites
that require membership registrations.

Let’s assume that Devon Bird Reserves requires an online registration form, as shown in Figure 9-16.

Eqtween § and 12 charactens.

Figure 9-16. The registration page

366

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

You can view the registration page by clicking the Register button on the home page header.

Note The SQL file membership has been included with the chapter files. This file contains the code to
create the required tables for the registration pages. This code must be imported using phpMyAdmin before
attempting to run any of the following code.

The registration page and related tables are essentially the same as used in Chapter 7. The majority of
the code is from Chapter 7 and is embedded into the birds template and saved as member_reg.php. Since the
code is similar, it is not included here but is included with the chapter files.

When users register successfully, the Register button redirects them to a “thank you” page that contains
the alternative methods of paying the membership fee.

A Choice of Payment Method

When the membership registration form has been filled out, clicking the Register button sends the user to a
page and gives the user a choice of the three payment methods, as shown in Figure 9-17.

Thank you for registering This is the
To confirm your registration please verify membership class and pay the membership fee now. information
“You can use PayPal, a check or a credit/debit card. column
When you have completed your registration you will be able to login to the member's only Web design by
pages. A W West and
Joi2 Tbles Membership classes: Steve Prettyman
Join 3 Tables Standard one year: £ 30 GB, $40US

Standard five year: £ 125 GB, § 140 US , Military one year: £ 5 GB, $ § US
Home Page Under 21 one year: £ 2 GB, $ 3 US , Other - Give what you can Maybe: £ 15 GB, $ 20 US

*Membership Class Military one year: 5£GB, 85 US ~

== — Rl W=l

Pay By Check

Footer goes here

Figure 9-17. Giving the user a choice of payment method

367

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

The display of PayPal logos has been deliberately duplicated on the page to show that you have a choice
of either a vertical or horizontal logo. To avoid cluttering the page, you would choose one only. Listing 9-17
gives the code for creating the page shown in Figure 9-17.

Listing 9-17. Creating a Page for Alternative Methods of Payment (register-thanks.php)

<?php
define("ERROR_LOG","errorlog.log");
>
<!DOCTYPE html>
<html lang="en">
<head>
<title>Register Page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1,
shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwhSIDZnLEWNXCjeSWFphIiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<script src="verify.js"></script>
<script src="https://www.google.com/recaptcha/api.js'></script>
<link rel="stylesheet" type="text/css" href="birdsi.css">
</head>
<body>
<div class="container" style="margin-top:30px;border: 3px black solid;">
<!-- Header Section -->
<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px; padding:20px;background-color:#CCFF99;">
<?php include('includes/header.php'); ?>
</header>
<!-- Body Section -->
<div class="content mx-auto" id="contents">
<div class="row mx-auto" style="padding-left: oOpx; height: auto;">
<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('includes/nav.php'); ?>

</nav>
<!-- Center Column Content Section -->
<div class="col-sm-8">
<h3 class="h2 text-center" >Thank you for registering</h2>
<h6 class="text-center">
To confirm your registration please verify membership class and
pay the membership fee now.</h6>

368

<?php
try {

}

>

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

<h6 class="text-center">You can use PayPal, a check or a credit/debit card.</h6>
<p class="text-center" >When you have completed your registration you will be
able to login to the member's only pages.</p>

require ("mysqli_connect.php");
$query = "SELECT * FROM prices";
$result = mysqli_query ($dbcon, $query); // Run the query.
if ($result) { // If it ran OK, display the records.
$row = mysqli_fetch_array($result, MYSQLI_NUM);
$yearsarray = array(
"Standard one year:", "Standard five year:", "Military one year:", "Under 21 one year:",
"Other - Give what you can. Maybe:");
echo '<h6 class="text-center text-danger">Membership classes:</h6>" ;
echo '<h6 class="text-center text-danger small"> ';
for ($j =0, $i =0; $j < 5; $j++, $1 = $i + 2) {
echo $yearsarray[$j] . " £ "
htmlspecialchars($row[$i], ENT_QUOTES)
" GB, 8dollar; " .
htmlspecialchars($row[$i + 1], ENT_QUOTES) .
" Us";
if (85 1= 4){
if ($j % 2 == 0) { echo "</h6><h6 class="text-center text-danger
small'>"; }
else { echo " , "; }
}
}

echo "</h6>";

<form action="https://www.paypal.com/cgi-bin/webscr" method="post">

<input type="hidden" name="cmd" value="_s-xclick">
<input type="hidden" name="hosted_button_id" value="XXXXXXXXXXXXX">
<div class="form-group row">
<label for="level" class="col-sm-4 col-form-label text-right">*Membership Class</label>
<div class="col-sm-8">
<select id="level" name="level" class="form-control" required>
<option value="0" >-Select-</option>
<?php
$class = htmlspecialchars($ GET['class'], ENT QUOTES);
for ($j =0, $i =0; $j < 5; $j++, $1 = $1 + 2) {
echo '<option value=""'
htmlspecialchars($row[$i], ENT QUOTES) . '" ';
if ((isset($class)) & ($class == $row[$i]))
{

echo ' selected ';

369

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

echo ">" . $yearsarray[$j] .
htmlspecialchars($row[$i], ENT_QUOTES) .

" £ GB, " .

htmlspecialchars($row[$i + 1], ENT_QUOTES) .
"$ US</option>";

}
>
</select>
</div>
</div>
<div class="form-group row">
<div class="col-sm-6 col-form-label">
<nav class="float-right navbar navbar-expand-md navbar-dark">
<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#collapsibleMenu">

</button>
<div class="btn-group-vertical btn-group-sm collapse navbar-collapse" id="collapsibleMenu"
role="group" aria-label="Button Group">
<ul class="navbar-nav flex-column" style="width: 140px;">
<1i class="nav-item">
<a class="btn btn-primary" id="buttons"
href="pay-with-check.php" role="button">Pay By Check

</1i>

</div>
</nav>
</div>
<div class="col-sm-6">
<!-- Replace the code below with code provided by PayPal once you obtain a Merchant ID -->
<input type="hidden" name="currency code" value="GBP">
<input style="margin:10px 0 O 40px" type="image"
src="https://www.paypalobjects.com/en_US/GB/i/btn/btn_buynowCC_LG.gif"
name="submit" alt="PayPal The safer, easier way to pay online.">
<img alt="" src=
"https://www.paypalobjects.com/en_GB/i/scr/pixel.gif" width="1" height="1">
<!-- Replace code above with PayPal provided code -->
</div>
</div>
</form>
</div>
<!-- Right-side Column Content Section -->
<aside class="col-sm-2">
<?php include('includes/info-col-cards.php'); ?>
</aside>
</div>
<!-- Footer Content Section -->
<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;background-color:#CCFF99;">
<?php include('includes/footer.php'); ?>
</footer>

370

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

<?php

} // end try

catch(Exception $e) // We finally handle any problems here
// print "An Exception occurred. Message: "

print "The system is busy please try later";

// $date = date('m.d.y h:i:s");

// $errormessage = $e->getMessage();

/! $eMessage = $date . " | Exception Error | " , $errormessage . [\n";

/! error_log($eMessage,3,ERROR_LOG);

// e-mail support person to alert there is a problem

// error_log("Date/Time: $date - Exception Error, Check error log for

//details", 1, noone@helpme.com, "Subject: Exception Error \nFrom: Error Log

. $e->getMessage();

<errorlog@helpme.com>" . "\r\n");

}

catch(Error $e)

{
// print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try later";
// $date = date('m.d.y h:i:s");
// $errormessage = $e->getMessage();
// $eMessage = $date . " | Error | " , $errormessage . |\n";
// error log($eMessage,3,ERROR_LOG);
// e-mail support person to alert there is a problem
// error log("Date/Time: $date - Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Error \nFrom: Error Log
// <errorlog@helpme.com>" . "\r\n");

}

>

</body>

</html>

When the PayPal Pay Now button is clicked, the user is taken to the usual PayPal page for processing the
payment. Alternatively, the user can now click the Pay By Check button to fill out and print a form to send
with their check. This code is similar to the register_thanks program from Chapter 7.

The Check Payment

When users click the Pay By Check button, they will be taken to a page containing a printable form, as shown
in Figure 9-18.

371

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

Complete your Registration by Paying with a Check This is the
Thank you for registering online, now please fill out this form. Asterisks indicate essential information
fields. When vou have filled out the form please print two copies by clicking the "Print column
This Form" button. Sign one copy and keep. one for refh:ence, sign a check payable to "The Web design by
Devon Bird Reserves". AW West and
T Mail the signed form and check to: Steve Prettyman
Join 3 Tables The Treasurer, The Devon Bird Reserves, 99 The Street, The Village, EX99 99ZZ

Home Page 'Pltle‘l |

Last Name* | |

First Name*

Your Email Address* | |

Signed Date

Click to automatically print the form in black and white
Footer goes here

Figure 9-18. The printable form can be filled out on the screen except for the signature and date (pay-with-
check.php)

Listing 9-18 gives the code for creating the printable form.
The form is designed to be filled out on the screen and then printed.

Listing 9-18. Creating the Printable Form (pay-with-check.php)

<!DOCTYPE html>
<html lang="en">
<head>
<title>Register Page</title>
<meta charset="utf-8">
<meta name="viewport" content=
"width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwiSFIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGvFX0dIZ4"
crossorigin="anonymous">

372

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

<script src="verify.js"></script>
<script src="https://www.google.com/recaptcha/api.js'></script>

<link rel="stylesheet" type="text/css" href="birds1i.css" media="screen">
<link rel="stylesheet" type="text/css" href="print.css" media="print">

<style type="text/css">
label { margin-bottom:5px; }
label { width:570px; float:left; text-align:right; }
.sign { font-weight:bold;}

</style>

</head>

<body>

<div class="container" style="margin-top:30px;border: 3px black solid;">

<!-- Header Section --»
<header class="jumbotron text-center row" id="includeheader"

style="margin-bottom:2px; padding:20px;background-color:#CCFF99;">

<?php include('includes/header.php'); ?>
</header>
<!-- Body Section -->
<div class="content mx-auto" id="contents">

<div class="row mx-auto" style="padding-left: Opx; height: auto;">

<!-- Left-side Column Menu Section -->
<nav class="col-sm-2">
<ul class="nav nav-pills flex-column">
<?php include('includes/nav.php'); ?>

</nav>
<!-- Center Column Content Section -->
<div class="col-sm-8">
<h4>Complete your Registration by Paying with a Check</h4>

<p>Thank you for registering online, now please fill out this

form. Asterisks indicate essential fields. When you

have filled out the form please print two copies by clicking
the "Print This Form" button. Sign one copy and keep one for

reference sign a check payable to "The Devon Bird
Reserves8quot;. </p><p>Mail the signed form and check to:

The Treasurer, The Devon Bird Reserves, 99 The Street,
The Village, EX99 9977 </p>

<form>

<div id="fields">
<label class="label" for="title">Title<span

class="large-red">*

<input id="title" name="title" size="35" type="text" required>

</label>

<bry><label class="label" for="firstname">First Name
*

<input id="firstname" name="firstname" size="35" type="text"

required></label>

<label class="label" for="lastname">Last Name
*

373

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

<input id="lastname" name="lastname" size="35" type="text"
required></label>

<label class="label" for="useremail">Your Email Address
*
<input id="useremail" name="useremail" type="email" size="35"
required></label>

</div>
</form>

<p class="sign">
Signed Date
</p>

<div id="button">
<input type="button" value=
"Click to automatically print the form in black and white"
onclick="window.print()" title="Print this Form">

</div>
<!--End of content.-->
</div>
<!-- Right-side Column Content Section -->
<aside class="col-sm-2">
<?php include('includes/info-col-cards.php'); ?>

</aside>
</div>
<!-- Footer Content Section -->

<footer class="jumbotron text-center row"
style="padding-bottom:1px; padding-top:8px;

background-color:#CCFF99;">
<?php include('includes/footer.php'); ?>

</footer>

</div>

</div>

</body>

</html>

Explanation of the Code

This section explains the code.

<link rel="stylesheet" type="text/css" href="birds.css" media="screen">
<link rel="stylesheet" type="text/css" href="print.css" media="print">

Itis impossible to print the form using PHP because PHP is a server-side script. However, the form is
displayed by a browser, and we can print from a screen displayed by a browser. We achieve this by means of
alink to a separate conditional style sheet with the media attribute media="print”.

The first line links to the main style sheet birds.css that displays the page on the screen using the
media attribute media="screen”. The second line links the page to the print version of the page. This is
automatically invoked when the display is sent to a printer or print preview. The printed form does not need
the header, menu, or footer. Also, using the CSS style sheet, we can cause it to print using only black ink so
that the user does not have to use the more expensive color cartridge.

374

<div id="button">
<input type="button" value=

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

"Click to automatically print the form in black and white"
onclick="window.print()" title="Print this Form">

</div>

This is the code for the button on the page that sets the browser display to the printer.

Printing Online Forms

Figure 9-19 shows the printed page.

The Devon Bird Reserves

Complete your Registration by Paying with a Check

Thank you for registering online, now please fill out this form. Asterisks indicate
essential fields. When you have filled out the form please print two copies by clicking
the "Print This Form™® button. Sign one copy and keep one for reference, sign a check
payable to "The Devon Bird Reserves”.

Mail the signed form and check to:
The Treasurer, The Devon Bird Reserves, 99 The Street, The Village, EX99 9977

Title* |Mr. |

First Name* Jon l

Last Name* [Doe l

Your Email Address* ljdm:. @doe.com |

Signed

Date

Footer goes here

Figure 9-19. The top half of the printed page in black ink contains all the essential information

To produce the printout shown in Figure 9-19, the form was filled out on the user’s screen, and then
the Print button was clicked. The result used minimal ink and no colored ink; however, it contained all that
is necessary to become a member of the Devon Bird Reserves. The user signs the form and mails it with the
check. The user’s address is entered into the database when they fill out the registration page; therefore, this

does not need be repeated in the printed form.

The style sheet print.css is the key to producing the printable form. Listing 9-19 shows the code for this

style sheet.

375

CHAPTER 9 * JOIN MULTIPLE TABLES AND OTHER ENHANCEMENTS

Listing 9-19. Creating the Style Sheet for Printing Forms (print.css)

/*PRINT.CSS: style amendments for printing only*/
/*SELECT ITEMS THAT YOU DO NOT WANT TO PRINT, e.g.,
header, menu, print-this-page button, and footer*/
#header, #nav, #leftcol, #button, #rightcol, #footer,
#info-col, ul { display:none; }

input { border:1px black solid; }

h2 { font-size:16pt; color:black; text-align:center; }
h3 { text-align:center; font-size:11pt;}

/*REVEAL OUTGOING URL links on printed page*/
a[hrefr="http://":after {content: "(" attr(href)")"; }

The CSS statement { display:none; } tells the printer which items should not be printed. To avoid
wasting paper and ink when testing the appearance of the printed page, use the Print Preview feature of the
browser. Load the page into a browser and select File and then Print Preview to see what the printable page
will look like. If the printable page includes a page break, click the right-facing arrow of the Print Preview
screen to see subsequent pages.

Press the Esc key to switch out of the Print Preview mode.

h2 { font-size:16pt; text-align:center; }
h3 { text-align:center; font-size:11pt;}

To choose the correct font sizes for the printer, use point sizes (such as 16 pt. and 12 pt.) and use trial
and error to optimize the sizes. You might have text within <p> </p> tags, so be sure to include a style for the
paragraph font size.

/*REVEAL OUTGOING URL links on the printed page*/
alhref~="http://]:after {content: "(" attr(href)")"; }

If the page contains a URL to your website, you might want this to appear on the printed page in a
format that will be useful for the user (assuming that they print and retain a copy of the form). Note the use
of three types of brackets. In the form, the HTML would look like this:

<p>Click for
<a title="Click to visit the Devon Bird Reserves web site" «
href="http://www.the devonbirdreserves.co.uk">The Devon Bird Reserves</p>

The URL would be displayed in a browser as follows:

Click to visit the Devon Bird Reserves website.

Using the previous code, the printed form would appear as follows:

Click to visit the Devon Bird Reserves website (www.devonbirdreserves.co.uk).

Summary

In this chapter, we introduced the theory and practice of using multiple tables. You learned that such tables
are virtual tables that are present only in the volatile memory of the server and that they can be viewed

in a DBMS such as MySQL or MariaDB. The difference between various join methods was described. We
then demonstrated that the virtual tables could be made visible in a web page by using SQL queries and
PHP. A tutorial showed you how to implement membership payments by check. This was augmented by

a demonstration of economical form printing so that an application form and a check could be sent to the
organization. In the next chapter, we will introduce you to an online message board.

376

www.devonbirdreserves.co.uk

CHAPTER 10

Create a Message Board

A message board can be a stand-alone feature or an important component in a forum. A basic forum has
at least four tables, one each for messages, membership registrations, threads, and replies. However, to
save space and to defer to what’s in the subtitle of this book, A Simplified Approach, this chapter describes
a simple message board with a table for messages and a table for members. Our hope is that a grasp of the
principles of this message board will inspire you to expand its features and explore more complex solutions.
For your interest, at the end of this chapter we have added a chart showing how you could enhance the
message board to create a forum.

Message boards have fewer features than a forum; generally, they lack the ability to accept replies in
a manner that allows them to be collected as threads. In a forum, the replies are connected to the original
posting ID and displayed in ascending date order. Our message board is designed to collect wise and
comical quotations and then insert them into a searchable database.

After completing this chapter, you will be able to

e Create a message board with a database and tables
e (Create aregistration page

e (Create login and logout pages

e Create a gateway to the message board categories
e Create pages to display the quotations

e (Create search facilities

Caution To prevent the display of unpleasant content, message boards require constant monitoring
(moderating). Your potential clients should be warned about this before they commit themselves to a design
contract with you. In 2018, the United States implemented laws that place the responsibility of the content
of public message boards and other public forums on the forum provider. This is a reversal of previous
enforcement, which relieved forum providers from responsibility for public content.

The Plan

To simplify the message board in this chapter, users will not be able to view messages until they are
registered and logged in. However, some of the messages will be shown on the home page to tempt users
to register. In our example, the messages are quotations, and the aim is to build up a useful database of

© Adrian W. West and Steve Prettyman 2018 377
A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,
https://doi.org/10.1007/978-1-4842-3843-1_10

CHAPTER 10 = CREATE A MESSAGE BOARD

quotations. The Login button on the home page will redirect registered users to a page where they will be
able choose which of the types of quotation to view, either comical quotes or wise quotes.

When the message board is accessed, the registered member will be able to contribute a quote.
Because the member is contributing quotations, we refer to threads as quotations in the tutorial. For further
simplification, the number of columns in the tables is reduced to a practical minimum.

The username for logging in will be a unique pseudonym chosen by the user because message
boards and forums should protect a user’s personal information. When members post a new quote, their
pseudonym is the only name shown on the message board. However, when registering, they might also be
asked to provide additional information, such as their e-mail address, so that the site administrator can
contact them if necessary. Their e-mail address is never disclosed on the message board.

We will now create the database and tables for the message board.

Creating the Database

Download the files for this chapter from the book’s page at Apress.com and place them in a new folder
named msgboard within the htdocs or eds-www folder.

Start XAMPP or EasyPHP, and create the database named msgboarddb in phpMyAdmin. Set the
encoding to utf8_general_ci. Scroll down and click Add new user. Then select the Databases tab, select the
box next to msgboarddb, and click privileges. Add a new user with the following details:

° Username: brunel
e Host:localhost
e Password: trallblaz3r

Scroll down to Global privileges and check the check all box. Click Save (or Go in some versions).
The database connection file mysqli_connect.php is included in the downloadable files. Be sure to add it
to your hidocs or eds-www folder. If you want to create the file manually, use the following code:

<?php

// Create a connection to the msgboarddb database and to MySQL
// Set the encoding to utf-8

// Set the database access details as constants

define ('DB_USER', 'brunel');

define ('DB_PASSWORD', 'trailblaz3r');

define ('DB_HOST', 'localhost');

define ('DB_NAME', 'msgboarddb');

// Make the connection:

$dbcon = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB NAME);
// Set the encoding...optional but recommended

mysqli set charset($dbcon, 'utf8');

Creating the Tables

Either import the tables using the downloadable .sqg! files or create them manually.

If you want to create the tables from scratch, within phpMyAdmin, in the left panel, click the word
msgboarddb. Then create the first table with six columns and name the table members.

Use the attributes in Table 10-1 and select the collation utf8_general_ci for the columns that will accept
a collation (reg_date and member_level do not have a collation). As you create the columns, pop-up dialog
boxes will appear for the member_id and user_name indexes. For the member_id pop-up, both fields will be
PRIMARY. In the user_name index pop-up, enter user_name in the first field and UNIQUE in the second field.

378

http://apress.com

CHAPTER 10 CREATE A MESSAGE BOARD

Table 10-1. The members Table

Column Name Type Length/Value Default Attributes NULL Index Al
member_id INT 8 None UNSIGNED O PRIMARY
user_name VARCHAR 12 None O UNIQUE O
email VARCHAR 60 None O O
passcode CHAR 60 None O O
reg _date DATETIME None 0 O
member_level TINYINT 2 None 0 0

The member_id column is the PRIMARY key, and the user_name column has a UNIQUE index to
prevent duplicate entries. Scroll down and click Save.

Creating the Second Table

You can import the forum table from the downloadable SQL file or manually create the forum table with five
columns. It contains a column named post_id, and this is configured as the PRIMARY KEY. Our project will
enable users to search for a phrase or word from a quotation; therefore, a full text search is provided. Give
the message column a FULL TEXT index.

Table 10-2 shows the table details.

Table 10-2. The Attributes for the forum Table

Column Name Type Length/Value Default Attributes NULL Index Al
post_id INT 8 None UNSIGNED [PRIMARY
user_name VARCHAR 12 None O 0
subject VARCHAR 60 None O d
message TEXT None O FULL TEXT O
post_date DATETIME None O 0

When you create the post_id column in the forum table, you will see a pop-up dialog. For the column
post_id, both fields should contain the word PRIMARY. Click Go. When you create the message column in
the forum table, you will see the pop-up dialog shown in Figure 10-1.

379

CHAPTER 10 * CREATE A MESSAGE BOARD

Add index *® l
Index name: &) | PRIMARY |
Index choice: © | INDEX i |
+ Options
Column Size
B | message [text] ~ | | |

< I >

Go Cancel

Figure 10-1. Add index dialog

Next we will examine some of the pages for the website.

Creating the Home Page for the Message Board

The home page displays some sample quotes to encourage people to register. After they register and log
in, they will be able to view more quotes and also contribute quotes to the collection. If you prefer to create
the tables from scratch, no quotes (messages) will be displayed on the home page until the messages table is
populated.

Figure 10-2 shows the home page when the tables are populated.

| Quick Quotes

Logout > Your Qu Comic Quotes Wise Quotes

This home page shows a selection from our large collection of quotations.
To view the whole collection, please register.

You will then be able to contribute to this message board by adding quotations.

Posted By Subject Message

lilythepink ~ 2018-07-02 21:21:534 “Adversity causes some men to break: others to break records” William Arthur Ward
mechanic? 2018-06-26 19:52:48 "l love deadlines. | like the whooshing sound they make as they fly by” Douglas Adams
lilythepink ~ 2018-06-26 16:02:56 "Golf is a good walk spoiled” Mark Twain

lilythepink ~ 2018-06-26 16:37:23 “Life is one darned thing after another” Mark Twain

Footer goes here

Figure 10-2. The tables are populated, so the home page displays four quotes

380

CHAPTER 10 CREATE A MESSAGE BOARD

Listing 10-2a shows the code for producing the home page.

Listing 10-2a. Creating the Home Page for the Forum’s Website (index.php)

<?php // Start the session.
session_start() ;

2>

if (isset($ SESSION['member id']))
{ $menu = 1;}
else { $menu = 5; }

<!DOCTYPE html>
<html lang="en">
<head>

<title>Message Board Home Page</title>

<meta charset="utf-8">

<meta name="viewport" content=
"width=device-width, initial-scale=1, shrink-to-fit=no">

<!-- Bootstrap CSS File -->

<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/
bootstrap.min.css"
integrity="sha384-9gV04dYFwwiSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiulFw05q
RGvFX0dJZ4"
crossorigin="anonymous">

<link rel="stylesheet" type="text/css" href="msgboard.css">

</head>
<body>

<div class="container"
style="margin-top:30px;border: 2px black solid;">
<!-- Header Section -->
<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px;
background:linear-gradient(#0073e6, white); padding:10px;">
<?php include('includes/header.php'); ?>
</header>

<!-- Body Section -->

<div class="content mx-auto" id="contents">

<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<div class="col-sm-12">

<h4 class="text-center">
This home page shows a selection from our large collection
of quotations.</h4>
<h4 class="text-center">To view the whole collection,
please register. </h4>
<h5 class="text-center">You will then be able to contribute to
this message board by adding quotations.</h5>
<?php
// Connect to the database
require ('mysqli connect.php') ;
// Make the query
$query =
"SELECT user name,post date, subject, message FROM forum LIMIT 4" ;

381

CHAPTER 10 = CREATE A MESSAGE BOARD

$result = mysqli query($dbcon, $query) ;
if (mysqli_num rows($result) > 0)

?>
<table class="table table-responsive table-striped col-sm-12"
style="background: white;color:black; padding-left: 80px;">

<tr>
<th scope="col">Posted By</th>
<th scope="col">Subject</th>
<th scope="col">Message</th>
</tr>
<?php
while ($row = mysqli fetch array($result, MYSQLI ASSOC))
{
$user _name =
htmlspecialchars($row['user name'], ENT_QUOTES);
$post_date =
htmlspecialchars($row['post date'], ENT_QUOTES);
$message =
htmlspecialchars($row['message'], ENT_QUOTES);
echo '<tr>
<td scope="row">' . $user_name . '</td>
<td scope="row">' . $post date . '</td>
<td scope="row">"' . $message . '</td>
</tr>';
}

echo '</table>' ;
}
else { echo '<p class="text-center">
There are currently no messages.</p>' ; }
mysqli close($dbcon) ;
?>
</div>
</div>
<footer class="jumbotron row mx-auto" id="includefooter"
style="padding-bottom:1px; margin: Opx; padding-top:8px;
background-color:white;">
<div class="col-sm-12 text-center">
<?php include('includes/footer.php'); ?>
</div>
</footer>
</div>
</div>
</body>
</html>

The header uses a case statement that contains every horizontal menu button required by this chapter,

but various buttons will be disabled to suit each page.
Listing 10-2b gives the code for the home page header code segment for the index page.

382

CHAPTER 10 CREATE A MESSAGE BOARD

Listing 10-2b. Creating the Header for the Home Page (includes/header.php)

<meta name="viewport" content="width=device-width, initial-scale=1">
<script src=
"https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js">
</script>
<script src=
"https://cdnjs.cloudflare.com/ajax/1ibs/popper.js/1.14.0/umd/popper.min.js">
</script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.1.0/js/bootstrap.min.js">
</script>
<div class="col-sm-8">
<h1 class="mb-4 font-bold float-left" style="color:white">

<?php

if (lempty($ GET['name'])) {
$name =
filter var($ GET['name'], FILTER SANITIZE STRING);
echo $name;

}

else { echo "Quick Quotes"; }

2>

</h1>
</div>

<nav class="float-left navbar navbar-expand-xl navbar-trans navbar-light">
<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#collapsibleMenu">

</button>
<div class="btn-group btn-group-md collapse navbar-collapse navbar"
id="collapsibleMenu" role="group" aria-label="Button Group"> <?php
switch ($menu) {
case 1: //index.php
>
<button type="button" style="width: 110px;"
class="btn btn-secondary bg-primary disabled"
onclick="location.href = "">Home Page
</button>

<button type="button" style="width: 110px;"
class="btn btn-secondary bg-primary disabled"
onclick="location.href = "" >Login

</button>

<button type="button" style="width: 110px;"
class="btn btn-secondary bg-primary"
onclick="location.href =
'logout.php?name=Logout""
</button>

>Logout

<button type="button" style="width: 110px;"
class="btn btn-secondary bg-primary disabled"
onclick="location.href = "" >Register
</button>

383

CHAPTER 10 = CREATE A MESSAGE BOARD

<button type="button" style="width: 120px;"
class="btn btn-secondary bg-primary"
onclick="location.href =
'view_posts.php?name=Your Quotes'" >

Your Quotes

</button>

<button type="button" style="width: 120px;"
class="btn btn-secondary bg-primary"
onclick="location.href =

'post.php?name=Add A Quote'">Add A Quote
</button>

<button type="button" style="width: 120px;"
class="btn btn-secondary bg-primary"
onclick="location.href =
'forum_c.php?name=Comic Quotes'" >

Comic Quotes

</button>

<button type="button" style="width: 120px;"
class="btn btn-secondary bg-primary"
onclick="location.href =

'forum w.php?name=Wise Quotes'">

Wise Quotes

</button>

<button type="button" style="width: 120px;" class=
"btn btn-secondary bg-primary"
onclick="location.href =
'search.php?name=Search Quotes'" >
Search Quotes
</button>

<?php

break;

The header uses a horizontal menu to provide the maximum amount of room on the page for members’
postings and replies. The code segment shown in Listing 10-2b includes Bootstrap code to change the
menu to a “pancake menu” in smaller devices (cell phones). The first segment (case 1) of the case statement
demonstrates the status of the index page menu when the user is logged in. All buttons are enabled except
for the Login and Register buttons. If the user is not logged in, a different block of buttons (case 5, not
shown) will display only the login and register buttons as active (as shown in Figure 10-2).

<?php // Start the session.
session start() ;
if (isset($ SESSION[‘'member id']))
{ $menu = 1;}
else { $menu = 5; }
?>

384

CHAPTER 10 CREATE A MESSAGE BOARD

The top of the code for the index page (Listing 10-2a) includes the previous segment. This segment
determines which menu to display by searching for the member_id value. If it is present, the user has signed
in. The variable $menu is set to 1, which activates all buttons, except Login and Register. If the member_id
value does not exist, the user has not signed in. The variable $menu is set to 5. The menu block for case 5
(in the header.php file) activates only the Login and Register buttons.

Note At the moment, very few of the buttons work because we have not yet created the other pages.
This will be rectified later after we create some data.

The next step will be to create the registration page so that we can register some member data.

Creating the Registration Form

The registration form is a cut-down version of the form in Chapter 7. The form is shown in Figure 10-3.

Register

Home Page Login Logout Register Your Quotes Add A Quote Comic Quotes Wise Quotes Search Quotes

Registration

Iltems marked with an asterisk * are required
IMPORTANT: Do NOT use your real name for the username.
Terms and conditions: Your registration and all your messages will be immediately deleted

if you post unpl obscene or def y messages to the message board.
User Name™: User Name
E-mail™: Jsmith@outcook.com
Password*: sessssee

Between 8 and 12 characters.

Confirm Password*™: Confirm Password
Secret Question™: - Select - b
Answer™: Secret Answer

I'm not a robot e
— reCAPTEHA

Privacy+ Tema.
Footer goes here

Figure 10-3. The registration page

385

CHAPTER 10 = CREATE A MESSAGE BOARD

As previously mentioned, the username is not the actual name of the member but a pseudonym for the
purpose of logging in to the website anonymously.

Listing 10-3a shows the code for the registration form and inserts a record into the members table, and
Listing 10-3b gives the PHP code.

Listing 10-3a. Creating the Registration Page (safer-register-page.php)

<?php
$menu = 2;
if ($_SERVER['REQUEST METHOD'] == 'POST') {
//require("cap.php");
}
>
<!DOCTYPE html>
<html lang="en">
<head>
<title>Register Page</title>
<meta charset="utf-8">
<meta name="viewport" content=
"width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css
integrity=
"sha384-9gV04dYFwwhSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiul Fw05qRGVFX0d]Z4"
crossorigin="anonymous">
<script src="verify.js"></script>
<script src="https://www.google.com/recaptcha/api.js'></script>
</head>
<body>
<div class="container" style="margin-top:30px;border: 2px black solid;">
<!-- Header Section -->
<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px;
background:linear-gradient (#0073e6, white); padding:10px;
padding-right: 5px;">
<?php include('includes/header.php'); ?>

</header>

<!-- Body Section -->

<div class="content mx-auto" id="contents">

<div class="row mx-auto" style="padding-left: opx; height: auto;">
<div class="col-sm-12">

<h4 class="text-center">Registration</h4>

<h4 class="text-center">Items marked with an asterisk *

are required</h4>

<h6 class="text-center">IMPORTANT: Do NOT

use your real name for the username.</h6>

<h6 class="text-center">Terms and conditions:
Your registration and all your messages

will be immediately deleted </h6>

386

CHAPTER 10 CREATE A MESSAGE BOARD

<h6 class="text-center">if you post unpleasant, obscene or

defamatory messages to the message board.</h6>

<?php

try {

if ($_SERVER['REQUEST METHOD'] == 'POST') {

require('process-register-page.php');

} // End of the main Submit conditional.

>

<div class="col-sm-10">

<form action="safer-register-page.php" method="post"

onsubmit="return checked();" name="regform" id="regform">

<div class="form-group row">

<label for="user_name" class="col-sm-4 col-form-label text-right">
User Name*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="user name"
name="user name"

pattern="[a-zA-Z][a-zA-Z0-9\s]*" title=

"Alphabetic, numeric and space only max of 30 characters"
placeholder="User Name" maxlength="30" required
value=

"<?php if (isset($_POST['user name']))
echo htmlspecialchars($ POST['user name'], ENT QUOTES);
»"
</div>

</div>

<div class="form-group row">

<label for="email" class="col-sm-4 col-form-label text-right">

E-mail*:</label>

<div class="col-sm-8">

<input type="email" class="form-control" id="email"
name="email" placeholder="E-mail" maxlength="60"

required
value=
"<?php if (isset($_POST['email']))
echo htmlspecialchars($_POST['email'], ENT_QUOTES);
»H" >
</div>
</div>

<div class="form-group row">

<label for="password1" class="col-sm-4 col-form-label

text-right">Password*:</label>

<div class="col-sm-8">

<input type="password" class="form-control" id="password1"

name="password1"
pattern="(?=.*\d) (?=.*[a-z])(?=.*[A-Z2]).{8,12}"
title=

"One number, one upper, one lower, one special, with 8 to 12 characters"

placeholder="Password" minlength="8" maxlength="12" required
value=
"<?php if (isset($_POST['passwordi']))

387

CHAPTER 10 = CREATE A MESSAGE BOARD

echo htmlspecialchars($ POST['passwordi'], ENT QUOTES); ?>" >
Between 8 and 12 characters.
</div>
</div>
<div class="form-group row">
<label for="password2" class="col-sm-4 col-form-label text-right">
Confirm Password*:</label>
<div class="col-sm-8">
<input type="password" class="form-control" id="password2"
name="password2"
pattern="(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{8,12}"

title=

"One number, one uppercase, one lowercase letter, with 8 to 12 characters"
placeholder=

"Confirm Password" minlength="8" maxlength="12" required
value=

"<?php if (isset($_POST['password2']))
echo htmlspecialchars($ POST['password2'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="question" class="col-sm-4 col-form-label text-right">
Secret Question*:</label>
<div class="col-sm-8">
<select id="question" class="form-control">
<option selected value="">- Select -</option>
<option value="Maiden">Mother's Maiden Name</option>
<option value="Pet">Pet's Name</option>
<option value="School">High School</option>
<option value="Vacation">Favorite Vacation Spot</option>
</select>
</div>
</div>
<div class="form-group row">
<label for="secret" class="col-sm-4 col-form-label
text-right">Answer*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="secret" name="secret"
pattern="[a-zA-Z][a-zA-Z\s\.\,\-]*"
title="Alphabetic, period, comma, dash and space only max of 30
characters”
placeholder="Secret Answer" maxlength="30" required
value=
"<?php if (isset($_POST['secret']))
echo htmlspecialchars($ POST['secret'], ENT QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label class="col-sm-4 col-form-label"></label>
<div class="col-sm-8" style="padding-left: 80px;">
<div class="float-left g-recaptcha"

388

CHAPTER 10 CREATE A MESSAGE BOARD

data-sitekey=
"6LcrQ1wUAAAAAPX1TAKLUPdpY5qwS9rXF1j46Thg"></div>
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-3 col-form-label"></label>
<div class="col-sm-8 text-center">
<input id="submit" class="btn btn-primary" type="submit" name="submit"
value="Register">
</div>
</div>
</form>
</div>
</div>
</div>
<!-- Footer Section --»
<footer class="jumbotron row mx-auto" id="includefooter"
style="padding-bottom:1px; margin: Opx; padding-top:8px;
padding-left: opx; background-color:white;">
<div class="col-sm-12 text-center">
<?php include('includes/footer.php'); ?>
</div>
</footer>
</div>
</div>
<?php
}
catch(Exception $e) // We finally handle any problems here
{
// print "An Exception occurred. Message: " . $e->getMessage();
print "The system is busy please try later";
// $date = date('m.d.y h:i:s");
/! $errormessage = $e->getMessage();
// $eMessage = $date . " | Exception Error | " , $errormessage . |\n";
// error log($eMessage,3,ERROR_LOG);
// e-mail support person to alert there is a problem
// error_log("Date/Time: $date - Exception Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Exception Error \nFrom:
// Error Log <errorlog@helpme.com>" . "\r\n");

}

catch(Error $e)
{
// print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try later";
// $date = date('m.d.y h:i:s");
// $errormessage = $e->getMessage();
// $eMessage = $date . " | Error | " , $errormessage . |[\n";
// error_log($eMessage,3,ERROR_LOG);
// e-mail support person to alert there is a problem
// error log("Date/Time: $date - Error, Check error log for

389

CHAPTER 10 = CREATE A MESSAGE BOARD

//details", 1, noone@helpme.com, "Subject: Error \nFrom: Error Log
// <errorlog@helpme.com>" . "\r\n");
}
?>
</body>
</html>

Listing 10-3b. Checking the Registration Page (process-register-page.php)

<?php
define("ERROR_LOG","errors.log");
// Has the form been submitted?
try {
require ('mysqli_connect.php'); // Connect to the database
$errors = array(); // Initialize an error array.
[] mmmmmm check the entries-------------
// Trim the first name
$user_name = filter var($_POST['user_name'], FILTER_SANITIZE_STRING);
if (('empty($user name)) & (preg match('/[a-z0-9\s]/i',$user name)) &&
(strlen($user name) <= 30)) {
//Save the trimmed first name
$user nametrim = $user name;
telse{
$errors[] =
'First name missing or not alphabetic, numeric and space characters.
Max 30';
}
// Check that an email address has been entered
$emailtrim = filter var($_POST['email'], FILTER SANITIZE EMAIL);
if ((empty($emailtrim)) ||
(!filter var($emailtrim, FILTER VALIDATE EMAIL))
|| (strlen($emailtrim > 60))) {
$errors[] = 'You forgot to enter your email address’;
$errors[] = ' or the e-mail format is incorrect.';
}
// Check for a password and match against the confirmed password:
$passworditrim = filter var($ POST['passwordi'], FILTER SANITIZE STRING);
if (empty($passworditrim)){ //
$errors[] ='Please enter a valid password';
}
else {
if(!preg match(
"/h(2=%a-z]) (2= F[A-Z]) (2=.5\d) (2= ¥[#$@!%8*?])
[A-Za-z\d#$@!%8*?1{8,12}$/",
$passworditrim)) { //
$errors[] =
"Invalid password, 8 to 12 chars, one upper, one lower,
one number, one special.’;
} else

390

CHAPTER 10 CREATE A MESSAGE BOARD

{

$password2trim =

filter var($_POST['password2'], FILTER SANITIZE STRING);
if($passworditrim === $password2trim) { //
$password = $passworditrim;

telse{

$errors[] = 'Your two passwords do not match.';
$errors[] = 'Please try again';

}

}

}

//Is the secret present? If it is, sanitize it
$secret = filter var($_POST['secret'], FILTER SANITIZE STRING);
if (('empty($secret)) 8& (preg match('/[a-z\.\s\,\-]/i", $secret)) &&
(strlen($secret) <= 30)) {
//Sanitize the trimmed city
$secrettrim = $secret;
telse{
$errors[] =
'Missing city. Only alphabetic, period, comma, dash and space. Max 30.';
}
if (empty($errors)) { // If everything's OK.
// If no problems encountered, register user in the database
//Determine whether the email address has already been registered
$query = "SELECT user name FROM members WHERE email = ? ";
$q = mysqli_stmt_init($dbcon);
mysqli_stmt_prepare($q, $query);
mysqli_stmt_bind_param($q,'s', $emailtrim);
mysqli stmt execute($q);
$result = mysqli_stmt_get result($q);

if (mysqli_num_rows($result) == 0){
//The email address has not been registered
//already therefore register the user in the users table
e Valid Entries - Save to database -----
//Start of the SUCCESSFUL SECTION. i.e.
//all the required fields were filled out
$hashed_password = password_hash($password, PASSWORD DEFAULT);
// Register the user in the database...
// Register the user in the database...
$query =
"INSERT INTO members (member id, user name, email,
passcode, secret, reg date) ";
$query .= "VALUES(' ', ?, 2, 2, 2, NOW())";
$q = mysqli stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// use prepared statement to ensure that only text is inserted
// bind fields to SQL Statement
mysqli stmt bind param($q, 'ssss', $user nametrim, $emailtrim,
$hashed password, $secrettrim);
// execute query
mysqli stmt execute($q);

391

CHAPTER 10 = CREATE A MESSAGE BOARD

if (mysqli_stmt affected rows($q) == 1) {
header ("location: register-thanks.php");
} else {
// echo 'Invalid query:' . $dbcon->error;
$errorstring = "System is busy, please try later";
echo "<p class=" text-center col-sm-2' style='color:red'>$errorstring</p>";
}
}else{//The email address is already registered
$errorstring = 'The email address is already registered.';
echo "<p class=" text-center col-sm-2'
style="color:red'>$errorstring</p>";

}
} else {//End of SUCCESSFUL SECTION
/] —mmmmmmmme e Process User Errors---------------

// Display the users entry errors
$errorstring = 'Error! The following error(s) occurred: ';
foreach ($errors as $msg) { // Print each error.

$errorstring .= " - $msg
\n";
}
$errorstring .= 'Please try again.';

echo "<p class=" text-center col-sm-2'
style="color:red'>$errorstring</p>";

}// End of if (empty($errors)) IF.

}

catch(Exception $e) // We finally handle any problems here

{

// print "An Exception occurred. Message:

print "The system is busy please try later";

// $date = date('m.d.y h:i:s");

/! $errormessage = $e->getMessage();

// $eMessage = $date . " | Exception Error | " , $errormessage . [\n";

/! error_log($eMessage,3,ERROR_LOG);

// e-mail support person to alert there is a problem

// error_log("Date/Time: $date - Exception Error, Check error log for

//details", 1, noone@helpme.com, "Subject: Exception Error \nFrom:

//Exror Log <errorlog@helpme.com>" . "\r\n");

}

catch(Error $e)

{

// print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try later";

// $date = date('m.d.y h:i:s');

// $errormessage = $e->getMessage();

// $eMessage = $date . " | Error | " , $errormessage . |\n";
// error_log($eMessage,3,ERROR_LOG);

// e-mail support person to alert there is a problem

/! error_log("Date/Time: $date - Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Error \nFrom:
//Error Log <errorlog@helpme.com>" . "\r\n");

}

2>

. $e->getMessage();

392

CHAPTER 10 CREATE A MESSAGE BOARD

No explanation of the code is required because it is similar to the registration form in Chapter 7.

Note Most menu items are deactivated, leaving only the Home Page button active. The Register button on
the home page’s header will now work because it can link to our newly created registration page.

The “Thank You” Page

If the registration is successful, the “thank you” is displayed, as shown in Figure 10-4.

| Quick Quotes

Login Logout Register Your Quotes Add AQuote Comic Quotes Wise Quotes Search Quotes

Thank you for registering
On the Home Page, you will now be able to login
and add new quotes to the message board.

Footer goes here

Figure 10-4. The “thank you” page

Note The same block of buttons (case 2) is used in the “thank you” file as was used in safer-register-page.
php. Only the home page is active.

Listing 10-4 shows the code for the “thank you” page.

Listing 10-4. Creating the “Thank You” Page (register-thanks.php)

<?php
$menu = 2;
>
<!DOCTYPE html>
<html lang="en">
<head>
<title>Thank You Page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1,
shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwiSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiulFw05qRGVFX0dIZ4"
crossorigin="anonymous">

393

CHAPTER 10 = CREATE A MESSAGE BOARD

<link rel="stylesheet" type="text/css" href="msgboard.css">

</head>

<body>

<div class="container" style="margin-top:30px;border: 2px black solid;">

<!-- Header Section -->

<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px; background:linear-gradient(#0073e6, white); padding:10px;">
<?php include('includes/header.php'); ?>

</header>

<!-- Body Section -->

<div class="content mx-auto" id="contents">

<div class="row mx-auto" style="padding-left: oOpx; height: auto;">

<div class="col-sm-12">
<h4 class="text-center">Thank you for registering</h4>
<h5 class="text-center">On the Home Page, you will now be able to login</h5>
<h5 class="text-center">and add new quotes to the message board.</h5>

</div>

</div>

<footer class="jumbotron row mx-auto" id="includefooter"
style="padding-bottom:1px; margin: Opx; padding-top:8px; background-color:white;">
<div class="col-sm-12 text-center">

<?php include('includes/footer.php'); ?>

</div>

</footer>

</div>

</div>

</body>

Populating the Members Table

Now that you have a registration form, you can use the Register button in the header to register the members
given in Table 10-3, or you can import the downloadable SQL file.

Table 10-3. The Attributes for the members Table

User Name E-mail Address Password
lilythepink jsmith@myisp.co.uk BumB!3b33
giantstepl2 ndean@myisp.co.uk C3rtrldg@
mechanic7 jdoe@myisp.co.uk B@tt3ry4c3r
skivvy jsmith@outcook.com DO0gs0dy!2
mythking arthur@myisp.net Cam@10t4

The members will automatically have the default member_level value of zero. To save space, in this
tutorial we have not included administration facilities. If you want to add this feature, register a member
as an administrator with a member_level value of 1. Then provide them with admin pages as described in
earlier chapters. Without this feature, the webmaster will need to monitor the latest posts and remove any
offensive ones using phpMyAdmin.

Now that we have some registered members, they can log in.

394

CHAPTER 10 CREATE A MESSAGE BOARD

The Login Page

Figure 10-5 shows the login page.

Home Page Login Logout Register Your Quotes Add A Quote Comic Quotes Wise Quotes Search Quotes

Login

User ID: User ID

Password:

Password l

Between 8 and 12 characters.

I'm not a robot e
= = reCAPTCHA

Privacy + Toes.
Footer goes here

Figure 10-5. The login page

Listing 10-5a gives the code for the login page.
The header block (case 3) deactivates all buttons except for Register and Home Page. This code
processes the submissions from the login form.

Listing 10-5a. Creating the Login Page (login.php)

<?php

if ($_SERVER['REQUEST METHOD'] == 'POST") {
//require("cap.php");

}

$menu = 3;
>
<!DOCTYPE html>
<html lang="en">
<head>
<title>Login Page</title>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css”
integrity="sha384-9gV04dYFwwhSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">

395

CHAPTER 10 = CREATE A MESSAGE BOARD

<script src="https://www.google.com/recaptcha/api.js'></script>
<link rel="stylesheet" type="text/css" href="msgboard.css">
</head>
<body>
<div class="container"
style="margin-top:30px;border: 2px black solid;">
<!-- Header Section -->
<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px;
background:linear-gradient (#0073e6,whit1); padding:20px;">
<?php include('includes/header.php'); ?>
</header>
<!-- Body Section --»>
<div class="content mx-auto" id="contents">
<div class="row mx-auto" style="padding-left: opx; height: auto;">
<div class="col-sm-12">

<?php

if ($_SERVER['REQUEST METHOD'] == 'POST') { /141
require('process-login.php');

}

?>

<!-- Display the login form fields -->
<div class="col-sm-10">
<h3 class="h3 text-center">
<?php if(empty($errorstring)) { echo "Login"; }
else { echo $errorstring; }
?>
</h3>
<form action="login.php" method="post" name="loginform" id="loginform">
<div class="form-group row">
<label for="user name" class="col-sm-4 col-form-label text-right">
User ID:</label>
<div class="col-sm-6">
<input type="user name" class="form-control" id="user name"
name="user name"
placeholder="User ID" maxlength="30" size="30" required
value=
"<?php if (isset($_POST['user_name']))
echo htmlspecialchars($ POST['user name'], ENT_QUOTES); ?>" >
</div>
</div>
<div class="form-group row">
<label for="passcode" class="col-sm-4 col-form-label
text-right">Password:</label>
<div class="col-sm-6">
<input type="password" class="form-control" id="passcode"
name="passcode"
pattern="(?=.*\d) (?=.*[a-z])(?=.*[A-Z]).{8,12}"
title="One number, one upper, one lower, one special,
with 8 to 12 characters"”
placeholder="Password" minlength="8" maxlength="12"

396

CHAPTER 10 CREATE A MESSAGE BOARD

required
value=
"<?php if (isset($_POST['passcode']))
echo htmlspecialchars($_POST['passcode'], ENT_QUOTES); 2>" >
Between 8 and 12 characters.
</div>
</div>
<div class="form-group row">
<label class="col-sm-4 col-form-label"></label>
<div class="col-sm-8" style="padding-left: 80px;">
<div class="float-left g-recaptcha" data-sitekey=
"6LcrQ1wUAAAAAPXITAKLUPdpY5qwS9TXF1j46Thqg" ></div>
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-3 col-form-label"></label>
<div class="col-sm-8 text-center">
<input id="submit" class="btn btn-primary" type="submit" name="submit"
value="Login">
</div>
</div>
</form>
</div>
</div>
</div>
<footer class="jumbotron row mx-auto" id="includefooter"
style="padding-bottom:1px; margin: Opx; padding-left: Opx;
padding-top:8px; background-color:white;">
<div class="col-sm-12 text-center">
<?php include('includes/footer.php"); 2>
</div>
</footer>
</div>
</div>
</body>
</html>

Explanation of the Code
You have seen all the code before, but the line numbered #1 refers to a file that needs explaining.
if ($_SERVER['REQUEST METHOD'] == 'POST") { //#1

require('process-login.php');
}

The file named process-login.php launches the login process. The code for this is given in Listing 10-5b.

397

CHAPTER 10 = CREATE A MESSAGE BOARD

Listing 10-5b. Creating the Code for Processing the Login (process_login.php)

<?php
define('ERROR_LOG',"errors.log");
// This section processes submissions from the login form
// Check if the form has been submitted:
if ($_SERVER['REQUEST METHOD'] == 'POST") {
//connect to database
try {
require ('mysqli_connect.php');
// Check that user name has been entered
$user name = filter var($_POST['user name'], FILTER SANITIZE STRING);
if ((empty($user name))
|| (strlen($user name > 30))) {
$errors[] = 'You forgot to enter your User ID';
$errors[] = ' or the User ID format is incorrect.';

}
// Check for a password and match against the confirmed password:
$password = filter var($_POST['passcode'], FILTER_SANITIZE_STRING);
//$string length = strlen($password);
if (empty($password)){

$errors[] ='Please enter a valid password';
}

else {
if(!preg match(
"/r(2=*[a-z2]) (2= F[A-Z]) (2=.K\d) (7= ¥ [#$@!%8*?]) [A-Za-Z\d#$@! %8*?]{8,12}$/ ",
$password)) {
$errors[] = 'Invalid password, 8 to 12 chars, one upper, one lower, one
number, one special.’;
}
}
if (empty($errors)) { // If everything's OK.
// Retrieve the user_id, psword, first name and user level for that
// email/password combination
$query = "SELECT member id, passcode, user name FROM members ";
$query .= "WHERE user_name=?";
$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// bind $user name to SQL Statement
mysqli stmt bind param($q, "s", $user name);
// execute query
mysqli_stmt_execute($q);
$result = mysqli stmt get result($q);
$row = mysqli fetch array($result, MYSQLI NUM);
if (mysqli_num rows($result) == 1) {
//if one database row (record) matches the input:-
// Start the session, fetch the record and insert the
// values in an array
if (password verify($password, $row[1])) {
session_start();
$ SESSION['member id'] = $row[0];

398

CHAPTER 10 CREATE A MESSAGE BOARD

$ SESSION['user name'] = $row[2] ;
header ('Location: forum.php') ;
} else { // No password match was made.
$errors[] = 'User ID/Password entered does not match our records. ';
$errors[] = 'Perhaps you need to register, just click the Register ';

$errors[] = 'button on the header menu';
}
} else { // No e-mail match was made.
$errors[] = 'User ID/Password entered does not match our records. ';
$errors[] = 'Perhaps you need to register, just click the Register ';
$errors[] = 'button on the header menu';

}

}
if (lempty($errors)) {

}

$errorstring = "Error!
 The following error(s) occurred:
";
foreach ($errors as $msg) { // Print each error.

$errorstring .= " $msg
\n";
}

$errorstring .= "Please try again.
";
}// End of if (lempty($errors)) IF.

catch(Exception $e) // We finally handle any problems here

// print "An Exception occurred. Message:
print "The system is busy please try later";

// $date = date('m.d.y h:i:s");

/! $errormessage = $e->getMessage();

// $eMessage = $date . " | Exception Error | " , $errormessage . |\n";
// error log($eMessage,3,ERROR_LOG);

// e-mail support person to alert there is a problem

// error log("Date/Time: $date - Exception Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Exception Error \nFrom:

// Error Log <errorlog@helpme.com>" . "\r\n");

. $e->getMessage();

catch(Error $e)

{

// print "An Error occurred. Message: " . $e->getMessage();
print "The system is busy please try later";

// $date = date('m.d.y h:i:s");

// $errormessage = $e->getMessage();

// $eMessage = $date . " | Error | " , $errormessage . |\n";
// error_log($eMessage,3,ERROR_LOG);

// e-mail support person to alert there is a problem

// error log("Date/Time: $date - Error, Check error log for
//details", 1, noone@helpme.com, "Subject: Error \nFrom:

// Error Log <errorlog@helpme.com>" . "\r\n");

399

CHAPTER 10 * CREATE A MESSAGE BOARD

The validation is the same as in previous chapters. It displays error messages in the event of an
unsuccessful login.

Logging Out

Logging out is an important security feature. Unless the user logs out (or closes their browser), the session is
still active, and someone could access and change information. Listing 10-5c shows the code for the logout

page.

Listing 10-5c. Creating the Logout File (logout.php)

<?php
session start();//access the current session.
// if no session variable exists then redirect the user
if (!isset($ SESSION['member id'])) {
header("location:index.php");
exit();
//cancel the session and redirect the user:
telse{ //cancel the session
$_SESSION = array(); // Destroy the variables
$params = session get cookie params();
// Destroy the cookie
setcookie(session name(), ", time()-42000,
$params["path"], $params["domain"],
$params["secure"], $params["httponly"]);
if (session status() == PHP_SESSION ACTIVE) {
session destroy(); } // Destroy the session itself
header("location:index.php");

}

Once the user is logged out, they can access only the login or registration pages and the home page. The
login page, described earlier, redirects registered users to the forums page, where they can choose which
forum to view. The forum page is described next.

Creating a Gateway to a Choice of Quotes

The gateway page enables members to choose which category to view, as shown in Figure 10-6.

| Quick Quotes

Home Page Login Logout Register Your Quotes Add A Quote Comic Quotes Wise Quotes Search Qu

Thanks for logging in. Choose a forum from the menu above.

Footer goes here

Figure 10-6. The forum.php page allows the user to choose which category of quote to view

400

CHAPTER 10 CREATE A MESSAGE BOARD

Listing 10-6 gives the code for the gateway page.
The header block (case 4 of header.php) activates all buttons except Login and Register since the user is
now logged in.

Listing 10-6. Creating a Gateway to the Two Categories (forum.php)

<?php
// Start the session.
session start() ;
//Redirect if not logged in.
if (!isset($ SESSION[‘'member id']))
{ header("Location: login.php");
exit(); }
$menu = 4;
>
<!DOCTYPE html>
<html lang="en">
<head>
<title>Thank You Page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,
initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity="sha384-9gV04dYFwwiSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiul
FwO5qRGVFX0dJZ4"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="msgboard.css">
</head>
<body>
<div class="container" style="margin-top:30px;border:
2px black solid;">
<!-- Header Section -->
<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px;
background:linear-gradient (#0073e6,white); padding:10px;">
<?php include('includes/header.php'); ?>
</header>
<!-- Body Section -->
<div class="content mx-auto" id="contents">
<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<div class="col-sm-12">
<h4 class="text-center">Thanks for logging in.
Choose a forum from the menu above.</h4>
</div>
</div>
<footer class="jumbotron row mx-auto" id="includefooter"
style="padding-bottom:1px; margin: Opx; padding-top:8px;
background-color:white;">

401

CHAPTER 10 * CREATE A MESSAGE BOARD

<div class="col-sm-12 text-center">
<?php include('includes/footer.php'); ?>

</div>
</footer>
</div>
</div>
</body>
</html>

Before we create the two forum pages, we need to have some quotations to display in the forum pages.
We will now create a form so that we can enter some quotations.

The Form for Posting Quotations

Figure 10-7 shows the posting form.

| Add A Quote

Home Page Login

Post a Quotation

Choose the Subject™: - Select -

Please enter your quote below

_| I'm not a robot vt

reCAPTCHA
Submit

Puivacy « Trma.
Footer goes here

Figure 10-7. The form for posting quotations

You can use the word Subject oy, if you want, you can replace it with Category. In this tutorial, they are
synonymous. A pull-down menu is used for the subject for two reasons.

e We assumed that the message board owner wants to limit the number of subjects
(categories) because the owner does not want members to create new subjects.
Members will instead add new quotations to either the Comical Quotations subject
or the Wise Quotations subject.

e The spelling needs to be consistent. A pull-down menu guarantees this. An owner
can, of course, add new subjects (categories) to the pull-down menu.

402

CHAPTER 10 CREATE A MESSAGE BOARD

Listing 10-7a gives the code for the posting page.
The included header block (case 8 of header.php) activates all buttons except Login, Logout, and Add a
Quote.

Listing 10-7a. Creating the Form for Posting New Quotations (post.php)

<?php

// Start the session.

session start() ;

// Redirect if not logged in.

if (!isset($ _SESSION['member id']))
{ header("Location: login.php");

exit(); }

$menu = 8;

if ($_SERVER['REQUEST METHOD'] == 'POST') {
//require("cap.php");

}

>
<!DOCTYPE html>
<html lang="en">
<head>
<title>Post A Quote Page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwhSjIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<script src="https://www.google.com/recaptcha/api.js'></script>
<link rel="stylesheet" type="text/css" href="msgboard.css">

</head>

<body>
<div class="container" style="margin-top:30px;border: 2px black solid;">
<!-- Header Section --»

<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px; background:1linear-gradient(#0073e6,white); padding:10px;">
<?php include('includes/header.php'); ?>

</header>

<!-- Body Section -->

<div class="content mx-auto" id="contents">

<div class="row mx-auto" style="padding-left: Opx; height: auto;">

<div class="col-sm-10" style="padding-top: 20px;">
<h4 class="text-center">Post a Quotation</h4>

<!-- Display the form fields-->

<form id="post_form" action="process post.php" method="post" accept-charset="utf-8" >
<div class="form-group row">

<label for="question" class="col-sm-4 col-form-label text-right">

Choose the Subject*:</label>

403

CHAPTER 10 = CREATE A MESSAGE BOARD

<div class="col-sm-8">
<select id="subject" name="subject" class="form-control">
<option selected value="">- Select -</option>
<option value="Comic Quotes">Comic Quotes</option>
<option value="Wise Quotes">Wise Quotes</option>
</select>
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-4 col-form-label text-right"></label>
<div class="col-sm-8 text-center">
<label for="message">Please enter your quote below</label>
<textarea class="form-control" id="message" name="message" rows="5"
cols="50"
value=
"<?php if (isset($_POST['message']))
echo htmlspecialchars($ POST['message'], ENT_QUOTES); ?>" >
</textarea>
</div>
<div>
<div class="form-group row">
<label class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<div class="g-recaptcha" style="margin-left: 90px;"
data-sitekey="6LcrQIwUAAAAAPX1TAKLUPdpY5qwS9rXF1j46fhq"></div>
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-3 col-form-label"></label>
<div class="col-sm-8 text-center" style="padding-left: 40px;">
<input id="submit" class="btn btn-primary" type="submit" name="submit"
value="Submit">
</div>
</div>
</form>
</div>
<!--posting an entry into the database table automatically sends a message to the forum
moderator #1
// Assign the subject-->
<!--<?php
$subject = "Posting added to message board";
$member = isset($ SESSION['user name']) ? $ SESSION['user name'] : "";
$body = "Posting added by " . $member;
mail("admin@myisp.co.uk", $subject, $body, "From:admin@myisp.co.uk\r\n");
?2>-->
</div>
</div>
<footer class="jumbotron row mx-auto" id="includefooter"
style="padding-bottom:1px; margin: Opx; padding-top:8px; background-color:white;">
<div class="col-sm-12 text-center">
<?php include('includes/footer.php'); ?>
</div>

404

CHAPTER 10 CREATE A MESSAGE BOARD

</footer>
</div>
</body>
</html>

Explanation of the Code

This section explains the code.

<!--posting an entry into the database table automaticlally sends a message to the forum
moderator #1
// Assign the subject-->
<!--<?php

$subject = "Posting added to message board";

$member = isset($ SESSION['user name']) ? $ SESSION['user name'] : "";

$body = "Posting added by " . $member;

mail("admin@myisp.co.uk", $subject, $body, "From:admin@myisp.co.uk\r\n");
2>-->

Whenever a new quote is added to the forum, an e-mail is sent to an administrator. The administrator
should then review the posting to ensure that it is appropriate. As noted before, the forum provider is
responsible for the content of the forum. In the example, this e-mail section is commented out because this
code will work only if the forum is loaded on a web server that provides PHP e-mail services.

The e-mail in this example is kept possible. The PHP function mail() has the following format: mail (to,
subject, body, from).

The to and from must be e-mail addresses. The variables can be basic, like $subject is in this example,
or it can be complex. In this listing, the username of the person posting the message is pulled from the
session and then concatenated with some text to form the body of the e-mail. The items subject, to, and from
create the header of the e-mail. The header is the top section of the e-mail; the body is the window below the
header. The resulting e-mail will look like Table 10-4.

Table 10-4. The Appearance of the E-mail

From: admin@myisp.co.uk
Date: 02 August 2018 17:26
To: admin@myisp.co.uk
Subject: Posting added to Quick Quotes message board

Posting added by lilythepink

Naturally, you must replace the dummy e-mail addresses with your own. Note that the two e-mail
addresses are the same when sending an e-mail to yourself.

The database can, of course, be moderated by an administrator who is familiar with phpMyAdmin;
however, it would be good to create a user-friendly administration facility for someone who is not familiar
with phpMyAdmin. (Review the previous chapters, especially Chapter 3, for instructions on creating
administration pages.) A user-friendly administration page allows the administrator to view a table of the
latest posts. This table would have Delete and Edit links as described in Chapter 3. Optionally, an additional
field could be added to the forum table to indicate which posts are approved. Then only approved quotes
could be displayed. This would not allow any unapproved posts to be displayed.

405

CHAPTER 10 = CREATE A MESSAGE BOARD

Note E-mails will not be sent and received using your computer unless a PHP e-mail service is provided.

When purchasing a host environment, make sure that PHP e-mail is included.

Processing the Postings
Listing 10-7b gives the code for process_post.php.

Listing 10-7b. Creating the File for Processing the Postings (process_post.php)

<?php
// Start the session.
session_start() ;
// Redirect if not logged in.
if (!isset($ _SESSION['member id']))
{ header("Location: login.php");
exit(); }
//Connect to the database
require ('mysqli_connect.php') ;
// Has the form been submitted?
if ($_SERVER['REQUEST METHOD'] == 'POST")
{
// Check that the user has entered a subject and a message
$subject = filter var($ POST['subject'], FILTER _SANITIZE STRING);
if (empty($subject)) { echo 'You forgot to select a subject.'; }

$comment = filter var($_POST['message'], FILTER_SANITIZE_STRING);
if (('empty($comment)) 8& (strlen($comment) <= 480)) {
// remove ability to create link in email
$patterns = array("/http/", "/https/", "/\:/","/NIN//T, " waw. / ")
$commenttrim = preg replace($patterns,” ", $comment);
telse{ // if comment not valid display error page
echo "You forgot to enter a message";
}

// If successful insert the post into the database table
if(lempty($commenttrim) 8& !empty($subject))
{

//Make the insert query

$query = "INSERT INTO forum (post id, user name, subject, message,
post date) ";

$query .= "VALUES(' ', ?, ?, 2, NOW())";

$q = mysqli_stmt_init($dbcon);

mysqli stmt prepare($q, $query);

// use prepared statement to ensure that only text is inserted

// bind fields to SQL Statement

$user_name = filter var($_SESSION['user name'], FILTER SANITIZE STRING);
mysqli stmt _bind param($q, 'sss', $user name, $subject, $commenttrim);

// execute query
mysqli_stmt_execute($q);

406

#1

#2

CHAPTER 10 CREATE A MESSAGE BOARD

if (mysqli_stmt affected rows($q) == 1) {
header ("Location: post thanks.php");
}

else

{
}

// Close the database connection
mysqli close($dbcon) ;

}

2>

echo "An Error has occurred in loading your posting";

Explanation of the Code

This section explains the code.

// Check that the user has entered a subject and a message #1
$subject = filter var($ POST['subject'], FILTER SANITIZE STRING);
if (empty($subject)) { echo 'You forgot to select a subject.'; }

$comment = filter var($ POST['message'], FILTER _SANITIZE STRING);

if (('empty($comment)) 8& (strlen($comment) <= 480)) {
// remove ability to create link in email
$patterns = array("/http/", "/https/", "/\:/"," /NN, W /")
$commenttrim = preg replace($patterns,” ", $comment);

The text area (as is all information coming from users) for messages is a magnet for malevolent people
wanting to insert dangerous scripts. Therefore, special security filters must be built into the code. The
message in the textarea (and subject) is cleaned by using the filter_var function with the FILTER_SANITIZE _
STRING parameter. This makes the entry harmless. The use of a prepared statement also ensures that the
string passed is handed as text and cannot cause harm.

You have met filter_var and FILTER_SANITIZE_STRING many times before. It will remove any
unwanted characters, including apostrophes.

//Make the insert query #2
$query = "INSERT INTO forum (post id, user name, subject, message, post date) ";
$query .= "VALUES(' ', ?, 7, 2, NOW())";
$q = mysqli_stmt_init($dbcon);
mysqli_stmt_prepare($q, $query);
// use prepared statement to ensure that only text is inserted
// bind fields to SQL Statement
$user name = filter var($ SESSION['user name'], FILTER SANITIZE STRING);
mysqli stmt bind param($q, 'sss', $user name, $subject, $commenttrim);
// execute query
mysqli_stmt_execute($q);
if (mysqli_stmt affected rows($q) == 1) {
header ("Location: post thanks.php");

407

CHAPTER 10 = CREATE A MESSAGE BOARD

The prepared insert statement uses the filtered session user_name, the previously filtered subject,
and the previously filtered quote ($commenttrim). If for some reason the variables still contain harmful
data, the prepared statement will use them as text and will not execute any code. Although the entries are
now harmless from a security standpoint, they might still contain characters or information that is not
appropriate for the message board. The administrator can correct the data or remove the posting.

Posting Some Quotations

Now that we have a form for inserting postings into the forum table, we will post the quotations shown in
Table 10-5. You can also use phpMyAdmin to import the SQL file from the chapter download files. As each
quotation is posted, you will be redirected to the forum page. However, you will not be able to view the
quotations yet because we have not created the two pages for displaying them.

Table 10-5. Post Some Quotations

Log In As...

Subject (aka Forum) Message

lilythepink
mechanic7

lilythepink
lilythepink
giantstep12

mythking
mythking
mythking

mythking
giantstep12

giantstep12
giantstep12

mechanic?

lilythepink

mechanic?

Wise Quotes

Comical Quotes

Comical Quotes
Comical Quotes

Comical Quotes

Wise Quotes

Wise Quotes

Comical Quotes

Wise Quotes

Wise Quotes

Comical Quotes

Comical Quotes

Comical Quotes

Wise Quotes

Wise Quotes

“Adversity causes some men to break: others to break records.”
William Arthur Ward

“I'love deadlines. I like the whooshing sound they make as they fly
by.” Douglas Adams

“Golfis a good walk spoiled.” Mark Twain
“Life is one darned thing after another” Mark Twain

“Give me golf clubs, fresh air and a beautiful partner and you can
keep the golf clubs and fresh air” Jack Benny

“Nothing great was ever achieved without great enthusiasm.” Ralph
Waldo Emerson

“Wise sayings often fall on barren ground, but a kind word is never
thrown away.” Arthur Helps

“Many a small thing has been made large by the right kind of
advertising” Mark Twain

“To do two things at once is to do neither” Publilius Syrus

“Anyone who has never made a mistake has never tried anything
new.” Albert Einstein

“Experience is simply the name we give our mistakes.” Oscar Wilde

“If you want to recapture your youth, just cut off his allowance.” Al
Bernstein

“Technological progress has merely provided us with a more efficient
means for going backwards.” Aldous Huxley

“Real knowledge is to know the extent of one’s ignorance.” Confucius

“It is amazing what you can accomplish if you do not care who gets
the credit” Harry S. Truman

408

CHAPTER 10 CREATE A MESSAGE BOARD

Remember The date and time of the postings will be added automatically.

When you have some quotations to display, they will appear on the home page (shown earlier in
Figure 10-2).

The Comical Quotes Page

Figure 10-8 shows the comical quotes page.

Comic Quotes

Home Page Logout Register Yo otes Add AQuote | ComicQuotes Wise Quotes Search Quotes
Comic Quotes
PostedBy Forum Quotation
mechanic7 2018-06-26 “llove deadlines. | like the whooshing sound they make as they fly by" Douglas Adams
19:52:48
litlythepink ~ 2018-06-26 “Golf is a good walk spoiled" Mark Twain
16:02:56
lilythepink ~ 2018-06-26 “Life is one darned thing after another” Mark Twain
16:37:23
giantstep12 2018-06-26 Jack Benny once said "Give me golf clubs, fresh air and a beautiful partner and you can keep the golf clubs
18:17:54 and fresh air”
miythking 2018-07-03 “Many a small thing has been made large by the right kind of advertising" Mark Twain
17:46:04
giantstep12 2018-07-04 “Experience is simply the name we give our mistakes” Oscar Wilde
11:04:22
giantstep12 2018-07-04 “If you want to recapture your youth, just cut off his allowance" Al Bernstein
11:30:52
mechanic7 2018-07-04 "Technological prog has merely provided us with a more efficient means for going backwards" Aldous
15:01:34 Huxley
Footer goes here

Figure 10-8. The comical quotes page

The code given in Listing 10-8 selects only the comical quotes from the database forum table.

409

CHAPTER 10 = CREATE A MESSAGE BOARD

Listing 10-8. Creating the Comical Quotes Page (forum_c.php)

<?php // Start the session.
session_start() ;
// Redirect if not logged in.
if (!isset($ _SESSION['member id']))
{ header("Location: login.php");
exit(); }
$menu = 9;
>
<IDOCTYPE html>
<html lang="en">
<head>
<title>Message Board Home Page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-
fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwhSjIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="msgboard.css">
</head>
<body>
<div class="container" style="margin-top:30px;border: 2px black solid;">
<!-- Header Section --»
<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px; background:linear-gradient(#0073e6,white);
padding:10px;">
<?php include('includes/header.php'); ?>
</header>
<!-- Body Section -->
<div class="content mx-auto" id="contents">
<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<div class="col-sm-12">
<h4 class="text-center">Comic Quotes</h4>
<?php
// Connect to the database
require ('mysqli_connect.php') ;

// Make the query #1
$query = "SELECT user name,post_date,subject,message FROM forum WHERE ";
$query .= "subject = 'Comical Quotes' ORDER BY 'post date' ASC";

$result = mysqli query($dbcon, $query) ;
if (mysqli_num rows($result) > 0)

>

<table class="table table-responsive table-striped col-sm-12"
style="background: white;color:black; padding-left: 20px;">

410

CHAPTER 10 CREATE A MESSAGE BOARD

<tr>
<th scope="col">Posted By</th>
<th scope="col">Forum</th>
<th scope="col">Quotation</th>
</tr>
<?php
while ($row = mysqli fetch array($result, MYSQLI ASSOC))
{
$user name = htmlspecialchars($row['user name'], ENT QUOTES);
$post_date = htmlspecialchars($row['post date'], ENT QUOTES);
$message = htmlspecialchars($row['message'], ENT _QUOTES);
echo '<tr>
<td scope="row">' . $user name . '</td>
<td scope="row">' . $post_date . '</td>
<td scope="row">' . $message . '</td>
</tr>';
}

echo '</table>' ;
}
else { echo 'There are currently no messages.' ; }
mysqli_close($dbcon) ;
>
</div>
</div>
<footer class="jumbotron row mx-auto" id="includefooter"
style="padding-bottom:1px; margin: Opx; padding-top:8px; background-color:white;">
<div class="col-sm-12 text-center">
<?php include('includes/footer.php'); ?>
</div>
</footer>
</div>
</div>
</body>
</html>

Explanation of the Code

Most of the code in Listing 10-8 will be familiar, and there are comments in the listing to remind you of
important code lines.
We will now examine line #1:

// Make the query #1
$query = "SELECT user name,post date,subject,message FROM forum WHERE ";
$query .= "subject = 'Comical Quotes' ORDER BY 'post date' ASC";

The query selects only the comical quotes from the forum table. The quotes will be sorted in ascending
order of posting—that is, oldest first.

411

CHAPTER 10 = CREATE A MESSAGE BOARD

The Header for the Comical Quotes Page

After viewing the comical quotes page, the user may also want to view the Wise Quotes page or insert their
own quote. To enable the user to do this, the header block (case 9 of header.php), shown next, activates all
buttons except Login, Register, and Comic Quotes. For the moment, several of these buttons will be inactive
because we have not yet designed the relevant pages.

The buttons to be displayed are shown in the code snippet from header.php as follows:

case 9: //forum_c.php
>

<button type="button" style="width: 110px;"
class="btn btn-secondary bg-primary"
onclick="location.href =
"index.php?name=Quick Quotes'">
Home Page

</button>

<button type="button" style="width: 110px;" class=
btn btn-secondary bg-primary disabled"
onclick="location.href = "" >Login
</button>

<button type="button" style="width: 110px;"
class="btn btn-secondary bg-primary"
onclick="location.href =
"logout.php?name=Logout'"
</button>

>Logout

<button type="button" style="width: 110px;" class=
"btn btn-secondary bg-primary disabled"
onclick="location.href = "" >Register
</button>

<button type="button" style="width: 120px;"
class="btn btn-secondary bg-primary"
onclick="location.href =
'view_posts.php?name=Your Quotes''
</button>

>Your Quotes

<button type="button" style="width: 120px;"
class="btn btn-secondary bg-primary"
onclick="location.href = 'post.php?name=Add A Quote'">
Add A Quote

</button>

<button type="button" style="width: 120px;" class=
"btn btn-secondary bg-primary disabled"
onclick="location.href = "" >Comic Quotes
</button>

412

CHAPTER 10 CREATE A MESSAGE BOARD

<button type="button" style="width: 120px;"
class="btn btn-secondary bg-primary"
onclick="location.href =
"forum_w.php?name=Wise Quotes
</button>

>Wise Quotes

<button type="button" style="width: 120px;"
class="btn btn-secondary bg-primary"
onclick="location.href =
'search.php?name=Search Quotes"'

>Search Quotes

</button>
<?php
break;
The Wise Quotes Page

This page is almost the same as the Comical Quotes page except for the SQL query. Also, the Wise Quotes
button is disabled, and the Comical Quotes button is enabled. Figure 10-9 shows the Wise Quotes page.

Wise Quotes

Home Page Login Register Your Qi Add A Quote ComicQ s Wise Quotes = Search Quotes

Wise Quotes
Posted By Forum Quotation
litythepink 2018-07-02 21:21:34 "Adversity causes some men to break: others to break records” William Arthur Ward
miythking 2018-07-03 12:29:31 "Mothing great was ever achieved without great enthusiasm" Ralph Waldo Emerson
mythking 2018-07-03 12:31:48 "Wise sayings often fall on barren ground, but a kind word is never thrown away” Arthur Helps
mythking 2018-07-03 17:52:20 "To do two things at once is to do neither” Publilius Syrus
giantstep12 2018-07-03 20:33:01 "Anyone who has never made a mistake has never tried anything new" Albert Einstein
litythepink 2018-07-06 11:51:21 "Real knowledge is to know the extent of one’s ignorance” Confucius

mechanic7 2018-07-06 12:03:55 "It is amazing what you can accomplish if you do not care who gets the credit” Harry. 5. Truman

Footer goes here

Figure 10-9. A display of wise quotations

The page displays only the wise quotes. Listing 10-9 gives the code for the Wise Quotes page.

413

CHAPTER 10 = CREATE A MESSAGE BOARD

Listing 10-9. Creating the Wise Quotes Page (forum_w.php)

<?php // Start the session.

session_

start() ;

// Redirect if not logged in.
if (!isset($ _SESSION['member id']))

$menu =
2>

{ header("Location: login.php");
exit(); }
10;

<IDOCTYPE html>
<html lang="en">

<head>

</head>
<body>

414

<title>Message Board Home Page</title>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">

<!-- Bootstrap CSS File -->

<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity="sha384-9gVQ4dYFwwiSjIDZnLEWnXCjeSWFphJiwGPXr1jddIhOegiulFw05q
RGvFX0dJz4"
crossorigin="anonymous">

<link rel="stylesheet" type="text/css" href="msgboard.css">

<div class="container" style="margin-top:30px;border: 2px black solid;">

<!-- Header Section -->

<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px; background:linear-gradient(#0073e6,white);
padding:10px;">
<?php include('includes/header.php'); ?>

</header>

<!-- Body Section -->

<div class="content mx-auto" id="contents">

<div class="row mx-auto" style="padding-left: opx; height: auto;">

<div class="col-sm-12">
<h4 class="text-center">Wise Quotes</h4>
<?php
// Connect to the database
require ('mysqli_connect.php') ;
// Make the query #1
$query = "SELECT user_name,post_date,subject,message FROM forum ";
$query .= "WHERE subject = 'Wise Quotes' ORDER BY 'post date' ASC";
$result = mysqli_query($dbcon, $query) ;
if (mysqli_num_rows($result) > 0)

?>
<table class="table table-responsive table-striped col-sm-12"
style="background: white;color:black; padding-left: 50px;">
<tr>
<th scope="col">Posted By</th>
<th scope="col">Forum</th>

CHAPTER 10 CREATE A MESSAGE BOARD

<th scope="col">Quotation</th>

</tr>
<?php
while ($row = mysqli_fetch_array($result, MYSOLI_ASSOC))
{
$user name = htmlspecialchars($row['user name'], ENT QUOTES);
$post_date = htmlspecialchars($row['post date'], ENT QUOTES);
$message = htmlspecialchars($row['message'], ENT_QUOTES);
echo '<tr>
<td scope="row">' . $user name . '</td>
<td scope="row">' . $post_date . '</td>
<td scope="row">"' . $message . '</td>
</tr>';
}

echo '</table>"' ;

else { echo 'There are currently no messages.' ; }
mysqli close($dbcon) ;
>
</div>
</div>
<footer class="jumbotron row mx-auto" id="includefooter"
style="padding-bottom:1px; margin: Opx; padding-top:8px; background-color:white;">
<div class="col-sm-12 text-center">
<?php include('includes/footer.php'); ?>
</div>
</footer>
</div>
</div>
</body>
</html>

Explanation of the Code

The code is almost identical to the listing for the Comical Quotes forum page, except for the items shown
here:

// Make the query #1

$query = "SELECT user name,post_date,subject,message FROM forum ";
$query .= "WHERE subject = 'Wise Quotes' ORDER BY 'post_date' ASC";

The query selects only the records where the subject is “Wise Quotes.” The quotes will be sorted in
ascending order of posting—that is, oldest first.

As with the comical quotes page, a new header block (case 10 of header.php) will allow the user to
redirect to the Comical Quotes page.

415

CHAPTER 10 = CREATE A MESSAGE BOARD

The Header for the Wise Quotes Page

The header block is identical to the header block for the Comical Quotes page except that the Wise Quotes
button is deactivated, and the Comical Quotes button is activated. Note that the View your Posts and Search
buttons will not work yet because the relevant pages have not been created.

case 10: //forum w.php

>
<button type="button" style="width: 110px;" class="btn btn-secondary
bg-primary"
onclick="location.href = 'index.php?name=Quick Quotes'">
Home Page
</button>

<button type="button" style="width: 110px;'
bg-primary disabled"

onclick="location.href =
</button>

class="btn btn-secondary

>Login

<button type="button" style="width: 110px;'
bg-primary"

onclick="location.href = 'logout.php?name=Logout
</button>

class="btn btn-secondary

>Logout

<button type="button" style="width: 110px;"
bg-primary disabled"

onclick="location.href =
</button>

class="btn btn-secondary

>Register

<button type="button" style="width: 120px;" class="btn btn-secondary
bg-primary"
onclick="location.href = 'view posts.php?name=Your Quotes'" >
Your Quotes
</button>
<button type="button" style="width: 120px;"
bg-primary"
onclick="location.href = 'post.php?name=Add A Quotes'">
Add A Quote
</button>

class="btn btn-secondary

<button type="button" style="width: 120px;"
bg-primary"
onclick="location.href = 'forum_c.php?name=Comic Quotes'" >
Comic Quotes
</button>

class="btn btn-secondary

<button type="button" style="width: 120px;"
bg-primary disabled"

onclick="location.href =
</button>

class="btn btn-secondary

>Wise Quotes

416

CHAPTER 10 CREATE A MESSAGE BOARD

<button type="button" style="width: 120px;" class="btn btn-secondary
bg-primary"
onclick="location.href = 'search.php?name=Search Quotes'" >
Search Quotes
</button>
<?php
break;

Adding Search Facilities

The most likely reasons for searching are as follows:

e Members may want to view a list of their own postings or postings by other
contributors.

e Members might want to search the messages for particular words or phrases or
quotes by a particular author.

Before we can implement these searches, we must create the pages that will display the search results.
Figure 10-10 shows the display for viewing an individual member’s postings.

Your Quotes

Home Page Login Logout Register YourQuotes Add AQuote Comic Quotes Wise Quotes Search Quotes

Your Postings

Posted By Forum Quotation

lilythepink 2018-06-26 16:02:356 Comical Quotes “Golf is a good walk spoiled” Mark Twain

litythepink 2018-06-26 16:37:23 Comical Quotes “Life is one darned thing after another" Mark Twain

lilythepink 2018-07-02 21:21:54 Wise Quotes “Adversity causes some men to break: others to break records” William Arthur Ward

litythepink 2018-07-06 11:51:21 Wise Quotes “Real knowledge is to know the extent of one's ignorance” Confucius

Footer goes here

Figure 10-10. Displaying one member’s postings
Listing 10-10 gives the code for the page displaying a member’s posting.

Listing 10-10. Creating a Page to Display an Individual Member’s Postings (view_posts.php)

<?php

// Start the session.

session start() ;

// Redirect if not logged in.

if (!isset($ SESSION['member id']))

417

CHAPTER 10 = CREATE A MESSAGE BOARD

{ header("Location: login.php");

exit(); }
$menu = 7;
2>

<!DOCTYPE html>
<html lang="en">
<head>
<title>View Postings Page</title>
<meta charset="utf-8">
<meta name="viewport" content=
"width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity="sha384-9gV04dYFwwiSjIDZnLEWnXxCjeSWFphJiwGPXr1jddIhOegiulFw05q
RGvFX0dJz4"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="birds.css">
</head>
<body>
<div class="container" style=
"margin-top:30px;border: 2px black solid;">
<!-- Header Section -->
<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px;
background:linear-gradient (#0073e6,white); padding:10px;">
<?php include('includes/header.php'); ?>

</header>

<div id="content'><!--Start of the quotes found page content-->

<?php

// Connect to the database

require ('mysqli_connect.php') ; /7#1

$user _name =
filter_var($_SESSION['user_name'], FILTER_SANITIZE_STRING);
// Make the full text query
$query = "SELECT user name,post_date,subject,message FROM ";
$query .= "forum WHERE user name = ? ";
$query .= "ORDER BY post_date ASC";
$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// bind $id to SQL Statement
mysqli stmt bind param($q, "s", $user name);
// execute query
mysqli_stmt_execute($q);
$result = mysqli stmt get result($q);
if (mysqli_num_rows($result) > 0) {
echo '<h4 class="text-center">Your Postings</h4>';
>
<table class=
"table table-responsive table-striped col-sm-12"
style="background: white;color:black;
padding-left: 4o0px;">

418

CHAPTER 10 CREATE A MESSAGE BOARD

<tr>
<th scope="col">Posted By</th>
<th scope="col">Forum</th>
<th scope="col">Quotation</th>
</tr>

<?php
while ($row =
mysqli fetch array($result, MYSQLI ASSOC))

{

$user _name =
htmlspecialchars($row['user name'], ENT_QUOTES);

$post date =
htmlspecialchars($row['post date'], ENT_QUOTES);

$subject =
htmlspecialchars($row['subject'], ENT_QUOTES);

$message =
htmlspecialchars($row['message'], ENT_QUOTES);

echo '<tr>

<td scope="row">' . $user_name .
$post_date . '</td>
<td scope="row">" . $subject . '</td>
<td scope="row">' . $message . '</td>
</tr>';

echo '</table>' ;
}
else { echo '<p class="text-center">
There are currently no messages.</p>' ; }
mysqli close($dbcon) ;
>
</div><!--End of the quotes found page content.-->
<footer class="jumbotron row mx-auto" id="includefooter"
style="padding-bottom:1px; margin: Opx; padding-top:8px;
background-color:white;">
<div class="col-sm-12 text-center">
<?php include('includes/footer.php'); ?>
</div>
</footer>
</div>
</body>
</html>

Explanation of the Code

You will have seen most of the code before, but the query needs some explanation.
require ('mysqli connect.php') ; /7#1
$user name =

filter var($_SESSION['user name'], FILTER SANITIZE STRING);
// Make the full text query

419

CHAPTER 10 = CREATE A MESSAGE BOARD

$query = "SELECT user name,post_date,subject,message FROM ";
$query .= "forum WHERE user name = ? ";
$query .= "ORDER BY post_date ASC";
$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// bind $id to SQL Statement
mysqli stmt bind param($q, "s", $user name);
// execute query
mysqli stmt_execute($q);

The query selects the items to be displayed and specifies two conditions: show postings only for the

username specified in the session ($user_name) and order the table row display in ascending order of date
of posting.

The Header for ViewPosts.php

The header block will activate all buttons except Login, Register, and Your Quotes. The code is shown in the
following snippet of code from header.php:

case 8: //post.php

>
<button type="button" style="width: 110px;" class="btn btn-secondary
bg-primary"
onclick="location.href = 'index.php?name=Quick Quotes'">
Home Page
</button>

<button type="button" style="width: 110px;
bg-primary disabled"

onclick="location.href =
</button>

class="btn btn-secondary

>Login

<button type="button" style="width: 110px;’
bg-primary"
onclick="location.href = 'logout.php?name=Logout'">
Logout
</button>

class="btn btn-secondary

<button type="button" style="width: 110px;
bg-primary disabled"

onclick="location.href =
</button>

class="btn btn-secondary

>Register

<button type="button" style="width: 120px;"
bg-primary"
onclick="location.href = 'view posts.php?name=Your Quotes'" >
Your Quotes
</button>

class="btn btn-secondary

420

<?php
break;

CHAPTER 10 CREATE A MESSAGE BOARD

<button type="button" style="width: 120px;" class="btn btn-secondary
bg-primary disabled"

onclick="location.href = "">Add A Quote
</button>

<button type="button" style="width: 120px;" class="btn btn-secondary
bg-primary"
onclick="location.href = 'forum c.php?name=Comic Quotes'" >
Comic Quotes
</button>

<button type="button" style="width: 120px;" class="btn btn-secondary
bg-primary"
onclick="location.href = 'forum_w.php?name=Wise Quotes'">
Wise Quotes
</button>

<button type="button" style="width: 120px;" class="btn btn-secondary
bg-primary"
onclick="location.href = 'search.php?name=Search Quotes'" >
Search Quotes
</button>

We will now enable a member’s ability to do full-text searches.

Searching for Specific Words or Phrases

Members might want to see a table of quotes by Mark Twain or a list of quotes about golf; the members
would therefore search for particular words or phrases. This will require a Search button in the header. As
an alternative, a search field could be incorporated into the forum pages; however, to keep it simple, we will
employ the easier method: using a button that links to a search form.

A full-text search will search though every message to find the word (or words). The column named
messages must be indexed as FULL TEXT, as shown in the beginning of the chapter.

Full-text searches can be used on VARCHAR and TEXT columns. Full-text searches are case insensitive
and will ignore the following:

e Partial words. If you want to search for spoiled, you have to search for the full word.
Just searching for spoil won’t return what you are looking for.

e Words containing less than four characters.

e Stop words. These are words that are extremely common, such as the, a, an, as, by,
his, her, with, and you.

e Aword or phrase that is included in more than 50 percent of the rows in the column
being searched. The word or phrase in this case is treated as a stop word. This can
usually be avoided by having four or more records in a table.

421

CHAPTER 10 © CREATEA

MESSAGE BOARD

The Full Text Search Form

We will now create a form for searching specific words or phrases within messages (quotations).

Figure 10-11 sh

Search Qu

ows the search form.

otes

Home Page Login Logout Register Your Quotes Add AQuote Comic Quotes Wise Quotes

Search for a word or phrase in the quotes

Enter a word or phrase: Word or Phrase

Search

Footer goes here

Search Quotes

Figure 10-11. Thes

earch form

Listing 10-11 gives the code for the search form.

Listing 10-11. Crea

<?php

// Start the sess
session start() ;
// Redirect if no
if (!isset($_SE

{ header(
exit(); }
$menu = 6;
?>

<!DOCTYPE html>
<html lang="en">
<head>
<title>Se
<meta cha

ting the Search Form (search.php)

ion.

t logged in.
SSION['member id' 1))
"Location: login.php");

arch Page</title>
rset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1,

shrink-to
<!-- Boot
<link rel

-fit=no">
strap CSS File -->
="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwhSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiulFw05qRGVFX0dIZ4"

crossorig
<link rel
</head>
<body>

in="anonymous">
="stylesheet" type="text/css" href="msgboard.css">

<div class="container" style="margin-top:30px;border: 2px black solid;">

<!-- Head

422

er Section -->

CHAPTER 10 CREATE A MESSAGE BOARD

<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px; background:linear-gradient(#0073e6,white);
padding:10px;">
<?php include('includes/header.php'); ?>
</header>
<!-- Body Section -->
<div class="content mx-auto" id="contents">
<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<div class="col-sm-12">
<h3 class="text-center">Search for a word or phrase in the quotes</h3>
<form id="search" action="quotes_found.php" method="post">
<div class="form-group row">
<label for="target" class="col-sm-4 col-form-label text-right">Enter a word
or phrase:</label>
<div class="col-sm-4">
<input type="text" class="form-control" id="target" name="target"
placeholder="Word or Phrase" maxlength="60" size="40"
required
value=
"<?php if (isset($_POST['target']))
echo htmlspecialchars($ POST['target'], ENT QUOTES); 2>" >
</div>
</div>
<div class="form-group row">
<label for="" class="col-sm-2 col-form-label"></label>
<div class="col-sm-8 text-center">
<input id="submit" class="btn btn-primary" type="submit"
name="submit" value="Search">
</div>
</div>
</form>
</div>
</div>
<footer class="jumbotron row mx-auto" id="includefooter"
style="padding-bottom:1px; margin: Opx; padding-top:8px; background-color:white;">
<div class="col-sm-12 text-center">
<?php include('includes/footer.php'); ?>
</div>
</footer>
</div>
</div>
</body>
</html>

The search form passes the search word (or words) to the page that displays the search results.

423

CHAPTER 10 * CREATE A MESSAGE BOARD

Displaying the Search Results

Figure 10-12 shows how the full-text search displays the results.

| Quick Quotes

Home Page Login Logout Register Your Quotes Add A Quote Comic Quotes Search Qu

Full Text Search Results

Posted By Forum Quotation
lilythepink Comical Quotes "Golf is a good walk spoiled” Mark Twain
lilythepink Comical Quotes “Life is one damed thing after another” Mark Twain

mythking Comical Quotes "Many a small thing has been made large by the right kind of advertising” Mark Twain

Footer goes here

Figure 10-12. Displaying the results of a full-text search for the words Mark Twain

Note that the number of quotations by Mark Twain is less than 50 percent of all the quotations
contained in our forum table. If the number of quotes by Mark Twain had been more than 50 percent of
the quotations, no results would have been displayed. In our example database table, there are 23 quotes.
Mark Twain is cited for three quotes; he is therefore cited for 13 percent of the total. Because this is less than
50 percent of the total, he will be found and displayed. If the table contained only six quotes, Mark Twain
would be cited for 50 percent of the total, and therefore he would not be found. In other words, the group of
words Mark Twain would be treated as if it was a stop word such as his, her, with, and you. If you know that a
word or phrase exists in the database table, but a full-text search fails to find it, either you don’t have enough
quotes in the table or at least 50 percent of the quotes contain the search word or phrase. Listing 10-12a gives
the code for the quotes_found page.

Listing 10-12a. Creating the Search Results Page (quotes_found.php)

<?php

// Start the session.

session start() ;

// Redirect if not logged in.

if (!isset($ SESSION[‘'member id']))
{ header("Location: login.php");
exit(); }

$menu = 4;

>

<IDOCTYPE html>

<html lang="en">

<head>

424

CHAPTER 10 CREATE A MESSAGE BOARD

<title>Search Page</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1,
shrink-to-fit=no">
<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwWSFIDZnLEWNnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="msgboard.css">
</head>
<body>
<div class="container" style="margin-top:30px;border: 2px black solid;">
<!-- Header Section --»
<header class="jumbotron text-center row" id="includeheader"
style="margin-bottom:2px; background:linear-gradient(#0073e6,white);
padding:10px;">
<?php include('includes/header.php'); ?>
</header>
<div id="content'><!--Start of the quotes found page content-->
<?php
// Connect to the database
require ('mysqli connect.php') ;
//if POST is set #1
if($_SERVER['REQUEST METHOD'] == 'POST') {
$target = filter var($ _POST['target'], FILTER SANITIZE STRING);
// Make the full text query #2
$query = "SELECT user name,post_date,subject,message FROM forum WHERE ";
$query .= "MATCH (message) AGAINST (?) ORDER BY post date ASC";
$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// bind $id to SQL Statement
mysqli_stmt_bind_param($q, "s", $target);
// execute query
mysqli stmt_execute($q);
$result = mysqli stmt get result($q);
if (mysqli_num_rows($result) > 0) {
echo '<h4 class="text-center">Full Text Search Results</h2>';
>
<table class="table table-responsive table-striped col-sm-12"
style="background: white;color:black; padding-left: 50px;">

<tr>
<th scope="col">Posted By</th>
<th scope="col">Forum</th>
<th scope="col">Quotation</th>
</tr>
<?php
while ($row = mysqli fetch array($result, MYSQLI ASSOC))
{

$user name = htmlspecialchars($row['user name'], ENT QUOTES);

425

CHAPTER 10 = CREATE A MESSAGE BOARD

$subject = htmlspecialchars($row['subject'], ENT_QUOTES);
$message = htmlspecialchars($row['message'], ENT_QUOTES);
echo '<tr>
<td scope="row">" . $user_name . '</td>
<td scope="row">' . $subject . '</td>
<td scope="row">"' . $message . '</td>
</tr>';
}
echo '</table>' ;
}
else { echo '<p class="text-center">There are currently no messages.</p>' ; }
mysqli close($dbcon) ;

>

</div><!--End of the quotes found page content.-->

<footer class="jumbotron row mx-auto" id="includefooter"
style="padding-bottom:1px; margin: Opx; padding-top:8px; background-color:white;">
<div class="col-sm-12 text-center">

<?php include('includes/footer.php'); ?>

</div>

</footer>

</div>

</body>

</html>

Note If you run this file and you see the error message “Warning: mysqli_num_rows() expects parameter 1
to be mysqli_result, boolean given in...,” you probably forgot to choose Full Text as the index for the message
column the table.

Explanation of the Code

This section explains the code.

//if POST is set #1
if($_SERVER['REQUEST METHOD'] == 'POST') {
$target = filter var($_POST['target'], FILTER SANITIZE STRING);

The search form sent the target word or phrase (such as Mark Twain) to this page, where it is assigned
to the variable $target.

// Make the full text query #2
$query = "SELECT user_name,post_date,subject,message FROM forum WHERE ";

$query .= "MATCH (message) AGAINST (?) ORDER BY post date ASC";

$q = mysqli_stmt_init($dbcon);

mysqli stmt prepare($q, $query);

// bind $id to SQL Statement

mysqli stmt bind param($q, "s", $target);

426

CHAPTER 10 CREATE A MESSAGE BOARD

The full-text query searches the forum table for messages (quotations) that contain the words Mark
Twain as stored in the variable $target, which is bound to the prepare statement. Note the brackets, the
commas, and the double and single quote marks; they are important. The format for a full text search query
is as follows:

SELECT list of items FROM some table WHERE MATCH (the column) AGAINST(the search words) ;
The keywords MATCH and AGAINST are the main differences between a standard SELECT query and a

full-text search query.

The Header for the quotes_found Page
Listing 10-12b gives the code block for the header. This is also the same header used by forum.php.

Listing 10-12b. Creating the Header Block for the Quotes Found Page (header.php)

case 4: //forum.php //quotes_found.php

2>
<button type="button" style="width: 110px;" class="btn btn-secondary
bg-primary"
onclick="location.href = 'index.php?name=Quick Quotes'">
Home Page
</button>

<button type="button" style="width: 110px;" class="btn btn-secondary
bg-primary disabled"

onclick="location.href =
</button>

>Login

<button type="button" style="width: 110px;" class="btn btn-secondary
bg-primary"
onclick="location.href = 'logout.php?name=Logout'">
Logout
</button>

<button type="button" style="width: 110px;" class="btn btn-secondary
bg-primary disabled"

onclick="location.href =
</button>

>Register

<button type="button" style="width: 120px;" class="btn btn-secondary
bg-primary"
onclick="location.href = 'view posts.php?name=Your Quotes'" >
Your Quotes
</button>

<button type="button" style="width: 120px;" class="btn btn-secondary
bg-primary"

onclick="location.href = 'post.php?name=Add A Quote'">

Add A Quote
</button>

427

CHAPTER 10 = CREATE A MESSAGE BOARD

<button type="button" style="width: 120px;" class="btn btn-secondary
bg-primary"
onclick="location.href = 'forum c.php?name=Comic Quotes'" >
Comic Quotes
</button>

<button type="button" style="width: 120px;" class="btn btn-secondary
bg-primary"
onclick="location.href = 'forum_w.php?name=Wise Quotes'">
Wise Quotes
</button>

<button type="button" style="width: 120px;" class="btn btn-secondary

bg-primary"
onclick="location.href = 'search.php?name=Search Quotes'" >Search
Quotes
</button>
<?php
break;

Enhancing the Message Board

The message board in this chapter was greatly simplified for the benefit of readers who are not familiar with
databases. By using the knowledge you gained from previous chapters, it is possible to add enhancements as
follows:

e The pages for displaying the two categories of quotes could display paginated results.
(Review Chapters 5, and 8 for a reminder of how to do this.)

e Members may want to change their passwords. (Review Chapter 3 for details.)

e Members may have forgotten their passwords; they can be sent a new password.
This is covered in Chapter 11.

Converting the Message Board to a Forum

At the beginning of this chapter, we said that we would briefly describe a structure for converting the
message board to a forum. A forum requires maximum normalization and atomicity. (See Chapter 9 to
refresh your memory on the definition of those terms.) More tables are required, and several of these would
be linked by queries containing the keyword JOIN.

A forum requires additional tables for threads and replies. The message board is moderated by the
administrator as a result of an automatic e-mail containing the name of the poster and the date. When the
quote was submitted, it is inserted immediately into the database table; a better solution is to create an
additional column (approved) that must be set by the administrator to allow the quotes to be displayed to
the members.

It would be helpful if the administrator had facilities to delete or edit a quote without using
phpMyAdmin. The admin page could display a table of recent posts that contained links for editing and
deleting, as described in Chapter 3.

428

CHAPTER 10 CREATE A MESSAGE BOARD

The minimum number of tables required for a forum is four, as shown in Figure 10-13.

forums

forum_id MEDIUMINT (6) primary
forum_name CHAR (60)
forum_descr CHAR (60)

replies

reply_id MEDIUMINT (6) primary
reply_content TEXT

reply_date DATETIME

reply_thread MEDIUMINT (6) foreign
reply_by MEDIUMINT (6) foreign

members

threads

member id MEDIUMINT (6) primary
email VARCHAR (60)
registration_date DATETIME
user_name CHAR (12)

psword CHAR (40)

member_level TINYINT (2)

thread_id MEDIUMINT(6) primary
thread_title VARCHAR (100)
thread_date DATETIME

thread_forum MEDIUMINT (6) foreign
thread_by (INT6) foreign

Figure 10-13. The tables for a very basic forum

Summary

In this chapter, we studied the plan and structure for a basic message board. We created a registration page
and login form. We developed a gateway to two pages of quotes and then created those pages. We learned
how to create a form for posting messages. We created two search forms: one enabled members to search for
a list of their own postings, and another was designed to undertake full-text searches. Some enhancements
to the basic message board were suggested, and finally a brief outline of a basic forum was provided. The
next chapter describes a basic e-commerce website.

429

CHAPTER 11

E-commerce: A Brief Introduction/

E-commerce websites accept payment in exchange for goods or services. A user orders from a range of
goods or services displayed in the website’s catalog pages. The details of the user’s orders are stored in
the website’s database. Money passes from the user to the website owner. This is achieved by means of a
payment system incorporated into the website. Finally, the ordered items are delivered to the user. Users can
track the progress of their orders, update their account details, and, if necessary, contact a customer support
department.

After completing this chapter, you will be able to

e Design a simple e-commerce site

e Create a website that interfaces with Paypal

e Create a website that includes a simple shopping cart
e Provide the user with the ability to recover a password

Two types of e-commerce sites would benefit from using a database: an online shop with an extensive
range of goods or services, such as Amazon, and an online shop with a limited range of goods but with the
intention of expanding the range. The brief outline for an e-commerce site in this chapter is based on the latter.

Note This chapter is a brief demonstration of the basic format for e-commerce websites. To make the basic
principles as clear as possible and to save space, no alternative currencies are included. When adapting the
websites for your territory, you would naturally change the content and currency to suit. As we have mentioned
previously, when selling goods and services to multiple countries, you must make sure to follow the laws
pertaining to online sales for each country.

© Adrian W. West and Steve Prettyman 2018 431
A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,
https://doi.org/10.1007/978-1-4842-3843-1_11

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

This chapter describes two types of shopping cart, a PayPal cart and a custom cart. Each example is
treated separately and includes its own database, tables, and files. The following are the two main sections of
this chapter:

e Create a PayPal cart website
e The PayPal cart home page
e Administering the PayPal cart website
e Create a custom cart website
e The custom cart home page
e Administering the custom cart website
e The checkout page

We will discuss a few of the important processes in this chapter. However, we will not cover every
process required for an e-commerce site. This outline will provide you with a starting point for further study.
This chapter contains very little code because the websites described combine most of the code already
shown and explained in the previous chapters.

For instance:

e The registration page is like the registration page described in Chapter 6.
e Most of the administration facilities were described in Chapters 3 and 8.
e Chapter 9 described the use of multiple tables.

e The use of Bootstrap to create sites that display in any size device is shown
throughout the book.

Login and logout pages were covered fully in several previous chapters. However, the login page in this
chapter contains a link to enable users to retrieve a forgotten password; the code is provided for this feature.

Note This chapter is a brief introduction to an e-commerce website. Dealing fully with a practical example
of an e-commerce website with its payment gateway, stock control system, order tracking, security measures,
invoicing, and customer services would require a whole book. You will find a list of resources for designing and
developing e-commerce websites in Appendix B.

We want to take the time to thank Roger St. Barbe for providing the images of colored etchings. His
method of producing the etchings is fascinating; a précis of the process can be found on his website:

www.dolphin-gallery.co.uk
Although we state that each product is unique, Roger does produce a limited number of signed copies
of each etching. For the sake of simplicity, in our example the Dove Gallery will stock only one copy. Adrian

West owns the other paintings used in this chapter. The artist James Kessell (now deceased) was a double
Royal Academy artist (London and Birmingham, United Kingdom).

432

www.dolphin-gallery.co.uk

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

Note The downloadable files for the PayPal shopping cart and custom shopping cart sections are included
in separate subfolders. The paypaldb.sql and customdb. sql files are provided for installing the PayPal and
custom databases and tables. The main folder can be downloaded from the Apress.com website.

Let’s begin. The two most important topics for both shopping carts are security and careful planning.

Security Warning

Database-driven e-commerce websites can be extremely vulnerable; therefore, security is a primary
concern. By heeding the following warnings, an e-commerce website could be reasonably secure.

e Adeveloper should not attempt to launch an e-commerce website until they have
achieved a high level of expertise with PHP, SQL, and the Maria/MySQL database.

e Complete knowledge of PHP stored procedures and transactions is essential for
e-commerce.

e The developer must thoroughly understand the inherent security problems and risks
that can occur.

e Developers must be aware of and fully comply with the data protection laws for their
territory or country, especially with the laws governing online trading.

e The website should never store customers’ bank and credit card details unless a
costly and efficient security scheme is in place.

e Itissafer to use a secure payment system such as PayPal, Stripe, or Authorize.net.
Always choose the encoded versions of their shopping cart buttons. Use one of
these payment systems to collect credit card and other sensitive information. Do not
collect or store the information in your e-commerce databases.

e Use HTTPS pages, which are protected by Secure Sockets Layer (SSL).

Let’s now examine a plan for creating an e-commerce website.

The Plan

As usual, the first step for designing a database means discussing the website owner’s needs and then
producing a plan to fulfill those requirements. After meeting with our client, we have determined the
following requirements:

e The websites will sell original paintings and colored etchings.

e Anadministrator will be able to add or delete paintings and artists from the database
tables by means of a user-friendly interface.

433

http://apress.com
http://authorize.net

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

e Abasic e-commerce database would use many tables, typically 12 or more, but for
the first phase (what we will cover in this chapter) our site will use the following
tables:

e user: This table contains the administrator and registered users. The table
will include the user’s address, but for brevity it will not include an alternative
delivery address.

e art: This table contains a description of the paintings and will be used to display
a catalog of the stock of paintings.

e artist: This table contains the name of the artist. However, to save space, it will
not contain the traditional brief description of the artist.

e Orders and order processing (custom cart only): These tables will record and
keep track of order details as demonstrated in the custom cart section.

Note We have assumed that during the planning stage of the PayPal site, the owner decided that users
should not be asked to register unless they would like to receive e-mailed updates, which will provide special
offers or new acquisitions to the art gallery. Regarding the custom cart website, we have decided to incorporate
up-front registration. An alternative approach would use registration at the checkout stage.

Creating the PayPal Cart Site

In this section, we will create an e-commerce site that uses PayPal to process all transactions. Let’s begin by
setting up the database, tables, and files.

Creating the PayPal Cart Database and Tables

Follow these steps:

1. Inthe htdocs folder within XAMPP or in the EasyPHP folder eds_wwuw, create a
new folder named paypalcart.

2. Download the paypalcart files for Chapter 11 from the book’s page at Apress.com
and unzip them in your new paypalcart folder.

3. Start XAMPP or EasyPHP, and in the address field of a browser enter
localhost/phpmyadmin/ to access phpMyAdmin.

4. Click the Databases tab and create a database named paypaldb. From the
pull-down Collation list, choose utf8_general_ci and then click Create.

5. Click the Privileges tab and then scroll down and click Add new user.

434

http://apress.com

CHAPTER 11

6. Enter these details:

e Username: colossus

e Password: FstcOmput3r

e Host:localhost

e Database name: paypaldb
7. Click Go.

Viewing the Connection File

The code for the connection file is as follows:

<?php

// Create a connection to the migrate database and to MySOL
// Set the encoding to utf-8

// Set the database access details as constants

Define ('DB_USER', 'colossus');

Define ('DB_PASSWORD', 'Fstcomput3r');

Define ('DB_HOST', 'localhost');

Define ('DB_NAME', 'paypaldb');

// Make the connection:

$dbcon = new mysqli(DB_HOST, DB _USER, DB_PASSWORD, DB NAME);
// Set the encoding...optional but recommended

mysqli set charset($dbcon, 'utf8');

E-COMMERCE: A BRIEF INTRODUCTION

To test your connection file, enter this URL in the address field of a browser:

http://localhost/paypalcart/mysqli_connect.php

The displayed page should be completely empty.

Populating the PayPal Cart Tables

Use phpMyAdmin to import the tables and populate them.

1. Inthe left panel of phpMyAdmin, click the box next to the database paypaldb.

2. Do not enter anything on the next screen, but click the Import tab.

3. Click the Browse button and navigate to the paypalcart folder.

4. Import the paypaldb.sql dump file by clicking the Open button; the field will fill

with the location of the file.

5. Ensure that the Character set in the pull-down menu is utf-8 and that the format

is shown as SQL.

6. Click Go.

435

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

For your interest, Table 11-1 gives the column details for the PayPal cart art table. All the tables use the
InnoDB storage engine.

Table 11-1. The art Table Includes a Column for the PayPal Payment Code

Columnname Type Length/ Value Default Attributes NULL Index Al
art_id INT 8 None UNSIGNED Od PRIMARY
thumb VARCHAR 50 None 0 O
type VARCHAR 50 None 0 d
price DECIMAL 6,2 None UNSIGNED O INDEX O
medium VARCHAR 50 None 0 O
artist VARCHAR 50 None 0 O
mini-descr VARCHAR 150 None O O
ppcode Text 500 None 0 O

Note: Payment systems other than PayPal may require different values in the final column.

The first name and the middle name are set as NULL entries because some artists may rarely use those
names such as Picasso. The Artists table is shown in Table 11-2.

Table 11-2. The Artists Table

Columnname Type Length/ Value Default Attributes NULL Index Al
art_id INT 8 None UNSIGNED | PRIMARY
first_name VARCHAR 30 None O
middle_name VARCHAR 30 None O
last_name VARCHAR 40 None O d

Table 11-3. Details of How the artist Table Was Populated is shown in Table 11-4

First name Middle name Last name
Adrian w West
Roger St. Barbe
James Kessell

436

Table 11-4. The Types and Attributes for a Minimal Users Table is shown in Table 11-5

CHAPTER 11

E-COMMERCE: A BRIEF INTRODUCTION

Column name Type Length/ Value Default Attributes NULL Index Al
user_id MediumINT 8 None UNSIGNED O PRIMARY
title VARCHAR 12 None d
first_name VARCHAR 30 None 0 O
last_name VARCHAR 40 None Od O
email VARCHAR 50 None 0 O
password CHAR 60 None 0 d
registration_date =~ DATETIME d O
user_level TINYINT 1 None UNSIGNED O O
addressl VARCHAR 50 None 0 d
address2 VARCHAR 50 None O
city VARCHAR 50 None 0 O
state_country VARCHAR 30 None 0 d
zcode_pcode VARCHAR 10 None 0 d
phone VARCHAR 15 None d
secret VARCHAR 30 None 0 d

A user_level column is included to enable the login page to differentiate between a registered user and
an administrator. Users would have a default user_level of zero, and the administrator would be given a
larger number that will direct them to an administration page. When any other user accesses the PayPal cart
website, they do not need to log in to see the website’s pages. A secret column has been included to provide

additional information when the user forgets their password.

Note Here are the login details for the users; you will need Mr. Mike Rosoft’s details to log in into the

administration page and add new paintings.

Mr. Mike Rosoft, e-mail: miker@myisp.com, password: W111g@t3s, user_level: 1

Mrs. Rose Bush, e-mail: roush@myisp.co.uk, password: R@db100ms, user_level: 0

To save space in the note, we have not included all the information that is contained in the users.sqgl file.
The other details are used in this example PayPal cart website; therefore, they are not important.
The home page is discussed next.

437

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

The PayPal Cart Home Page

The home page and its code for the PayPal cart website are provided in the PayPal cart downloadable files.
They are index.php and transparent.css.

Figure 11-1 shows the PayPal cart home page.

),,' Register
The Dove Gallery

Affordable Original Paintings

Welcome to the Dove Gallery e =g About Us

FAQs

Search for a painting) : 1N 1l Contact Us

Home Page

|
E

I Submit

Figure 11-1. The PayPal cart home page, which also acts as a search page

Users do not have to log in or register to use the search facility that is built into the home page. The
buyer’s details for shipping the paintings will be provide by PayPal in an e-mail to the website’s owner. The
only person who must register and log in is the administrator to add or delete paintings. However, users can
register if they want to receive a monthly newsletter. Listing 11-1 gives the code for the home page.

Listing 11-1. The PayPal Cart Home Page (index.php)

<?php
$menu=7;
?>
<!DOCTYPE html>
<html lang="en">
<head>
<title>PayPal Cart Index Page</title>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">

438

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwhSIDZnLEWNXCjeSWFphIiwGPXr1jddIhOegiulFwO5qRGVFX0d]Z4"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="transparent.css">
</head>
<body>
<div class="container" style="margin-top:10px">
<!-- Header Section -->
<header class="jumbotron text-center row mx-auto" id="includeheader">
<?php include('includes/header.php'); ?>
</header>
<!-- Body Section -->
<div class="content mx-auto" id="contents">
<div class="row mx-auto" style="padding-left: 20px; height: auto;">
<!-- Center Column Content Section -->
<div class="col-sm-6 text-center" style="padding:0px; margin-top: 5px;">
<!--Start of found paintings content-->
<form action="found paintings.php" method="post">
<div class="form-group row">
<div class="col-sm-10 text-left"
style="padding: 20px; padding-left: 30px;">
<h3>Welcome to the Dove Gallery</h3>
<h6 style="color: black;">
All prices include frames, sales tax, delivery and insurance</h6>
<h2 class="text-center">Search for a painting</h2>
</div>
<div class="col-sm-6">
</div>
</div>
<div class="form-group row">
<label for="type" class="col-sm-3 col-form-label text-right">
Type:</label>
<div class="col-sm-6">
<select id="type" name="type" class="form-control">
<option selected value="">- Select -</option>
<option value="still-1ife">Still Life</option>
<option value="nature">Nature</option>
<option value="abstract">Abstract</option>
</select>
</div>
</div>
<div class="form-group row">
<label for="price"
class="col-sm-3 col-form-label text-right">
Maximum Price:</label>

439

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

<div class="col-sm-6">
<select id="price" name="price" class="form-control">
<option selected value="">- Select -</option>
<option value="40">£40</option>
<option value="80">£80</option>
<option value="800">£800</option>
</select>
</div>
</div>
<div class="form-group row">
<label class="col-sm-3 col-form-label"></label>
<div class="col-sm-6">
<input id="submit" class="btn btn-primary"
type="submit" name="submit" value="Submit">
</div>
</div>
</form><!--End of the search content-->
</div>
<div class="col-sm-3 text-center"
style="padding:0px; margin-top: 5px;">
<img alt="Copper Kettle by James Kessell"
class="img-fluid float-left"
style="margin-top: 20px;"
src="images/k-copper-kettle-300.jpg">
</div>
<aside class="col-sm-3" id="includemenu">
<?php include('includes/menu.php'); ?>
</aside>
</div>
<div class="form-group row">
<label class="col-sm-4"></label>
<div class="col-sm-8">
<footer class="jumbotron row" id="includefooter">
<?php include('includes/footer.php'); ?>
</footer>
</div>
</div>
</div>
</div>
</body>
</html>

The HTML and Bootstrap format for this page and others demonstrated in this chapter are like what you

have seen in other chapters. Therefore, we will not repeat the HTML code for each page. Also note that we
are using one header file from previous chapters to handle all the pages.

440

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

Using the PayPal Cart Home Page to Search for Paintings

Figure 11-2 shows the result of searching for nature paintings that cost a maximum of £40.

I Home Page
T

The Dove Gallery

Affordable Original Paintings

To buy a painting please click its Add to Cart link

Colored- Looking back at Beer beach,
etching South East Devon.

Roger produces excellent etchings
of Devon's native butterflies.

The silver washed fritillary is a less
common Devon butterfly.

No paintings displayed? Either we have nothing that matches your requirements at the moment OR you may have forgotten to select
BOTH the search fields. Please click the Home Page button and try again.

Figure 11-2. The result of a search for nature paintings costing no more than £40

Note The PayPal buttons will not be visible on the search results page unless you are connected to the
Internet.

The HTML code for the found_paintings.php file can be downloaded and viewed from the Apress
website. It is similar to code you have seen previously. Listing 11-2 shows the PHP code for displaying the
found paintings.

441

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

Listing 11-2. Code to Show the Results of a Search (process_found_pics.php)

<?php
//Connect to the database
try {
require ('mysqli_connect.php') ;
// Select the first three items from the art table
$type=$ SESSION['type'];
$price=$_SESSION['price'];
$query =
"SELECT art_id, thumb, type, price, medium, artist, mini_descr, ppcode
$query .=
"FROM art WHERE type= ? AND price <= ? ORDER BY price DESC LIMIT 3";
$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// bind $id to SQL Statement
mysqli stmt bind param($q, "si", $type, $price);
// execute query
mysqli_stmt_execute($q);
$result = mysqli stmt get result($q);
if (mysgli_num_rows($result) > 0) {
>
<table class="table table-responsive table-striped"
style="background: white;">
<tr><th scope="col">Thumb</th>
<th scope="col">Type</th>
<th scope="col">Medium</th>
<th scope="col">Artist</th>
<th scope="col">Details</th>
<th scope="col">Price £</th>
<th scope="col">Add to Cart</th>
</tr>
<?php
// Fetch the matching records and populate the table display
while
($row = mysqli fetch array($result, MYSQLI ASSOC)) {
echo '<tr>
<td></td>
<td>' . $row['type'] . '</td>
<td>' . $row['medium'] . '</td>
<td>' . $row['artist'] . '</td>
<td>' . $row['mini descr'] . '</td>
<td>' . $row['price'] . '</td>
<td>' . $row['ppcode’] . '</td>
</tr>';

>

</table>

<?php

// Close the database connection.
mysqli close($dbcon) ;

}

442

)

#1

#2

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

// Or notify the user that no matching paintings were found
else {
echo '<p>There are currently no items matching your search
criteria.</p>' ; }
}
catch(Exception $e)
{
print "The system is busy, please try later";
$error string = date('mdYhis') . " | Found Pics | " .
$e->getMessage() . "\n";
error log($error string,3,"/logs/exception log.log");
//error_log("Exception in Found Pics Program.
// Check log for details", 1, "noone@nowhere.com",
/7 "Subject: Found Pics Exception" . "\r\n");
// You can turn off display of errors in php.ini
// display_errors = Off
//print "An Exception occurred. Message:
/1 $e->getMessage();
}catch(Error $e)

{

print "The system is busy, please come back later";
$error_string = date('mdYhis') . " | Found Pics | " .
$e->getMessage() . "\n";
error_log($error_string,3,"/logs/error log.log");
//error_log("Error in Found Pics Program.
//Check log for details", 1, "noone@nowhere.com",
// "Subject: Found Pics Error" . "\r\n");
// You can turn off display of errors in php.ini
// display errors = Off
//print "An Error occurred. Message:
// $e->getMessage();
}

>

Explanation of the Code

This section explains the code.

// Select the first three items from the art table #1
$type=$ SESSION['type'];

$price=$ SESSION['price'];

$query =

"SELECT art_id, thumb, type, price, medium, artist, mini_descr, ppcode ";
$query .=

"FROM art WHERE type= ? AND price <= ? ORDER BY price DESC LIMIT 3";

For our demonstrations in this chapter, we have limited the display of the artwork to three that

match the type and price the user has selected. We did this to reduce the code for this chapter. In a live
environment, this code would need to be adjusted to include paging, as shown previously in this book.

443

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

// Fetch the matching records and populate the table display #2
while
($row = mysqli fetch_array($result, MYSQLI ASSOC)) {

echo '<tr>

<td></td>
<td>' . $row['type'] . '</td>

<td>' . $row['medium'] . '</td>

<td>' . $row['artist'] . '</td>

<td>" . $row['mini _descr'] . '</td>
<td>' . $row['price'] . '</td>

<td>' . $row['ppcode’] . '</td>
</tr>';

Within the table created, the PayPal code (ppcode) is displayed. This code will provide the user with the
ability to add items to a PayPal cart, as discussed next.

Integrating with the PayPal Shopping Cart Buttons

PayPal is secure and familiar to millions throughout the world. The PayPal payment buttons are encoded so
that the prices cannot be manipulated by rogue customers. When a product is paid for, PayPal will send the
administrator an e-mail containing the following: the date and ID of the transaction, the amount paid, the
e-mail address of the buyer, the buyer’s delivery address, and a description of the purchased item.

The PayPal payment system will not be described in detail because this would need its own chapter
(or two). A full description would probably become obsolete anyway because PayPal frequently updates
the process. Instead of giving detailed instructions, we have provided this overview so that you know what
to look for on the PayPal website. PayPal and other credit card verification resources provide plenty of
instructions on their websites. Two helpful forums are listed in Appendix B. They will help you learn about
configuring PayPal and will solve problems you might meet when integrating the cart buttons with your
website.

To create a business account, access the PayPal website for your territory or country (e.g., www. paypal.
com for the United States or www. paypal.co.uk for the United Kingdom). Registration is free and not difficult
to set up. Then access your business account by clicking the Business tab and using search field to locate the
code necessary for the buttons and logos.

Each product in an e-commerce catalog will require its unique code for the Add to Cart button; these
can be fully configured using your account on the PayPal website. The code for each button can then be
copied and pasted into the database’s art table. In our example, this would be achieved by pasting the code
into the PayPal text area of the administrator’s page shown in Figure 11-4.

PayPal provides several credit/debit card logos. The logos inform users that payments can be made
even if they do not have a PayPal account. Figure 11-3 shows two standard encoded PayPal buttons and a
horizontal version of a credit/debit card logo.

The buttons in Figure 11-3 are not included with the downloadable files because they are generated by
the PayPal code when the user is online.

3 P payral
(LAddtoCart.) | ViewCart | ~;ca -

Figure 11-3. The appearance of the buttons and credit/debit card logo

444

www.paypal.com
www.paypal.com
www.paypal.co.uk

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

Note Dummy codes for the PayPal buttons are used in this chapter’s downloadable files. Your own PayPal
buttons will be unique and will apply only to your own e-commerce website. PayPal will generate the code for
you to copy and paste into the admin_add painting.php file.

Dummy code has also been placed in the downloadable files for the Recaptcha verification. You will need to
replace this code with your Recaptcha details.

The typical code for an Add to Cart button will be similar to the example in Listing 11-3a. PayPal could
change this code, so make sure to copy the correct code from the PayPal website. For security, the ID value
for each product is given here as XXXXXXX, but real-world buttons will have digits instead of Xs.

Listing 11-3a. Sample Code for a PayPal Add to Cart Button

<form target="paypal" action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input name="cmd" value="_s-xclick" type="hidden">

<input name="hosted_button_id" value="XXXXXXX" type="hidden">

<p><input src=

"https://www.paypal.com/en_GB/i/btn/btn_cart LG.gif" name="submit"

alt="PayPal - The safer, easier way to pay online."

Style="float: left;" border="0" type="image">

<img alt="" src="https://www.paypal.com/en_GB/i/scr/pixel.gif"

border="0" height="1" width="1"></p>

</form>

We are also placing a PayPal View Cart button in the header of the shop’s found_paintings pages
(located in header.php). The code for the View Cart button will be something like Listing 11-3b. As
mentioned, the format of this code can be changed by PayPal. Always go to the PayPal website and download
the newest format.

The e-mail address shown in bold type will be replaced by the website owner’s (or the administrator’s)
e-mail address. When an order is checked out, PayPal will send the details in an e-mail to that address.

Listing 11-3b. The Code for a PayPal View Cart Button

<form name="_xclick" target="paypal"
action="https://www.paypal.com/uk/cgi-bin/webscr" method="post">

<input type="hidden" name="cmd" value="_cart">

<input type="hidden" name="business" value="me@mybusiness.co.uk">

<input type="image" src="https://www.paypal.com/en _GB/i/btn/view_cart.gif" border="0"
name="submit"

alt="Make payments with PayPal - it's fast, free and secure!">

<input type="hidden" name="display" value="1">

</form>

Caution When configuring a unique PayPal button for each product in your shop, the configuration must
include the price, the currency, the name of the item being purchased, and the product identity number. Most
important, ensure that you configure the PayPal buttons so that the buyer is prompted to enter a delivery
address. The PayPal buttons will be automatically encoded.

445

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

Now let’s look at some of the other pages of the website. The administrator will add paintings with the
PayPal code using the Add a Painting page shown in Figure 11-4.

nother
The Dove Gallery Add At

Affordable Original Paintings

Logout

Add a Painting

Thumbnail Address
I Contact Us
E =]
Home Page

- Select -

About Us

PayPal Code

Figures only, no £5, §s or commas

Figure 11-4. The administrator’s interface for adding paintings and the PayPal Add to Cart buttons

The HTML code for the admin_add_paintings.php site is similar to other form code shown in this book.
Therefore, it is not included here. However, you can download it from the Apress website and view it in your
text editor. The form is submitted to the PHP file admin_add_paintings.php. Listing 11-4 provides this code.

446

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

Listing 11-4. Code for Adding Paintings (admin_add_painting.php)

<?php

$errors = array();
// Start an array to contain the error messages
// Check if a thumbnail url has been entered

$thumbtrim = trim($_POST['thumb']);

if (('empty($thumbtrim)) &&
(filter var($thumbtrim, FILTER VALIDATE URL))
88 (strlen($thumbtrim) <= 50)) {
// no changes

}

else
{
$errors[] =
'Missing thumbnail url or wrong format. Max 50.';
}
// Check for a type
$typetrim = trim($_POST[‘type']);
if ((lempty($typetrim)) &&
(preg match('/[a-z\-\s\.]/i",$typetrim)) &&
(strlen($typetrim) <= 50)) {
//Sanitize the trimmed type
$typetrim = (filter var($typetrim, FILTER SANITIZE STRING));
Yelse{
$errors[] =
'Type missing or not alphabetic, -, period or space. Max 50.';

// Has a price been entered?
$pricetrim = trim($_POST['price']);
if (('empty($pricetrim)) & (strlen($pricetrim) <= 10)) {
//Sanitize the trimmed price
$pricetrim =
(filter var($pricetrim, FILTER SANITIZE NUMBER _INT));
$pricetrim = preg replace('/\D+/', “, ($pricetrim));
telse{
$errors[] =
'Price missing. Must be Numeric. Max #HH##H# . ##.";
}
// Has the medium been entered?
$mediumtrim = trim($_POST['medium']);
if (('empty($mediumtrim)) &8&
(preg match('/[a-z\-\s\.]/i",$mediumtrim)) &&
(strlen($mediumtrim) <= 50)) {
//Sanitize the trimmed medium
$mediumtrim = (filter var($mediumtrim, FILTER_SANITIZE STRING));
telse{
$errors[] =
'Medium missing only alphabetic, -, period or space. Max 50.';

// Has the artist been entered?
$artisttrim = trim($_POST['artist']);

#1

#2

447

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

if ((lempty($artisttrim)) 88&
(preg match('/[a-z\-\s\.]/i',$artisttrim)) &&
(strlen($artisttrim) <= 50)) {
//Sanitize the trimmed artist
$artisttrim = (filter var($artisttrim, FILTER_SANITIZE STRING));
Yelse{
$errors[] =
"Artist missing or not alphabetic, -, period or space. Max 50.';

// Has a brief description been entered?
$minitrim = trim($_POST['mini descr']);
if (('empty($minitrim)) &&
(preg match('/[a-z\-\s\.]/i",$minitrim)) &&
(strlen($minitrim) <= 150)) {
//Sanitize the trimmed artist
$minitrim = (filter_var($minitrim, FILTER_SANITIZE_STRING));
Yelse{
$errors[] =
'Description missing or not alphabetic, -, period or space. Max 50.';
}
// Has the PPcode been entered?
$ppcodetrim = trim($_POST['ppcode']);
if (('empty($ppcodetrim)) &8&
(strlen($ppcodetrim) <= 45)) {
//Sanitize the trimmed ppcode

$ppcodetrim =
(filter var($minitrim, FILTER SANITIZE STRING));
telse{
$errors[] =

'PayPal Code missing or not alphabetic, -, period or space. Max 50.';

if (empty($errors)) { // If no errors were encountered
// Register the painting in the database
try {
require ('mysqli connect.php');
// Connect to the database
// Make the query:'
$query = "INSERT INTO art” .
" (art_id, thumb, type, medium, artist, mini descr, price, ppcode)";
$query .= "VALUES ";
$qU€Iy .= “(I Y 2,2,2,2,2,2,0)"
$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// use prepared statement to ensure that only text is inserted
// bind fields to SQL Statement
mysqli stmt bind param($q, 'sssssss', $thumbtrim, $typetrim, $mediumtrim, $artisttrim,
$minitrim, $pricetrim, $ppcodetrim);
// execute query
mysqli stmt_execute($q);
if (mysqli_stmt affected rows($q) == 1) {
echo '<h2 style="margin-left: 60px;">

448

CHAPTER 11

The painting was successfully registered</h2>
"';
} else { // If it was not registered

// Error message:

echo '<h2>System Error</h2>

<p class="error">
The painting could not be added due to a system
error. We apologize for any inconvenience.</p>';

// Debugging message:

//echo '<p>' . mysqli_error($dbcon) .
// '

Query: ' . $q . '</p>';

} // End of if ($result)

E-COMMERCE: A BRIEF INTRODUCTION

mysqli close($dbcon); // Close the database connection.

}
catch(Exception $e)

print "The system is busy, please try later";
$error_string = date('mdYhis') .
" | Add Painting | " . $e-getMessage() . "\n";
error log($error string,3,"/logs/exception_log.log");
//error_log("Exception in Add Painting Program. "
//" Check log for details", 1, "noone@nowhere.com",
/7 "Subject: Add Painting Exception" . "\r\n");
// You can turn off display of errors in php.ini
// display errors = Off
//print "An Exception occurred. Message:
/7 $e->getMessage();

catch(Error $e)
{
print "The system is busy, please come back later";
$error string = date('mdYhis') . " | Add Painting | "
$e-getMessage() . "\n";
error log($error string,3,"/logs/error log.log");
//error_log("Error in Add Painting Program. "
//"Check log for details", 1, "noone@nowhere.com",
// "Subject: Add Painting Error" . "\r\n");
// You can turn off display of errors in php.ini
// display_errors = Off
//print "An Error occurred. Message:
/1 $e->getMessage();
}
} else { // Display the errors.
echo '<h2>Error!</h2>
<p class="error">The following error(s) occurred:
"';
foreach ($errors as $msg) { // Print each error.
echo " - $msg
\n";
}

echo '</p><h3>Please try again.</h3><p>
</p>';
}// End of if (empty($errors))
>

449

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

Explanation of the Code

This section explains the code.

// Check if a thumbnail url has been entered #1
$thumbtrim = trim($_POST['thumb']);
if (('empty($thumbtrim)) 88&
(filter var($thumbtrim, FILTER VALIDATE URL))
88 (strlen($thumbtrim) <= 50)) {
// no changes

}

else
{
$errors[] =
'Missing thumbnail url or wrong format. Max 50.';

The validation for thumb uses the filter var property FILTER_VALIDATE_URL to ensure that the
location of the artwork picture is formatted correctly.
// Check for a type #2

$typetrim = trim($_POST['type']);

if ((lempty($typetrim)) &&
(preg match('/[a-z\-\s\.]/i",$typetrim)) &&

(strlen($typetrim) <= 50)) {
//Sanitize the trimmed type
$typetrim = (filter var($typetrim, FILTER SANITIZE STRING));
telse{

$errors[] =
'Type missing or not alphabetic, -, period or space. Max 50.';

The validations for other values passed by the form include trimming of whitespace, checking the
proper format using regular expressions, and sanitizing using filter_var. In this example, the regular
expression allows alphabetic characters (a-z), dashes (-), spaces (s), and periods (.). We have previously
discussed regular expressions. Additional information can be found in Appendix B.

Most of the coding to create the PayPal cart site is similar to code we have used in other chapters. Thus,
we have not provided a lot of explanation. Some of the administration screens provided are the same as
included within the custom cart example. We will look at these screens in the next section. Now let’s create
our own custom cart.

Creating a Custom Cart

Some e-commerce websites use their own custom shopping cart, and by this we mean a shopping cart
designed by the website developer. Custom shopping carts are complex and require several interactive pages
to replace the online PayPal system. The process is best described by a flowchart such as the one shown in
Figure 11-5.

450

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

Detect

index.php login.php
@ Session saves user’s ID User level
ser leve

Header IE @

Administration page

A 4

search.php
Pull-down menu to select products

e] ()

A

catalog of search results view_cart.php

Product #2 @ N added.php
__ You have added product =2
Product 5 | Adte Tt Continue shopping | Checkout @

order_details table > checkout.php
Thank you for your order
Your order number is 1,200

Figure 11-5. A typical flowchart for a custom shopping cart

Editable purchase details displayed
Continue shopping | Checkout

A

orders table

The numbered circles indicate the steps taken by a user. After logging in (step 2), the user’s ID is
saved in a session that is accessible to all the subsequent pages. The user level is detected, and the user is
redirected to a search page (step 3); our example has pull-down menus containing search criteria. The user
selects the criteria and clicks the Search button. They are then redirected to a catalog of products that match
the search criteria. If the user decides to buy a painting, they will click its Add to Cart button (step 4). This
sends the product ID and the user ID to the cart; a message confirming the action is displayed (step 5). The
display has a Continue shopping link and a link to the Checkout page. Clicking the Continue shopping link
returns the user to the shopping page (step 4) where the user can add more products. If the user clicks the
View cart button on the header menu, they will be shown a table displaying the products they have chosen
and the cost. This table allows the user to change the quantities or remove an item from the cart. The user
moves to the checkout to confirm the order, and then the order is processed. Let’s look at how to create some
of this functionality.

451

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

The Custom Cart Home Page

The custom cart home page does not include a search facility because the custom cart has a separate search
page. We are requiring the user to log in to purchase any paintings. To encourage viewers to register, the
home page displays tempting samples of the products. Figure 11-6 shows the home page.

I Register
The Dove Gallery [oo

Affordable Original Paintings

Welcome to the Dove Gallery | moouus

F

AQs
| Contact Us

Home Page

Figure 11-6. The customcart home page

The code for the home page and its CSS file are included in the downloadable files as index.php and
transparent.css, respectively. Note the Register button and a Login button in the header. This provide a
hint to the user that they must log in to purchase products. By displaying some of the products, users are
encouraged to register.

Create the Custom Cart Database and Tables

The Custom Cart example uses its own database, tables, and code. To view the demonstration, follow these
steps:

1. Inthe htdocs folder within XAMPP or in the eds_www folder in EasyPHP, create a
new folder named customcart.

2. Download the customcart files for Chapter 11 from the book’s page at
Apress.com and unzip them in your new customcart folder.

3. Start Apache and MySQL in XAMPP or EasyPHP, and in the address field of a
browser enter localhost/phpmyadmin/ to access phpMyAdmin.

452

http://apress.com

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

4. Click the Databases tab and create a database named customdb. From the
pull-down Collation list, choose utf8_general_ci and then click Create.

5. Click the Privileges tab and then scroll down and click Add new user.
6. Enter these details:
e Username: turing
e Password: Enlgm3
e Host:localhost
e Database name: customdb
7. Click Go.
Under a new heading of View the Connection File, the code should be as follows:
<?php
// Create a connection to the customdb database and to MySOL
// Set the encoding to utf-8
// Set the database access details as constants
DEFINE ('DB_USER', 'turing');
DEFINE ('DB_PASSWORD', 'Enigm3');
DEFINE ('DB_HOST', 'localhost');
DEFINE ('DB_NAME', 'customdb');
// Make the connection:
$dbcon = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB NAME);

// Set the encoding...optional but recommended
mysqli set charset($dbcon, 'utf8');

To test your connection file, enter this URL in the address field of a browser:
http://localhost/customcart/mysqli_connect.php

The page displayed should be completely empty.
Use phpMyAdmin to import the tables and populate them as follows:
1. Intheleft panel, click the box next to the database customdb.

Do not enter anything on the next screen, but click the Import tab.

Click the Browse button and navigate to the customcart folder.

> e n

Import the SQL dump files one by one by clicking them and then clicking the
Open button; the field will fill with the URL of the dump file.

5. Ensure that the Character set in the pull-down menu is utf-8 and that the format
is shown as SQL.

6. Click Go. Repeat steps 4 through 6 for each SQL dump file.

453

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

Exploring the Custom Shopping Cart

With Apache and MariaDB/MySQL running in XAMPP or EasyPHP, type localhost/customcart/ in the
address field of a browser and then follow these steps:

1. Login as Rose Bush using the e-mail address rbush@myisp.co.uk and the
password R@dbl00ms.

2. Selectan item and price range and click the Submit button.
3. When the search results page appears, click one of the Add to Cart links.

4. Click the View cart menu button and then try changing the quantity from 1 to 2;
then click the update cart button.

5. Inthe cart view, click the continue shopping link and add another painting to the
cart and then click the View Cart button on the header menu. The total content
of the cart will be displayed.

6. Toremove a painting from the cart view, change its quantity to zero and click the
update cart link.

For your information, the five customcart tables created by the SQL dump files and the file listings are
shown next.

The minimal artists table has four columns, as shown in Table 11-5.

Table 11-5. The artists Table

Column name Type Length/ Value Default Attributes NULL Index Al
artist_id INT 8 None UNSIGNED 0 PRIMARY
first_name VARCHAR 30 None Od O
middle_name VARCHAR 30 None 0 O
last_name VARCHAR 30 None 0 O

The details of the paintings are stored in a table named art with seven columns, as shown in Table 11-6,

Table 11-6. The art Table

Column name Type Length/ Value Default Attributes NULL Index Al
art_id INT 8 None UNSIGNED O PRIMARY
thumb VARCHAR 50 None O O
type VARCHAR 30 None 0 O
medium VARCHAR 50 None O O
artist VARCHAR 50 None O O
mini_descr VARCHAR 150 None O O
price DECIMAL 6,2 None UNSIGNED O INDEX O

454

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

The column named thumb is for containing the URLSs for thumbnail images of the paintings. The
description column contains the name of the painting, its size, and some information about the picture
such as whether an oil painting was painted on canvas or board. A real-world art table might also include a
column for the URLs of enlarged versions of the paintings. Note that the downloadable table has no column
for PayPal shopping cart button code.

The orders table is minimal having only four columns: the order ID, the user ID, the price, and the order
date. This is shown in Table 11-7.

Table 11-7. The orders Table

Columnname Type Length/ Value Default Attributes NULL Index Al
order_id INT 8 None UNSIGNED O PRIMARY
user_id INT 8 None UNSIGNED O INDEX O
total_price DECIMAL 7,2 None O O
order_date DATETIME None O INDEX O
price DECIMAL 6,2 None UNSIGNED O INDEX O

The orders table would need to be able to join to other tables.
A table named order_contents with five columns contains various IDs, the price, the quantity ordered,
and the dispatch date, as shown in Table 11-8.

Table 11-8. A Minimal Order Contents Table

Columnname Type Length/ Value Default Attributes NULL Index Al
content_id INT 8 None UNSIGNED 0 PRIMARY
order_id INT 8 None UNSIGNED O INDEX O
art_id INT 8 None UNSIGNED O INDEX 0
price DECIMAL 5,2 None UNSIGNED O INDEX 0
quantity INT 4 None UNSIGNED (O d
dispatch_date DATETIME 60 None O O

This table joins to other tables. Normally there would be a column for quantity, and this is shown for
completeness in Table 11-8, but if the paintings are originals (as in our example website), only one of each
exists, in which case a quantity column would not be required. If the shop sold prints or ink cartridges, a
quantity column would be essential. Columns for the dispatch address and special delivery instructions
would also be included.

The simplistic order and order_contents tables are presented only to make the statement that similar
tables would be part of an e-commerce website. In the real world, they would be joined to the other tables.

Finally, the users table for the custom cart website has 15 columns, as shown in Table 11-9.

455

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

Table 11-9. The Types and Attributes for a Minimal Users Table

Column name Type Length/ Value Default Attributes NULL Index Al
user_id MEDIUMINT 8 None UNSIGNED (O PRIMARY
title VARCHAR 12 None O
first_ name VARCHAR 30 None O 0
last_name VARCHAR 40 None O O
email VARCHAR 50 None O O
password CHAR 60 None O 0
registration_date = DATETIME None | O
user_level TINYINT 2 None UNSIGNED O 0
addressl VARCHAR 50 None O O
address2 VARCHAR 50 None O 0
city VARCHAR 50 None O O
state_country VARCHAR 30 None 0 O
zcode_pcode VARCHAR 10 None 0 O
phone VARCHAR 15 None O
secret VARCHAR 30 None 0 O

A user_level column is included to enable the login page to differentiate between a registered user and
an administrator. The users would have a user_level of 0, but the administrator has been given the number 1.
We will soon see that the secret column will be used to help the user recover their password.

The downloadable file users.sgl contains two registrations shown in Table 11-9. These user’s details will
be used when you explore the workings of the custom shopping cart later in the chapter.

Note Here are the login details for the users:
Mr. Mike Rosoft, e-mail: miker@myisp.com, password: W111g@t3s, user_level: 51

Mrs. Rose Bush, e-mail: roush@myisp.co.uk, password: R@db100ms, user_level: 0

To save space in the above note, we have not shown additional information that is contained in the
table’s user.sql file. We gave Mrs. Bush and Mr. Rosoft the same postal address because they are the same
person. The other details are not accessed again in this example of a custom cart website; therefore, they are
not important.

The Custom Cart Login Page

Figure 11-7 shows the login.php page.

456

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

J
The Dove Gallery

Affordable Original Paintings

L.Og In About Us .-

FrrseyTema

l Submit

Figure 11-7. The customcart and PayPal login page

Note that the page has a Forgot Password? link. Let’s look at the HTML code. The PHP code (process_
login.php) is the same as we have seen in previous chapters. You can view it from the files downloaded from
the Apress site.

Listing 11-7 shows the code for the login.php page.

Listing 11-7. Creating the Login Page (login.php)

<?php
$menu = 7;
if ($_SERVER['REQUEST METHOD'] == 'POST') {
//require("cap.php");
}
>
<!DOCTYPE html>
<html lang="en">
<head>
<title>Template for an interactive web page</title>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">

457

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

<!-- Bootstrap CSS File -->
<link rel="stylesheet"
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"
integrity=
"sha384-9gV04dYFwwhSIDZnLEWNXCjeSWFphIiwGPXr1jddIhOegiulFwO5qRGVFX0d]Z4"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="transparent.css">
<script src="https://www.google.com/recaptcha/api.js'></script>
</head>
<body>
<div class="container" style="margin-top:10px">
<!-- Header Section -->
<header class="jumbotron text-center row mx-auto"
id="includeheader">
<?php include('includes/header.php'); ?>
</header>
<!-- Body Section -->
<div class="content mx-auto" id="contents">
<div class="row mx-auto"
style="padding-left: opx; height: auto;">
<!-- Center Column Content Section -->
<div class="col-sm-8 text-center"
style="padding:0px; margin-top: 5px;">
<!--Start of login content-->
<?php
// Display any error messages if present.
if (isset($errors) 8& !empty($errors))
{
echo '<p id="err msg">A problem occurred:
' ;
foreach ($errors as $msg) { echo " - $msg
" ; }
echo 'Please try again or '
'Register</p>" ;
}
>
<!-- Display the login form fields -->
<form action="process login.php" method="post">
<div class="form-group row">
<label class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<h2 style="margin-top: 10px;">Login</h2>
</div>
</div>
<div class="form-group row">
<label for="email"
class="col-sm-4 col-form-label text-right">
E-mail:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="email"
name="email"
placeholder="E-mail" maxlength="30" required

458

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

value=
"<?php if (isset($_POST['email']))
echo htmlspecialchars($ _POST['email'], ENT QUOTES); ?>" >
required >
</div>

</div>

<div class="form-group row">
<label for="passcode"

class="col-sm-4 col-form-label text-right">
Password:</label>
<div class="col-sm-8">

<input type="password" class="form-control"
id="passcode" name="passcode"

placeholder="Password" minlength="8"

maxlength="12" required

value=
"<?php if (isset($_POST['passcode']))
echo htmlspecialchars($_POST['passcode'], ENT_QUOTES); ?>"
required >
</div>
</div>

<div class="form-group row">
<label class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<div class="g-recaptcha" style="padding-left: 50px;"
data-sitekey="placeyourrecaptchasitekeyhere"></div>
</div>
</div>
<div class="form-group row">
<label class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<input id="submit" class="btn btn-primary"
type="submit" name="submit" value="Submit">
</div>
</div>
<div class="form-group row"> <l--#1-->
<label class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
Forgot Password?
</div>
</div>
<div class="form-group row">
<label class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
<footer class="jumbotron row" id="includefooter">
<?php include('includes/footer.php'); ?>
</footer>
</div>
</div>
</form><!--End of the add a login content-->
</div>

459

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

<!-- Right-side Column Content Section -->

<aside class="col-sm-4" id="includemenu">
<?php include('includes/menu.php'); 2>
</aside>

</div>

</div>

</div>

</body>

</html>

Explanation of the Code

The login and logout files are available in the download files for this chapter. The code for the login page is
the same as the book's previous login files except for the inclusion of the following statement:

<div class="form-group row"> <l--#1-->
<label class="col-sm-4 col-form-label"></label>
<div class="col-sm-8">
Forgot Password?

</div>

</div>

This is simply a link to the page named forgot.php. Listing 11-8 shows the code for forgot.php.

Retrieving a Forgotten Password

You may wonder why we left it so late before introducing a means of retrieving a forgotten password. Our
reasoning was as follows:

e We decided that the more complex PHP code required would be best introduced in a
later chapter when you have become more proficient in the use of PHP.

e Password retrieval was not necessary in the earlier tutorials because you were not
interacting with real users who may have forgotten their passwords.

e We assumed that you would not attempt to migrate a database-driven website to an
external host until you had at least reached Chapter 10.

e Password retrieval involves sending an e-mail to the user; this cannot be tested
unless you either upload the website to a host or install an e-mail server on your
computer.

If the user clicks the Forgot Password? link on the login page, they will see the screen shown in Figure 11-8.

460

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

The Dove Gallery

Affordable Original Paintings

Forgot Your Password?

When you apply, you will receive your new password in an e
email. Read that email as soon as possible. Don't delay! FAQs
For maximum security, immediately login with your new

password. Then change the password as quickly as ”

About Us

possible. Contact Us

H Home Page

Secret Question Answer

If you don't know your secret answer, contact our service
department

D I'm not a robot

Submit

Figure 11-8. The display for retrieving a forgotten password

The HTML code for the forgot.php file is like other code shown earlier. Therefore, it is not included here.
You can download it from the Apress website. However, let’s look at the PHP code for the process_forgot.php
page, shown in Listing 11-8.

Listing 11-8. Code for the Forgotten Password Page (process_forgot.php)

<?php

try {
require ('mysqli _connect.php');
// Assign the value FALSE to the variable $buyid
$buyid = FALSE;

// Validate the email address...

if (lempty($_POST['email'])) {

// Does that email address exist in the database? #1
$query =

"SELECT user_id, user_level, secret FROM users WHERE email=?";
$q = mysqli_stmt_init($dbcon);
mysqli_stmt_prepare($q, $query);
// bind $id to SQL Statement
$email = htmlspecialchars($ POST['email'], ENT _QUOTES);

mysqli stmt bind param($q, "s", $email);

461

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

// execute query
mysqli stmt_execute($q);
$result = mysqli_stmt get result($q);
$row = mysqli fetch array($result, MYSQLI NUM);
$secret = htmlspecialchars($ POST['secret'], ENT QUOTES);
if ((mysqli_num_rows($result) == 1) 8& ($row[1] == 0) && //#2
($row[2] == $secret))
{
$buyid = $row[0];

} else {
// If the buyid for the email address was not retrieved
echo '<h6 style="padding-left:80px; padding-top: 20px;">
If your e-mail and secret are correct, you will receive an
e-mail</h6>";

}

}
if ($buyid) {
// If buyid for the email address was retrieved,
// create a random password #3
$password = substr (md5(uniqid(random_int(), true)), 5, 10);
// Update the database table
$hashed_password =
password hash($password, PASSWORD DEFAULT);
$query = "UPDATE users SET password=? WHERE user id=?";
$q = mysqli_stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// bind $id to SQL Statement
mysqli_stmt_bind_param($q, "si", $hashed_password, $buyid);
// execute query
mysqli stmt execute($q);
if (mysqli_stmt affected rows($q) == 1) {

// Send an email to the buyer #4
$body = "Your password has been changed to '" . $password;

$body .= "'. Please login as soon as possible using the new password. ";

$body .= "Then change it immediately. otherwise, ";

$body .= "if a hacker has intercepted ";
$body .= "this email they will know your login details.";
mail ($email, 'Your new password.', $body,
'From: admin@thedovegallery.co.uk');
// Echo a message and exit the code
echo '<h6 style="padding-left:80px; padding-top: 20px;">
Your password has been changed. ';
echo 'You will shortly receive the new temporary password ';
echo 'by email.</h6>";
mysqli close($dbcon);
include ('includes/footer.php');
exit(); // Stop the script.
} else { // If the query failed to run
echo '<p class="error">Due to a system error, your password ';
echo 'could not be changed. We apologize for any inconvenience. </p>';

}
}

462

CHAPTER 11
mysqli close($dbcon);
catch(Exception $e)

print "The system is busy, please try later";

$error string = date('mdYhis') . " | Forgot Password | " .

$e-getMessage() . "\n";
error_log($error string,3,"/logs/exception_log.log");
//error_log("Exception in Forgot Password Program.
// Check log for details", 1, "noone@nowhere.com",
// "Subject: Forgot Password Exception" . "\r\n");
// You can turn off display of errors in php.ini
// display errors = Off
//print "An Exception occurred. Message:
$e->getMessage();

catch(Error $e)
{
print "The system is busy, please come back later";
$error string = date('mdYhis') . "| Forgot Password |".
$e-getMessage() . "\n";
error log($error string,3,"/logs/error log.log");
//error_log("Error in Forgot Password Program.
// Check log for details", 1, "noone@nowhere.com",
// "Subject: Forgot Password Error" . "\r\n");
// You can turn off display of errors in php.ini
// display errors = Off
//print "An Error occurred. Message:".
/! $e->getMessage();
}

>

Explanation of the Code

This section explains the code.

// Does that email address exist in the database?
$query =
"SELECT user_id, user level, secret FROM users WHERE email=?';

E-COMMERCE: A BRIEF INTRODUCTION

#1

Verify that the e-mail is in the database. If it is not, an error message will display the following message:

“If your e-mail and secret are correct, you will receive an e-mail.”

This message does not tell the user that the e-mail does not exist because unauthorized users would
then know that they need to keep attempting other e-mails until they discover a valid one.

if ((mysqli num_rows($result) == 1) 8& ($row[1] == 0) &&
($row[2] == $secret))
{

$buyid = $row[0];

//#2

463

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

If the e-mail exists (a row was returned) and the user_level is 0 (not an administrator, to provide extra
protection to the administration ID) and the secret message returned is correct, then set the $buyid to the
user_id.

// create a random password #3
$password = substr (md5(uniqid(random_int(), true)), 5, 10);
// Update the database table
$hashed password =
password_hash($password, PASSWORD DEFAULT);
$query = "UPDATE users SET password=? WHERE user id=?";

If the information is verified, create a random password, hash it, and save it to the record in the table.

// Send an email to the buyer #4
$body = "Your password has been changed to '" . $password;

$body .= "'. Please login as soon as possible using the new password. ";

$body .= "Then change it immediately. otherwise, ";

$body .= "if a hacker has intercepted ";

$body .= "this email they will know your login details.";
mail ($email, 'Your new password.', $body,

'From: admin@thedovegallery.co.uk');

Create an e-mail with the information, including the password, to log in. Remember, an e-mail server
must exist on the system for e-mails to be sent.

Note The code for logging out would be the same as in previous chapters.

The Custom Cart Search Page

The search page is similar to the home PayPal cart home page; it was renamed as search.php. Figure 11-9
show the search page.

464

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

J

Register

The Dove Gallery

Affordable Original Paintings

About Us

i FAQs

Search for a painting kil 2 Contact Us

Welcome to the Dove Gallery

Home Page

I | —

l Submit

Figure 11-9. The customcart search page (users_search_page)
When the administrator logs in, they will be directed to an admin page, which is described next.

Adding Paintings to a Table for a Custom Shopping Cart

To add paintings to a database table intended for a custom shopping cart, the administration interface is

almost the same as the one used for a PayPal cart, but the text area for the PayPal code is omitted. Figure 11-10
shows the new interface.

465

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

J
The Dove Gallery

Affordable Original Paintings

w Password

Logout

Add a Painting

Thumbnail Address

l Contact Us

I Home Page

Figures only, no £s, $s or commas

Figure 11-10. The custom cart administration page (admin_page.php)

Figure 11-11 shows the results of the search and the Add to Cart links.

466

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

View Cart
The Dove Ga”ery Find Paintings

Affordable Original Paintings Logout

To buy a painting please click its Add to Cart link

Artist Details

Qil- James- James Kessell (RA and RABA) painted this on tempered
painting Kessell hard board for an appreciative audience. It was exhibited at
the Birmingham Art Gallery in 1967.

Painted on tempered hardboard in 1968 and exhibited first
at Coventry City Art Gallery in the same year.

Qil- First exhibited in Coventry City Art Gallery 1968. Painted on
painting durable tempered hardboard.

Mo paintings displayed? Either we have nothing that matches your requirements at the moment OR you may have forgotten to select
BOTH the search fields. Please click the Find Pictures button and try again

Figure 11-11. Displaying paintings and their Add to Cart links

Since the HTML code for the cart is similar to the cart shown in the PayPal cart, it is not shown here.
However, you can view the found_pics_cart.php file from your downloaded files for details. The PHP code is
shown in Listing 11-11.

Listing 11-11. Code for process_found_pics.php

<?php

//Connect to the database

try {

require ('mysqli_connect.php') ;

// Select the first three items items from the art table
$type=$_SESSION['type'];

$price=$ SESSION['price'];

$query =

"SELECT art_id, thumb, type, price, medium, artist, mini_descr, ppcode”;
$query .=

"FROM art WHERE type= ? AND price <= ? ORDER BY price DESC LIMIT 3";
$q = mysqli_stmt_init($dbcon);

467

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

mysqli stmt prepare($q, $query);
// bind $id to SQL Statement
$type = htmlspecialchars($type, ENT_QUOTES);
$price = htmlspecialchars($_POST['price'], ENT_QUOTES);
mysqli_stmt_bind_param($q, "si", $type, $price);
// execute query
mysqli stmt execute($q);
$result = mysqli stmt get result($q);
if (mysqli_num_rows($result) > 0) {
// Table header
>
<table class="table table-responsive table-striped"
style="background: white;">
<tr><th scope="col">Thumb</th><th scope="col">Type</th>
<th scope="col">Medium</th><th scope="col">Artist</th>
<th scope="col">Details</th><th scope="col">
Price £</th>
</tr>
<?php
// Fetch the matching records and populate the table display
while ($row = mysqli_fetch_array($result, MYSQLI_ASSOC)) {

echo '<tr>

<td></td>

<td>' . $row['type'] . '</td>

<td>' . $row['medium'] . '</td>

<td>' . $row['artist'] . "</td>

<td>' . $row['mini descr'] . '</td>

<td>' . $row['price'] .

"
<a href="added.php?id=" . $row['art id'] .

"">Add to Cart</td>

</tr>';

}
2>
</table>
<?php
// Close the database connection.
mysqli close($dbcon) ;
}
// Or notify the user that no matching paintings were found
else {
echo '<p>There are currently no items matching your search '
echo 'criteria.</p>' ; }
}
catch(Exception $e)

print "The system is busy, please try later";

$error string = date('mdYhis') . " | Found Pics | " .
$e->getMessage() . "\n";

error log($error string,3,"/logs/exception log.log");

//error log("Exception in Found Pics Program.

468

#1

CHAPTER 11

//Check log for details", 1, "noone@nowhere.com",

// "Subject: Found Pics Exception” . "\r\n");

// You can turn off display of errors in php.ini
//display errors = Off

//print "An Exception occurred. Message:".
//$e->getMessage();
}catch(Error $e)
{

print "The system is busy, please come back later";
$error_string = date('mdYhis') . " | Found Pics | " .
$e->getMessage() . "\n";

error_log($error string,3,"/logs/error log.log");

//error_log("Error in Found Pics Program.
//Check log for details", 1, "noone@nowhere.com",

/7 "Subject: Found Pics Error" . "\r\n");

// You can turn off display of errors in php.ini
//display_errors = Off

//print "An Error occurred. Message:".
//$e->getMessage();
}

>

Explanation of the Code

This sections explains the code.

// Fetch the matching records and populate the table display
while ($row = mysqli fetch array($result, MYSQLI ASSOC)) {

echo '<tr>

<td></td>

<td>' . $row['type'] . '</td>

<td>' . $row['medium'] . '</td>

<td>' . $row['artist'] . '</td>

<td>' . $row['mini _descr'] . '</td>

<td>' . $row['price'] .

'
<a href="added.php?id=" . $row['art id'] .
"">Add to Cart</td>

</tr>';

E-COMMERCE: A BRIEF INTRODUCTION

#1

The only difference between the custom cart code and the PayPal code is the link provided to the cart.
In the custom cart code, the link is attached to the added.php program. In the PayPal program, it goes to the

PayPal site. This custom cart link also passes the art_id to added.php.

When a painting has been added to the cart, the user is notified, as shown in Figure 11-12.

469

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

The Dove Gallery =

Affordable Original Paintings

Find Paintings

Logout

A painting has been added to your cart
|

Figure 11-12. Confirmation that a painting has been added to the shopping cart

Note the two links below the confirmation message; the user can continue shopping to add more items to
the cart. They can choose to view the cart contents by clicking View Cart link on the header menu. They could
also use the second link to go straight to the checkout. Listing 11-12 gives the code for the confirmation page.

Listing 11-12. Creating the Confirmation Page (added.php)

<?php

session start();

if (lisset($_SESSION['user_id'])){

header('location:login.php');

exit();

}

$menu = 2;

>

<!DOCTYPE html>

<html lang="en">

<head>

<title>Added to Cart</title>

<meta charset="utf-8">

<meta name="viewport"

content="width=device-width, initial-scale=1, shrink-to-fit=no">

<!-- Bootstrap CSS File -->

<link rel="stylesheet"
href=

"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css”
integrity=

"sha384-9gV04dYFuwwiSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiulFwO5qRGVFX0dIZ4"
crossorigin="anonymous">

<link rel="stylesheet" type="text/css" href="transparent.css">

</head>

<body>

<div class="container" style="margin-top:10px">

<!-- Header Section -->

<header class="jumbotron text-center row mx-auto"

id="includeheader">

<?php include('includes/header.php'); ?>

</header>

470

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

<!-- Body Section -->

<div class="content mx-auto" id="contents">

<div class="row mx-auto"

style="padding-left: opx;margin-top: -17px; width: 90%; height: auto;">

<!-- Center Column Content Section -->

<div class="col-sm-12 text-center"

style="padding:0px; margin-top: 5px;">

<div id="content"><!--Start of added page-->

<p>

<?php

if (isset($_GET['id'])) { $id = $_GET['id'] ; }

// Connect to the database

try {

require ('mysqli_connect.php') ;

// Get selected painting data from the ‘'art' table
$query = "SELECT * FROM art ";
$query .= "WHERE art_id = ? ";
$q = mysqli stmt_init($dbcon);
mysqli stmt prepare($q, $query);
// bind $id to SQL Statement
mysqli stmt_bind param($q, "i", $id);
// execute query
mysqli stmt execute($q);
$result = mysqli_stmt_get result($q);
$row = mysqli fetch array($result, MYSQLI ASSOC);
if (mysqli _num_rows($result) == 1) {

// If the cart already contains one of those products #1
if (isset($_SESSION['cart'][$id]))
{

// Add another one of those paintings
$ SESSION['cart'][$id]['quantity’]++;
echo '<h3>Another one of those paintings has been added';
echo 'to your cart</h3>’;
}
else
{
// Add a different painting #2
$_SESSION['cart'][$id]=
array ('quantity' => 1, 'price' => $row['price']) ;
echo '<h3>A painting has been added to your cart</h3>';

}

}
catch(Exception $e)

print "The system is busy, please try later";

$error string = date('mdYhis') . " | Added | " .
$e->getMessage() . "\n";

error log($error string,3,"/logs/exception log.log");

//error_log("Exception in Added Program.

471

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

// Check log for details", 1, "noone@nowhere.com",

// "Subject: Added Exception" . "\r\n");

// You can turn off display of errors in php.ini
// display errors = Off

//print "An Exception occurred. Message:
//$e->getMessage();
}catch(Error $e)
{

print "The system is busy, please come back later";
$error_string = date('mdYhis') . " | Added | " .
$e->getMessage() . "\n";
error_log($error string,3,"/logs/error log.log");
//error_log("Error in Added Program.
//Check log for details", 1, "noone@nowhere.com",
/7 "Subject: Added Error" . "\r\n");
// You can turn off display of errors in php.ini
//display_errors = Off
//print "An Error occurred. Message:
}

// Close the database connection
mysqli_close($dbcon);

// Insert three links

echo '<p>
Continue Shopping |

Checkout</p>" ;
?>

<footer>

<?php include("includes/footer.php"); ?>
</footer>

</div>

</div><!--End of page content-->

</div>

</div>

</div>

</body>

</html>

. $e->getMessage();

Explanation of the Code

This section explains the code.

// If the cart already contains one of those products
if (isset($ SESSION['cart'][$id]))
{
// Add another one of those paintings
$ SESSION['cart'][$id]['quantity’]++;
echo '<h3>Another one of those paintings has been added';
echo 'to your cart</h3>’';

472

#1

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

The details of the selected paintings are checked to determine which of two messages to display, either
“A painting has been added” or “Another of those paintings has been added.” The session variable cart
contains a three-dimensional array with the indexes of id, quantity, and price. In layman’s terms, the cart
includes each order defined by the ID (what was purchased), quantity (how many), and the price (for each).
The quantity value is increased ({'quantity’)++) by one if the user has already chosen to buy the painting
(which is determined by the if statement).

// Add a different painting #2
$ SESSION['cart'][$id]=
array ('quantity' => 1, 'price' => $row['price']) ;
echo '<h3>A painting has been added to your cart</h3>" ;

If the painting has not been selected before, a new array is created with the quantity set to 1 and the
price sent from the value contained in the art table.
If the user chooses to view the cart, they will see the contents displayed, as shown in Figure 11-13.

I View Cart
The Dove Ga"ery I Find Paintings

Affordable Original Paintings I e

About Us

I FAQs

Contact Us

I Home Page

Figure 11-13. The cart contains one still-life painting costing £750

The quantity in the third column of the displayed table (seen in white) can be edited by the user. To
remove a painting from the cart, the user will change the current figure to zero. After editing the quantity, the
user must click the Update My Cart button to reveal the new subtotal (last column in the top row) and the
revised total price.

User can click the Continue shopping link to select another painting. Let’s assume that they select
another oil painting costing £750; when viewing the cart, they will see the added painting and the new total
cost, as shown in Figure 11-13.

The HTML code for cart.php can downloaded from the Apress website. The code is similar to the HTML
code seen previously. Let's look at the PHP code that creates the interactive cart (Listing 11-13).

473

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

Listing 11-13. Code for the View Cart Page (process_cart.php)

<?php
// If the user changes the quantity then Update the cart
if(isset($_POST['qty'])) {
foreach ($_POST['qty'] as $art_id => $item gty) //1
{
// Ensure that the id and the quantity are integers
// PHP would convert for us. But other languages would not
$id = (int) $art id;
$qty = (int) $item qty;
// If the quantity is set to zero clear the session or
// else store the changed quantity
if ($qty == 0) { unset ($ SESSION['cart'][$id]); }
elseif ($qty > 0) {
$ SESSION['cart'][$id]['quantity'] = $qty; }

}

}

// Set an initial variable for the total cost
$total = 0;

// Display the cart content
if (lempty($_SESSION['cart']))
{

?>
<div class="row mx-auto" style="padding-left: Opx; height: auto;">
<!-- Center Column Content Section -->
<div class="col-sm-4 text-center mx-auto"
style="padding-left: 40px;"></div>
<div class="col-sm-10 text-center mx-auto"
style="color: black; padding:20px; margin-top: 5px;">
<?php
try {
// Connect to the database.
require ('mysqli connect.php');
// Get the items from the art table and
//insert them into the cart
$q = "SELECT * FROM art WHERE art id IN (";
foreach (/72

$ SESSION['cart'] as $id => $value) { $q .= $id . ','; }

$q = substr($q, 0, -1) . ') ORDER BY art id ASC';

$result = mysqli_query ($dbcon, $q);

// Create a form and a table

echo '<form action="cart.php" method="post">";

echo '<table class="table table-responsive table-striped"

style=" color:black;">";
echo '<tr><th scope="col">Medium</th><th scope="col">Type</th>";
echo '<th scope="col">Quantity</th><th scope="col"></th>";
echo '<th scope="col">Price</th></tr>";
while ($row = mysqli fetch_array ($result, MYSQLI_ASSOC))

{

474

}

CHAPTER 11

// Calculate the subtotals and the grand total

E-COMMERCE: A BRIEF INTRODUCTION

#3

$subtotal = $ SESSION['cart'][$row['art id']]['quantity'] *

$ SESSION['cart'][$row['art id']]['price'];
$total += $subtotal;
// Display the table

#4

echo "<tr> <td>{$row["type']}</td><td>Painting(s)</td>

<td><input type=\"text\" size=\"3\"
name=\"qty[{$row['art_id']J}]\"

value=\"{$_ SESSION['cart'][$row["art_id']]["quantity']}\"></td>

<td>at {$row['price']} each </td>

<td style=\"text-align:right\">".
number format ($subtotal, 2)."</td></tr>";

// Close the database connection
mysqli close($dbcon);

// Display the total

echo ' <tr><td colspan="5"
style="text-align:right">Total =
number format($total,2).'</td></tr></table>";
echo '<input id="submit" class="btn btn-primary"

type="submit" name="submit" value="Update Order"></form>';

catch(Exception $e)

{

}

print "The system is busy, please try later";

$error string = date('mdYhis') . " | Cart | " .
$e-getMessage() . "\n";

error log($error string,3,"/logs/exception log.log");

//error_log("Exception in Cart Program.

//Check log for details", 1, "noone@nowhere.com",

// "Subject: Cart Exception" . "\r\n");

// You can turn off display of errors in php.ini

// display_errors = Off

//print "An Exception occurred. Message:

//$e->getMessage();

catch(Error $e)

{

print "The system is busy, please come back later";

$error string = date('mdyhis') . " | Cart | " .
$e-getMessage() . "\n";

error_log($error string,3,"/logs/error log.log");

//error_log("Error in Cart Program.

//Check log for details", 1, "noone@nowhere.com",

/7 "Subject: Cart Error" . "\r\n");

// You can turn off display of errors in php.ini

//display errors = Off

//print "An Error occurred. Message:" .

//$e->getMessage();

475

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

echo "</div>";

echo "</div>";

}

else

// Or display a message

{ echo

'<p style="padding: 60px;">Your cart is currently empty.</p>' ;

// Create some links

echo

'<p>Continue Shopping';
echo ' | Checkout" ;

>

Explanation of the Code

The comments within the listing explain the steps used to populate a cart. However, some items need a little
more explanation as follows:

foreach ($ _POST['qty'] as $art_id => $item qty) //#1
The view cart process relies on sessions and some complex arrays. The function foreach
is a special loop that works with arrays. In line #1 the item § POST['qty'] is an array
containing the quantity of a product. The symbol => does not mean equal to or greater than,
it is an array operator that associates the item gty with the $art id of the product.
$q = "SELECT * FROM art WHERE art id IN (";
foreach (//#2
$ SESSION['cart'] as $id => $value) { $q .= $id . ',"; }
$q = substr($q, 0, -1) . ') ORDER BY art_id ASC';

Values are added to a session array named cart shown here. The values include the $id, which is the
$art_id and the price.

// Calculate the subtotals and the grand total #3
$subtotal = $ SESSION['cart'][$row['art id']]['quantity'] *
$ SESSION['cart'][$row['art id']]['price'];
$total += $subtotal; }

The quantity and price in each row of the cart are used to calculate the subtotal. Each row subtotal is
then added to the total to produce the grand total due.

// Display the table #4
echo "<tr> <td>{$row["type']}</td><td>Painting(s)</td>

<td><input type=\"text\" size=\"3\"

name=\"qty[{$row["art_id"']}]\" value=\"{$_SESSION['cart'][$row[art_id']][quantity']}\"></td>
<td>at {$row['price']} each </td>

<td style=\"text-align:right\">".

number format ($subtotal, 2)."</td></tr>";

The session arrays are used to insert values into the cells of the view cart table. Note that in the code that
formats the table, the double quotes are escaped by using backslashes.

476

CHAPTER 11 E-COMMERCE: A BRIEF INTRODUCTION

Note In a real-world website, to achieve the necessary standard of security, two techniques would be used:
prepared statements and transactions. Transactions are beyond the scope of this book, but you can learn about
them using the resources provided in Appendix B.

We will briefly mention the checkout page.

The Checkout Page
When the checkout link is clicked, four things happen.

e A “thankyou” page appears, which also states the order number.
e The order details are posted to the order contents table.

e The order is entered in the order table.

e The shopping cart is emptied ready for the next purchases.

Figure 11-14 shows the “thank you” page.

)’ Logout
The Dove Gallery

Affordable Original Paintings

Thank you for your order. Your About Us

order number is
2018052723161339.

The shopping cart has been emptied ready for your next
transaction.

Contact Us

Home Page

Figure 11-14. The checkout “thank you” page

The checkout page generates the order number from the current date and time and the user’s ID
number. This information is sufficient for a help desk to look up the proper order if there are problems. The
code for the checkout page is included in the downloadable files.

The Additional Administrative Tasks

The process of adding artists and paintings was described earlier in the chapter, but an administrator must
perform several other tasks. Editing and deleting artists and paintings can be achieved by the techniques
described in Chapter 3. Other tasks would usually be undertaken by an administration team; these duties
would be order processing, shipping, stock control, financial control, and customer support. All these
activities would be recorded in the appropriate database tables.

477

CHAPTER 11 = E-COMMERCE: A BRIEF INTRODUCTION

Summary

In this chapter, you learned about some of the many elements required for an e-commerce website.
However, the need for brevity meant that we had to limit the number of elements. Because a practical
e-commerce website needs an enormous number of files, the chapter’s space was used to describe the main
displays as seen by a user. The chapter was not a tutorial but a brief description of an e-commerce website
followed by a demonstration of PayPal and a custom shopping cart.

The download code includes secured methods for accepting information from the user. The sites have
also been designed for usage in any size device including smartphones.

We hope that you were able to appreciate the fact that e-commerce websites are complex and that the
need for tight security is essential. We also hope that the chapter has inspired you to explore some of the
e-commerce resources given in Appendix B.

478

CHAPTER 12

Take a Brief Look at Oracle
MySQL 8

By now you may be wondering why we have not introduced Oracle’s MySQL 8 database server. We first

wanted to teach you techniques that work in any of the current levels of MariaDB and MySQL. For the most

part, we have accomplished that task. Second, if you are happy with MariaDB or MySQL 5.7, you don’t have

to install MySQL 8. You could skip this chapter and everything we have shown you will work.
After completing this chapter, you will be able to

Understand the features and tools available with Oracle’s MySQL 8
Install MySQL 8

Use tools contained within MySQL Workbench

Migrate a database to MySQL 8

Create and modify databases in MySQL 8

Create user IDs in MySQL 8

There are many strong features of MySQL 8, so let’s look at the advantages of upgrading. You will see
that version 8 has some great new features not available in the previous versions.

Advantages of Upgrading

The following improvements are in the free Community edition and the Enterprise edition:

MySQL document store: You can use SQL-based and non-SQL-based databases older
than SQL 8.

SQL user roles: You can create administrative user IDs based on the traditional IT job
roles.

An improved SQL Workbench: There is no current version of phpMyAdmin that is
compatible with MySQL 8. We will cover the features of MySQL Workbench in this
chapter.

Improved security features: Both editions use an improved openSSL protocol,
meaning the open source Secure Sockets Layer (SSL) and Transport Layer Security
(TLS) protocols, with default authentication. We will cover the default authentication
in our examples in this chapter.

© Adrian W. West and Steve Prettyman 2018
A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,
https://doi.org/10.1007/978-1-4842-3843-1_12

479

CHAPTER 12 TAKE A BRIEF LOOK AT ORACLE MYSQL 8

e Password history: You can maintain information about password history. Now it’s
possible to enable restrictions on the reuse of previous passwords.

e Password hashing: A new caching sha2_password authentication is available. It
implements SHA-256 password hashing and uses caching to address any latency
issues. You will discover that PHP 7 does not currently support this new level of
hashing.

e Improved reliability: Data Definition Language (DDL) statements have become crash
safe. Metadata is now stored in a transactional data dictionary.

e Improved InnoDB database engine: The database engine has been improved.
e Improved performance: Performance is up to two times faster than MySQL 5.7.

e New SQL commands: There are NOWAIT and SKIP LOCKED alternatives when
locking records and tables. SQL supports descending indexes with DESC in an
index definition. It is no longer ignored. A grouping function can be used in GROUP
BY queries that include a WITH ROLLUP modifier. ALTER TABLE supports better
column renaming (RENAME COLUMN old_name TO new_name).

e Updated SQL commands: SELECT and UNION use the same syntax. NATURAL
JOIN allows the use of the optional INNER keyword (NATURAL INNER JOIN). Right
deep joins no longer require parentheses (JOIN ... JOIN ... ON ... ON). You can use
parentheses around queries (SELECT ... UNION SELECT ...). Left-hand nesting of
unions is now permitted in top-level statements. These changes follow the SQL
standards.

e Larger character set support by default: Both editions include a lot more
county character sets, such as Russia’s. The default character set is utf8mb4
(https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-0.
html#mysqld-8-0-0-charset).

e GIS geography support: Both editions include the Spatial Reference System (SRS).
e New error logging: Both editions use the MySQL component architecture.

e JSON improvements: There are new commands, new functions, improved sorting,
and partial updates. You can use SQL commands to access JSON data. The data is
returned as if it were a relational table.

The following improvements are available in the Enterprise edition only. It is not free, but there is a
30-day timeout version you can download for testing.

e Backup and recovery: Full, incremental, and partial backups. This includes point-in-
time recovery. Backup compression is available.

e High availability: For integrated, native, and HA with the InnoDB cluster.
e Encryption: Key generation, digital signatures, and other features.

e Authentication: With other security systems including Microsoft Active Directory
and PAM.

e Firewall: Protection against database attacks, including SQL injection.

e Auditing: Policy-based auditing.

480

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-0.html#mysqld-8-0-0-charset
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-0.html#mysqld-8-0-0-charset

CHAPTER 12 © TAKE A BRIEF LOOK AT ORACLE MYSQL 8

e Monitoring: For managing the database infrastructure.

e Cloud service: Powered by Oracle Cloud. It supports SaaS, PaaS, and DBaaS
applications.

For more details, visit https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-11.html.

As of the publication of this book, MySQL 8 is not integrated into XAMPP or easyPHP. The creators of
these tools have chosen to support some of the original developers of MySQL and MariaDB. However, you
will now discover that you can run two versions of MySQL (5.7 and 8.11) on your platform. Let’s start by
installing the Community Server version.

Installing MySQL 8 Community Server

Complete the following steps to install Oracle’s MySQL 8 Community Server:
1. Gotohttps://dev.mysql.com/downloads/mysql/.

2. Scroll down to the Generally Available (GA) Releases area (see Figure 12-1).

Select Operating System: Looking for previous GA

i ?
Microsoft Windows ” versions?

Recommended Download:

MySQL Installer
y5Q for Windows

All MySQL Products. For All Windows Platforms. -
In One Package.

Windows (x86, 32 & 64-bit), MySQL Installer MSI Go to Download Page >

Other Downloads:

Windows (x86, 64-bit), ZIP Archive 8.0.11 183.3M
[mysgl-8.0.11-winxB4.zip) MD5: Obdefe256a28cd391bf057ddcblade0s | Signature
Windows (x86, 64-bit), ZIP Archive 8.0.11 230.5M
Debug Binaries & Test Suite

[mysqgl-8.0.11-winx64-debug-test.zip) MD5: 51bb12a79a9856fb325ec198bccaéd £d | Signature

Figure 12-1. MySQL installer

MySQL has a version for many of today’s operating systems. If you are not using Windows, you can use
the drop-down box shown at the top of Figure 12-1 to select the correct version. This demonstration will
install the Windows version, but the procedures are similar for others.

481

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-11.html
https://dev.mysql.com/downloads/mysql

CHAPTER 12 TAKE A BRIEF LOOK AT ORACLE MYSQL 8

3. Click the Go to Download Page button. The version we are selecting includes all

the available tools for Windows.

4. Scroll down to the Generally Available (GA) Releases area (see Figure 12-2).

Generally Available (GA) Releases

MySQL Installer 8.0.11

Select Operating System:

| Microsoft Windows

Windows (x86, 32-bit), MSI Installer

{mysgl-installer-web-community-8.0.11.0.msi)

Windows (x86, 32-bit), MSI Installer

{mysgl-installer-community-8.0.11.0.msi)

Figure 12-2. Selecting an installer

8.0.11

8.0.11

Looking for previous GA
versions?

MD5: e0b526121c££38d81308bc5T783a66cc | Signature

MD5: 7c78d5£52fcL879a60b7a4d63350aeb2 | Signature

The first selection (the web installer) keeps most of the software on the Internet until you select
which items you want to install. It then downloads each as they are being installed. The second selection
downloads all items at once. If you are connected to the Internet throughout the installation, use the first

selection.

5. Click the install button (Download) next to the item you want to install.

6. The next screen suggests you sign in or create a free user ID for Oracle’s latest
updates and services. You can skip this by scrolling down to the bottom of the
page and clicking the “No thanks, just start my download” link (see Figure 12-3).

482

CHAPTER 12 © TAKE A BRIEF LOOK AT ORACLE MYSQL 8

Begin Your Download

mysql-installer-web-community-8.0.11.0.msi
Opening mysq|-installer-web-community-8.0.11.0.msi X

Login Now or| You have chosen to open:

An Oracle Web Ac 5 mysql-installer-web-community-8.0.11.0.msi

which is: Windows Installer Package (15.8 MB)

- Fast t
s from: https://cdn.mysql.com

. Download tech

Would you like to save this file?
« Post messages

. Report and tra | SavefFile

. Comment in the MySQL Documentation

Login » Sign Up »

using my Oracle Web account for an Oracle Web account

MySQL.com is using Oracle SSO for authentication. If you already have an Oracle Web account, click the

Login link. Otherwise, you can signup for a free account by clicking the Sign Up link and following the
instructions.

No thanks, just start my download.

Figure 12-3. Starting the installer

7. Click Save File.

The installer will be downloaded. Find its location and click it to begin the installation. See Figure 12-4.

tps://dev.mysql.com/downloads/file/?id=476476 0% e w Lol

& mysql-installer-web-c¢ ty-8.0.11.0(1).msi
Begin Your Download B oo o =

mysgl-installer-web-community-8.0.11.0.msi show All Downloads

Login Now or Sign Up for a free account.
An Oracle Web Account provides you with the following advantages:

. Fast access to MySQL software downloads

« Download technical White Papers and Presentations
- Post messages in the MySQL Discussion Forums

« Report and track bugs in the MySQL bug system

. Comment in the MySQL Documentation

Figure 12-4. Locating and starting the installer
483

CHAPTER 12 ' TAKE A BRIEF LOOK AT ORACLE MYSQL 8

8. You may get a warning message that you have downloaded an executable file; if
so, click OK. Windows will also ask if you want to allow the app to make changes
to your system. Click Yes. The installer’s license agreement will display. Check
the “I accept” box and click Next. The screen shown in Figure 12-5 will appear.

| £ MySQL Installer

MySQL. Installer

Adding Community

Figure 12-5. Selecting a setup type

Choosing a Setup Type

Please select the Setup Type that suits your use case,

@® Developer Default

Installs all products needed for
MySQL development purposes.

QO Server only

Installs only the MySQL Server
product.

QO Client only

Installs only the MySQL Client
products, without a server.

Q Full

Installs all included MySQL
products and features.

QO Custom

Manually select the products that
should be installed on the
system.

FIMe Aant YAmMATe T TRR CATMmManT =mMIT CNATACTATS TR TeRarTnTe

Setup Type Description

(Installs the MySQL Server and the tools Al

required for MySQL application development.
This is useful if you intend to develop
applications for an existing server.

This Setup Type includes:

* MySQL Server

* MySQL Shell

The new MySQL client application to manage

MySQL Servers and InnoDB cluster instances.

* MySQL Router
High availability router daemon for InncDB

Icluster setups to be installed on application v

@ Install all products
GA Server, but may contain other pre-GA products.

QO Only install GA products
May skip installation of some products.

< Back Next > Cancel

9. There are five setup types you can select. The descriptions given are pretty
detailed, so we won’t describe them here. However, in this demo, we are not
going to install all the products. We will install just the ones we need. So, select
Custom and click the Next button. The screen in Figure 12-6 will appear.

484

CHAPTER 12 © TAKE A BRIEF LOOK AT ORACLE MYSQL 8

[Z]MysQL installer — X

MySQL. Installer Select Products and Features
Adding Community

Please select the products and features you would like to install on this machine.

Filter:

' s [LII Software, Current GA Any Edit

Available Products: Products/Features To Be Installed:
[=- MySQL Servers ~ [+ MySQL Server 8.0.11 - X64
| B MySQL Server - MySQL Workbench 6.3.10 - X64
=- MySQL Server 8.0 [©- MySQL Documentation 8.0.11 - X86
; [+ Samples and Examples 8.0.11 - X86

Select Products and Features

L%I Applications
. - MySQL Workbench
=- MySQL Workbench 6.3

299

- MySQL Notifier
- MySQL For Excel
MySQL for Visual Studio
- MySQL Utilities
- MySQL Shell
MySQL Router [

-
: @
| B
N
.
| B

< Back] | Next > [T Cancel

Figure 12-6. Selecting the products to install

10. For this demonstration, we want to install MySQL Server, MySQL Workbench,
the documentation, and the examples. You will need to click the + sign next to
each area (in some cases, several + signs) to find the product to install. Once you
find the product, select it and click the green right arrow. The product should
move to the right side of the screen. Once you see all the products required
(see Figure 12-6) on the right side, click Next.

11. The products selected will be listed on the next screen. Verify that they are
correct and then click the Execute button.

12. When all the products are installed, the button will change to a Next button.
Click it.

13. The next screen will indicate that we need to do some product configurations for
the server and the examples. Click Next.

14. The next screen will provide you with an opportunity to create databases that
replicate. This is for large configurations where data can be spread out in many
locations. We are testing only a small system, so we want the default (Standalone)
selection. Click Next. The screen shown in Figure 12-7 will appear.

485

CHAPTER 12 ' TAKE A BRIEF LOOK AT ORACLE MYSQL 8

| E] MySQL Installer

MySQL. Installer
MySQL Server 8.0.11

Type and Networking

Type and Networking

Server Configuration Type

Choose the correct server configuration type for this MySQL Server installation. This setting will
define how much system resources are assigned to the MySQL Server instance.

[« R Y T3l Development Computer ~

Connectivity

Use the following controls to select how you would like to connect to this server.

& Teenp Port Number: 4

[Open Windows Firewall port for network access

[] Named Pipe Pipe Name: MYSOL
[Shared Memory Memory Name: MYSOL
Advanced Configuration

Select the check box below to get additional configuration page where you can set advanced
options for this server instance.

[] Show Advanced Options

< Back Next > \ Cancel

Figure 12-7. Changing the port number

15. The Config Type option should be set to Development Computer for our testing
and development needs. However, it is important that the port number be
changed from the default (3306) to another port (try 3307; the warning icon will
tell you if there is a conflict). We can have both versions of MySQL running, if they
use different ports. We currently have a conflict because MySQL 5.7 is using port
3306. Once you change the port, you can click Next. The screen in Figure 12-8 will

appear.

486

CHAPTER 12 © TAKE A BRIEF LOOK AT ORACLE MYSQL 8

| MySQL Installer

W\

MySQL. Installer

MySQL Server 8.0.11

Authentication Method

T e S e e i S et R VS

Authentication Method

(@ Use Strong Password Encryption for Authentication (RECOMMENDED)

MySQL & supports a new authentication based on improved stronger SHA236-based password
methods. It is recommended that all new My5QL Server installations use this method going
forward.

Attention: This new authentication plugin on the server side requires new versions

& of connectors and clients which add support for this new £.0 default authentication
(caching_sha2_password authentication).

Currently MySQL 8.0 Connectors and community drivers which use libmysglclient .0 support

this new method. If clients and applications cannot be updated to support this new

authentication method, the MySQL 8.0 Server can be configured to use the legacy MySQL

Authentication Method below.

(O Use Legacy Authentication Method (Retain MySQL 5.x Compatibility)

Using the old MySQL 5.x legacy authentication method should only be considered in the
following cases:

- If applications cannot be updated to use MySQL 8 enabled Connectors and drivers,
- For cases where re-compilation of an existing application is not feasible.
- An updated, language specific connector or driver is not yet available.

Security Guidance: When possible, we highly recommend taking needed steps towards
upgrading your applications, libraries, and database servers to the new stronger authentication.
This new method will significantly improve your security.

| <Back | Next > I Cancel

Figure 12-8. Changing the authentication method

16. Since PHP 7 currently does not work with the new Oracle Encryption technology,
itis important that we select Use Legacy Authentication Method. Then click
Next. You will then be requested to enter a root password. You must use this
password every time you access MySQL 8 (this is a new feature). Make sure to
enter a password that is secure that you will remember. Then click Next. You
could, optionally, also create other user IDs and passwords based on roles (also
anew feature) at this time (see Figure 12-9) or after the server has been installed.
We will not install any special user IDs at this time.

487

CHAPTER 12 TAKE A BRIEF LOOK AT ORACLE MYSQL 8

EIMySQL User Details Sadbon At
onior min
_ ,’-‘J minimum set of rights needed 1o mon zr
Please specify the username
’ Process Admin
[B ngnts needed 10 assess. mOnitor, and & an
“{FH Username)
svn. il Replication Admin
— Host "-‘J ';’!::'l'e—:je::::e‘._: and manage replication
Role , Security Admin
= ngnts 10 manage ogins and grant and revoxke
Authentication '
Password [User Admin

Confirm Password

Figure 12-9. Adding new users with roles

17.

18.

19.

The next screen will ask if you want MySQL to start up as a Windows service (in
other words, automatically start). We will leave the default settings (or you can
change them if you want to manually start the MySQL server). Click Next. The
next screen relates to the document store. This is the ability to use and create
NoSQL-type databases. Since this book does not cover NoSQL databases, we will
leave the default selections (nothing selected) and click Next.

We will see the Apply Configuration screen. Click Execute, and the settings will
be installed. Click Finish after the changes have occurred. It will now ask us
about configurations of our sample data. Click the Next button. Enter your root
password when requested. Click the Check button. This will verify that you can
access the example database with the password provided. Click the Next button.
The Apply Configuration screen will appear. Click Execute. This will apply the
SQL scripts to install the sample data. Click Finish after completion. The Product
Configuration screen will appear again. Click Next.

You should see an Installation Complete screen. Optionally the check box
is selected to start MySQL Workbench. Since we are going to look at MySQL
Workbench in the next section, you can keep it selected. Click Finish.

Congratulations! You have installed MySQL 8.0. Let’s look at some of the features. First, we will explore
MySQL Workbench.

Exploring the Features of MySQL Workbench

If you are like us, you love the features of phpMyAdmin, and you are resistant to discover another tool.
However, MySQL Workbench has existed for a while. Many developers have used it for years to design
databases with its visual flowchart tool (rather than code). Once the database is designed, SQL code can be

488

CHAPTER 12 © TAKE A BRIEF LOOK AT ORACLE MYSQL 8

generated to install the database and tables. It now also includes many more helpful tools. Workbench has
been a separate product that you could install on your own. Now, as you have seen, we can install it as part
of the MySQL server package. Let’s take a look at some of its features.

If MySQL Workbench is not already running, you will find it under the MySQL folder. Click the icon to
start it. The initial screen is actually pretty plain; it provides some basic information, including the version of
MySQL you have installed and the port (3307) that MySQL is using for communication. The welcome screen
is shown in Figure 12-10.

Eile Edt \iew [Dofabase Tools Scripting Help

Welcome to MySQL Workbench

MySQL Workbench is the official graphical user interface (GUI) toal for MySQL. It allows you to design,
create and browse your database schemas, work with database objects and insert data as well as
design and run SQL queries to work with stored data. You can also migrate schemas and data from other

database vendors to your MySQL database.

Figure 12-10. The welcome screen for MySQL Workbench

Let’s start by clicking the diagram button, which is the second item below the shark database icon, this
will display the model screen (Figure 12-11).

File Edit View Database Tools Scripting Help

Models ® ® ®

sakila_full

c=n ...L Workbench 6.3 CE/extras
' sakila
09 Nov 17, 16:11

Figure 12-11. The design models screen for MySQL Workbench

In our example files we installed, the sakila_full model shows us a visual representation of a database
with multiple tables. Click the name of the model on the right to see the details. The full model is shown in
Figure 12-12.

489

CHAPTER 12 ' TAKE A BRIEF LOOK AT ORACLE MYSQL 8

& WS0LModel bokda fulmwb] % EERDisgram x

Ede Edt Miew JSgrangs Model [Datsbase Tools Seriping Help
BEWI-~igao
Bird's Eye

Zoom TR = @ B

L JerO

Medeling Additicrs.

J?. Ly
>

&

Ei

= Ty | Umestamps
|| = user
- = i .
H MySQOL P Y
- a
[L B
Curime Detm Trwrrans
Catalog Tree = "
1
v] eakila a8 -
» E Tebles o B hm o
> i Views ' e AACHANES
» T Aoutine Groups et TONT
F3 » » sy TEAR.
——— # wmane W TR
Catalog Layers User Types i R
¥ B TNYINT
Descripsion Editar s S OSA
Mo Seection v — gl
- - [smemantacpacsn b
=
<
[
o v
Descripion Proparties H_i_!-__ _' '-"_ < 3 Templates
Ready =

Figure 12-12. The salika_full design model

If you have read Chapter 9 or taken a database design class, this diagram should be familiar. This an
entity-relationship (ER) diagram. These diagrams are used to create databases and tables that are in normal
form. The format of the tables shown and the links between the tables indicate relationships (like one-to-
many), attributes, and entities. Learning these techniques would take several chapters. However, you can
find many useful videos (including some that use SQL Workbench) on the Internet.

As we mentioned earlier, one of the great features of Workbench is the ability to have it generate the SQL
code (and install it) to create your database once it is designed. You can also “reverse engineer” a database
back into design mode. This feature is located under the Database menu, as shown in Figure 12-13.

& W50 Mode ks flmnb) % EERDisgram X
File Edt View Amege Model Dobase | Tools Scriging Help

BEE g ~~ge Cannect o Catabass... Culeld [W |
Manage Connections.
Bardfe By : I Modsiing Adduuns
Reverse Engineer.. CeleR -
Zoom: TR v B, & [s Eacinier CriG =
—
Schema Transfer \Wizare. T
Migration: bizard Vi "
Edit Type Mappings ke Generic Migration.
Synchronize Model... CrloStieZ R o000,

Synchronize with Ary Scurce... Cirl+ShiftsY

Caaiog Tree

¥ [sakila

» T Tables

» 3 Views

» 5 routine Groups
< >
Catalog Layers User Types

Description Egiter
o Selecton v

> Templstes

Descriptcn Froperties H#

Figure 12-13. Engineering a database
490

CHAPTER 12 © TAKE A BRIEF LOOK AT ORACLE MYSQL 8

If you click the MySQL Model tab at the top of the screen, you will see the existing schema of the sakila
database (Figure 12-14).

B MySOL Model (sakla_fullmw. » EERDiagam x
le Edt \eew Aerange Model Duatsbase Tools Scriping Help

FEES -~ DEEEH =y W/N |
Sescription Ediler Mesdel Overvien : ’) g Additions
v = e @@
& '_) l:‘{'-_ tmestamps
Add Dagram EER Diagram T wer
oy P w
¥ Physical Schemas s EH=| 4] -
Yoy | eDOFY

HMh

Tables (15 tems

o | Add Tatle T actor Tl addeess T category oty
Jeacription % courtry % customer E Bim % Fiem_actor ;Ih_rnw

5 Fin_tecet L] invveriony L] language | panyeert. L8] rertal
Jyer Types List P iy
ype Defrition -
B BOOLEAN TINVINT(1) Views (7eems
R B0OL TINYINTI1) = _ _
& FDED DECIMAL(10. . Add View] actor o T customen st = et 5] ricer_bus_slowes_fim.
B FLOAT FLOAT salss_by fim_category [edles_by_stom et
o FLOATE DOUBLE i
R T TINVINT(S) _Routines (5 deea)
T2 SMALLINTLS]

% T Mmlum'r.}._ o/ Add Renfine Rt n_stock Rl it i _stock T3] oot customes_balance] ivertary_beld by_cu.
B o (L) Bl rwertory_in_sock] swarch_peprt
o ™ BIGINT20) = a2
B INTEGER INTOD) ook s
B, LONG VAR Ms:n.muw: Y o AKG B =
Jser Types History ¥ Schema Privileges v Temolates

Figure 12-14. The sakila database

This is where we can create databases and tables in a similar way as with phpMyAdmin. We will come
back to this location later. Close the data view by clicking the Xicon on one of the tabs at the top of the screen.
You should now be back to the welcome page (shown earlier in Figure 12-10). Locate the box containing the
MySQL version and the port information (in the bottom-left corner of Figure 12-10). Click the box. The server
dashboard will display (Figure 12-15).

& Localinstance MySQLAD x
Ete Edt Mew Query Dawsbase Server Tock Seripting Help
Sl o S8 @ &
Navigater g
MANAGEMENT - EBHIFTFAQ D QDR unto00ows
Q) Server Statur 1
12 Client Connections
A users and Privileges
B status and System Variables
& Data Export
& DataimporyRestore

INSTANCE &Y
0 startup / snutdown
A ServerLogs
Options Fie

PERFORMANCE
@ omhboara
& Pertormance Reperts
&% Perfommance Schema Setup

SCHEMAS as < Cantest Heln Snippets

Q, [Fiter chyects Cupnt
b sekle a O ActionOutpnt -
"oyt . Tima Action Mussage Duraman £ Frch
¥ (2 world
» B Tales
B Views
B Sored Procedures
L TSP,

Informaticn

<«

Figure 12-15. The server dashboard

491

CHAPTER 12 TAKE A BRIEF LOOK AT ORACLE MYSQL 8

The server dashboard provides the ability not only to monitor our databases but also to monitor the
server itself. Click the server status selection at the top of the left-side menu. The server status screen will

display (Figure 12-16).

Locslinstance MySOLED
Ede Edt Mew Query [ssbase Server Toois Seripting Helo
S8 o HalE&al B W

Mavigater Choeey 1

@ D=0

MANAGEMENT -
Q) Server Status
L cCient Connections

Connection Name

Local instance MySQLE0

B wsers and Privileges

B2 status and System Varisbles Host: LAPTOP-THIG1EES
L. Data Export Socket: MySQL

n 2 port: 3307

& Datalmport/Restore MySal

. 8011
a Server Verslors: MySQL Community Server - GPL
RSV ‘Compled For: Wing4 (x86_64)
B startup s shutdown Confy Fe C VSQLIMYSQL Server 8.0 my.ani
A serverLogs Rurring Since: Sun Jun 3 15:10:08 2018 (1:49)
A Options File Refresh
PERFORMANCE
@ Dushoard
2 e Available Server Features
A
& Peformance Schema Setup Perfamsirice Sdvonnt @ on Vindows Authenbcason: off
SCHEMAS o Threed Pock: nje Passmord Veldaton: nis
ofmmes | MemcachedPign: nfa Sudt Log: nfa
Semigync Repicatien Pugin: 7 nja Frewal: nfa
> skl ~ ®
oo S5 Avalabity: on Frewal Trace: nfa
¥ 2 world
> ; Tavles Server Directories
B Views
= i \Progr il \MySqL \
B Sored Procedures
P ¥ DataDiectory: C\Programbata\MySOL\MySQL Server 8.0\Data|
Information Disk Space i1 Cata D 850,97 GB of 976.64 6B available
& ¥ \Progr \MYSQL Server 5.0 lb | phigin}
: & J\Temp

Figure 12-16. The server status screen

Traféc

4.63 KB/s

5 Reacs par Second

0\

Connections

4
Key Efficiancy

0.0%

nncDB Butler Usage

51.8%

FoD8 Virtes par Second

This screen provides a lot of great information about our server. In addition to the location of files, we
can see what features are installed and turned on. We can refresh the server. Also, on the right side, we can
see how well (efficient) our server is running. Click Client Connections on the left menu. The client status

screen will display (Figure 12-17).

492

CHAPTER 12 © TAKE A BRIEF LOOK AT ORACLE MYSQL 8

B rysaL Werkbench - o x
& Locsl instance MySQLED x
Ele Edt Yiew [Query [stahesse Jerver Jools Jorpting Help

S8 o JEEHESE & © D=0

Navigater Query
MANAGEMENT L
© server Status 5 tocaimstance mysquen
Ll cuent Connections _‘; Client Connections
B Users and Privileges
0 Status ang System Variables
T h Threads Comected: 4 Threads Running: 1 Threads Created: 4 Threads Cached: 0 Rejected (over mit) 0
o S St s 151 AbortedChemts: 0 Aborted Conmections: 0 Erors 0 ©
L Onta ImportRestone
INSTANCE i User Heat o8 Command Time State Threa... Type Hame Paren... lnstrumented Info
8 4 event_sched . Nane Nene Seep © Waitisgene 43 FORECROUND threadfsalie . 1 ¥ES NULL
S —— & Mane Nane Nene Datmon e = hread| 1 ¥ES HULL
A\ serveriogs 15 root lecalhost world Seep 540 None 53 FOREGROUND thread/salfo o0 YES KULL
& Optiens File 16 root Iocalhost world Sleep 541 None 54 FOREGROUND thread/salfo... o YES KuLL
17 roat localhost None Query o ding d. 55 ND 45 YES SELECT LPROCESSLIST,
PERFORMANCE 18 root lecalhost None Feep 1 None 5 FOREGROUND threadfsalo.. 4% YES KuLL
€ oasnsoars
&0 Pertormance Reports
&% Perfomance Schema Setup
SCHEMAS L
a [Fiter objects
> sakils 2
oo
v word
» 29 Tables
B8 views < >
B9 Sored Procedures i 5
[Sp—_—
= [ride sleepng cormectiors | Hide badkoround tiveads] Don'tload ful thread info Shom Detals
Information
) ;. 1
v RefeshRste: | Dostaefresh | ol Queryly) Kl Cormecton(s) Refech

H O Type here to search

Figure 12-17. The client status screen

With this screen, we can monitor who is accessing our server (and databases). Click Users and
Privileges on the left menu. The user and privileges screen is shown in Figure 12-18.

& Localinstance MySGLED X
Ede Eft Meow Query [Dstabase Server Tools Seriping Help

o al & & &AW (ol mi=in |

= 0
O sererstatus Local mstance MySQu
5 cuent Connections Users and Privileges

L users and Privieges Liser Aceurt
B Status and System Variables
& Data Export

& Data import/Restore

Select an i1k bo edit or click [Ad to create & ne

User From Host Logn AccountLmits Administrative Roles Schema Privieges
mysalinfesthems locabos
mysgl.session localos
mysalays localnoz

INSTANCE Y root localhost

B Sstartup ¢ Shutdown
A\ server Logs
Options File

SHA2SE Password

PERFORMANCE
& Dashboard
&7 Performante Reports
&% Ferformance Sehema Setup
SCHEMAS L
; fugwe Bazmrd

B stored Procedures
-

Informatize

Object Info Session

Figure 12-18. The Users and Privileges screen

493

CHAPTER 12 ' TAKE A BRIEF LOOK AT ORACLE MYSQL 8

This screen provides the ability to create additional user IDs that access and maintain the database and
server. As mentioned in the installation instructions, we can assign IT roles to the user IDs. We will come back
here soon. Click the Data Export selection on the left menu. The data export screen is shown in Figure 12-19.

R Localirstence MySOLED %
Eile E3 Mew (uery [Dninbase Seever

Ieols Geripling Help

S8 e &EEEE | W

Navigator
MANAGEMENT -

D server Status

12 client Connections

§ users and Priviseges

2 Status and System Varisbles

& Data brpen

& Data import/Restore
INSTANCE

B statup s shutdown

A servertogs

Options File
PERFORMANCE

& Dashosard

&1 Peformance Reports

&% Performante Schema Setup

SCHEMAS o
A, |Fiter chyects

> sakila -

> sy
¥ = world
» 29 Tables
B viens
29 sorec Frocedures
e

Information

<3

QA oot Do spat_ |

@ D=0

Loeal ntance MySQLE0
Data Export

Otpect Selecion Export Progress
Tables to Export

Bp Sthems B
O 3 cakila

= s
O & wend

Schema Objects

[Dump Events

Dump Rructure srd Dot w | | Select Views

[oumo Triggers

Select Tables Unsslect Al

[[] tnchudle Create Schema

Press [Start Expert] o start...

| StartExport

Figure 12-19. The Data Export screen

This is one of the locations where we can select data to export, select a location to export, and even
schedule when we want to export data. Click the Data Import item on the left menu. The data import screen
is shown in Figure 12-20.

#% Localinstance MySQLBY

Eile Ege Yew Guery [Dembase Server Tools Scriping Help

S8e JHFEE R -

Navigator

MANAGEMENT -’
© Server Status
5 Chient Connections.
B users and Pvileges
IS Status and System Variables
& Data Bxpart
& Oata ImportRestore

INSTANCE
B statup / Shutcown
A servertogs
Cptions Fe

PERFORMANCE
) Dasnboars
&5 Petormance Reports
@™ Performance Schema Setup

SCHEMAS L

9, |Fiter olgects

L3 sakila -~

B Stared Procedenss
[
Information -

o object sebected v
Cihsect infa Session

Figure 12-20.

494

© Dl

Local instance MySQLSD
Data Impert

Import from Disk [mport Progress
Import Opors

® et E

Select the Dump Project Folder 1o import. You can do a selective restore.
Load Folder Cantents
{0 Import from Seif-Contaned Fle C:iisersisteve \Documenteidumos lexpert. oo

Seect Database Chjects to Import (only avalable for Project Foiders)

Imp Schema Imp Schems Objects

[OIIMD Rrecture and Dt

Press [Start Import] o start....

The Data Import screen

Select Views

Select Tables

Start Emport

CHAPTER 12 © TAKE A BRIEF LOOK AT ORACLE MYSQL 8

This is the screen we will use soon to import some of the databases we have created.

The server can also be started and stopped with the Startup/Shutdown selection on the left menu.
Server logs can easily be viewed from the Server Logs link. Click Dashboard under Performance. The
performance dashboard is shown in figure 12-21.

A Local instance MySOLED x
Eile Edt View Query [Qatabase Jerver Toole Stripeg Help
£0 & SNEEAR S © 0=

MANAGEMENT
Q) Server Status
5 cuent Connecticns Network Statu: MySQL Status InnoDB Status
B Users and Privileges
51 Status and System Variobles
& Data Brport
& Dotz importRestare

Statiatics for mptwork traMic sart and rouived Primary LiyS0L Servar activity
by S MyS0L Server & o e 4 parfommane salEa

Sveniew of 4 Innall Bufer Posl and disk activitr
Genermted by the INno0B worage engine

Table Open Cache InnaDE Butfer Pocl
Incoming Network Traffic (Bytes/Second)

INSTANCE

B startup s Shutdewn wa
A serverLoge ELL] ’
& Options File 08

PERFORMANCE 8 receiving
@ Dosnbosrd o
&0 Performance Reports
& Pertormance Schema Setup

disk reads
0
s

w
Usage

Efficiency

l pages's
Reda Log
| data written |
0 iis
k] e ‘
) writes T

Dutgaing Netwark Tratfic (Sytes/Second) 501 Staterments Executed (2) InnoDB Diak Writes
SCHEMAS e 40Ks 100 0o B
a, [Fiter objects =
30 KB
» sakila -
T 20KB e
¥ = world 1048 = il —
= writing
» B Tables | cowas |
B Views —_
(B0 Storad Procedures e Doublewrite Buffer
[T,
Client Connections (Total) SELECT r— InnaBB Disk Reads
Infarmation ais Wof'}ﬂ*
| s |
]
ot subutnd “ 1 w0
Py g INSERT CREATE
Object Infa Session % ¥y e e - v

Figure 12-21. The Performance Dashboard screen

The MySQL Performance Dashboard provides a complete quick view of the performance of your server,
the performance of MySQL, and the performance of the InnoDB database engine.

As you may have also noticed, you can also access the databases at the bottom left of the menu. Now
that we have taken a quick view of Workbench, how can we use PHP 7 to access the MySQL 8 databases? We
will discover this in the next section.

Connecting PHP 7 to the MySQL 8 Community Server

We must request that PHP communicate with our new version of MySQL. You will need to locate the php.
ini configuration file. In XAMPP you can easily find the file by going into the Control Panel and clicking the
config button to the right of the Apache server, as shown in Figure 12-22.

495

CHAPTER 12 TAKE A BRIEF LOOK AT ORACLE MYSQL 8

XAMPP Control Panel v3.2.2 [Compiled: Nov 12th 2015] — O X
XAMPP Control Panel v3.2.2 F conti
Modules) Netstat
Service Module PID(s) Port(s) Actions @N
Apache :m 80, 443 . Stop Admin I Cnnfin 1 | ane B Shel
MysaL = 2308 g 7 Apache (httpd.conf)
t Admin
: op Apache (httpd-ssl.conf)
FieZia Start Admin ¢ Apache (httpd-xampp.conf)
Mercury Start Admin C PHP (php.ini)
Towcat [st I phpMyAdmin (config.inc.php)

<Browse> [Apache]
7:50 AM [main] All prerequisites found
750 AM [main] Initializing Modules =B IRER]
37:50 AM [main] Starting Check-Timer <Browse> [phpMyAdmin]
37:50 AM [main] Control Panel Ready
3753 AM [Apache] Attempting to start Apache app...

W w

[o e e]

[}

el il ' el e sl

0:37:53 AM [Apache] Status change detected: running
0:37.58 AM [mysgl] Attempting to start MySQL app...
0:38:00 AM [mysql] Status change detected: running

Figure 12-22. Finding the php.ini configuration file

Click the php.ini menu selection to open it. For easyPHP you will have to dig down into the
development server folder to find the php.ini file. It should be in a location similar to the following link:

C:\Users\yourcomputername\EasyPHP-Devserver-17\EasyPHP-Devserver-17\eds-binaries\php\
php713vc14x86x170718155219

Of course, your version name and the build numbers will be different than shown. Once you find the
file, open it with Notepad or another text editor.

Immediately save the current version of the config file with another name (and remember where you
saved it) just in case you make a mistake and need to revert to the original settings. Now, find your search
tool (under Edit in Notepad) and search for all locations of 3306 (or your default port number). If you are not
sure of your MySQL port, you can see it displayed in the XAMPP Control Panel (Figure 12-22) or the EasyPHP
Dashboard (under the Database Server information). For each location of the port (3306) in the php.ini file,
replace it with your MySQL 8 server port number (3307). Then save the php.ini file.

Now use either XAMPP Control Panel or easyPHP Dashboard to turn Apache off and then on again.
This will cause Apache to see your configuration changes.

Note After changing the php.ini configuration file, XAMPP and easyPHP will not be able to communicate
or turn MySQL 8 on or off. Also, phpMyAdmin might not be able to communicate with MySQL 8. Ideally, the
creators of these tools will provide upgrades that can eventually communicate with MySQL 8. We can establish
communication with MySQL 8 without these tools, as covered next.

496

CHAPTER 12 © TAKE A BRIEF LOOK AT ORACLE MYSQL 8

We now want to make sure that MySQL 8 is up and running. One quick way to do so is to test the port in
your browser. Enter the following as the URL: Localhost:3307.
If MySQL is running, you will see a message similar to the following:

900
8.0.1190900©
sI[R%9BQVV QAP QOO VOOV VO] }x+ {@nysql_native password@!@€y,#08501Cot packets

out of order

Most of this does not tell us humans very much. However, you can see that MySQL 8.0.11 is up and
running in this example. You would also see a similar message for MySQL 5.7 on port 3306. If you see a
similar message, you are ready to test your communication between PHP 7 and MySQL 8. If you do not see
this message, you can go into MySQL Workbench and turn MySQL 8 on as previously discussed.

To test our connection, let’s create a simple test file, as shown here:

<?php

// Create a connection to the WORLD UNDER MYSQL 8 database

// Set the encoding to utf-8

// Set the database access details as constants

Define ('DB_USER', 'root'); // or whatever userid you created

Define ('DB_PASSWORD', 'yourserverpassword');

// or whatever password you created

Define ('DB_HOST', 'localhost');

Define ('DB_NAME', 'world');

// Make the connection:

$dbcon = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB NAME);

// Set the encoding...optional but recommended

mysqli set charset($dbcon, 'utf8');

$query = "SELECT * FROM city";

$result = mysqli_query ($dbcon, $query); // Run the query.

if ($result) { // If it ran OK, display the records.

// Table header.

echo '<table class="table table-striped">

<tr><th scope="col">Name</th></tr>";

// Fetch and print all the records:

while ($row = mysqli fetch array($result, MYSQLI ASSOC)) {

echo '<tr><td>' . $row['Name'] . '</td></tr>'; }
echo '</table>'; // Close the table so that it is ready for displaying.
mysqli free result ($result); // Free up the resources.

} else { // If it did not run OK.

// Error message:

echo '<p class="text-center">Nothing retrieved.';

// Debug message:

echo '<p>' . mysqli error($dbcon) . '

Query: ' . $q . '</p>';

exit;

} // End of if ($result)

mysqli_close($dbcon); // Close the database connection.

>

In the test file we created earlier, we are connecting to the world database (provided as an example
under MySQL 8) and the city table to display city names. Place this code, or similar code, into one of the
locations were you were previously executing your PHP files. Then type the URL location into your browser.
If your connection was successful, you will see a list similar the output shown in Figure 12-23.

497

CHAPTER 12 TAKE A BRIEF LOOK AT ORACLE MYSQL 8

Name
Kabul
Qandahar
Herat
Mazar-e-Sharif
Amsterdam
Rotterdam
Haag
Utrecht
Eindhoven
Tilburg
Groningen
Breda
Apeldoorn
Nijmegen
Enschede
Haarlem
Almere
Arnhem

Figure 12-23. Testing our communication

Congratulations! PHP 7 is now communicating with MySQL 8. To switch back and forth between
MySQL versions, just change the port values in the php.ini file as shown previously. Now we want to look at
migrating our databases to MySQL 8.

Migrating to MySQL 8 Community Server

The good news is that your database migration from MySQL 5.7 to MySQL 8.11 will not be that difficult. All
the coding we have shown you previously works in MySQL 8. Ideally, you have developed your code (as
shown) with the InnoDB database engine (the default since MySQL 5.5) and with the UTF-8 configuration
(also the default since MySQL 5.5). If you discover that your tables or databases are not using these defaults,
you can modify your SQL code that you have dumped from your databases.

Let’s step though the procedures to migrate a database from an earlier chapter.

1. Open phpMyAdmin. Well, we caught you on that one. Remember that we set the
port to 33072 If we try to open phpMyAdmin, we will get error messages. Go back
into php.ini and reset all occurrences of 3307 to 3306 and restart Apache and
MySQL5/MariaDB. Now go into phpMyAdmin.

2. Select the simpleDB database (or any of the book’s database examples).

3. Click the Export tab at the top.

498

CHAPTER 12 © TAKE A BRIEF LOOK AT ORACLE MYSQL 8

4. Enter simpleDB for the template name (if it does not already exist in the drop-
down box) and click Create. It should now be displayed in the drop-down box.

5. Click Go.

6. The code will open in your default text editor. Save the file as simpleDB.sql. View
the contents of the file to make sure it does not indicate a different database
engine (it should be InnoDB or none listed at all). If a different one is listed, you
can remove the related code from the file. It will then load as InnoDB.

7. Open MySQL 8 Workbench under the MySQL folder on your computer.

8. Click the gray box containing the server level and port number to open the server
navigator.

9. On the left menu, click the Import/Restore menu selection. The screen in
Figure 12-24 will appear.

b Locsl instance MySOLED
e Est Mew Query Dotabose

Sever Tools Seripting Help

Silo A& E

Navigator
MANAGEMENT

© Server Status

L Client Connections

A Users and Privileges

S Status and System Vasiablet

& Data Bxpont

& Data importRestore
mstance @

0 startup / sutdown

A server Logs

Optsons File
PERFORMANCE

@ Dashboara

&) Performance Reports

&N Performance Schema Setup

B Rored Procecures
e

[

@ D=l

_l Local instance MySQLED
G Data Import
Import from Dk Import Progress.
Impert Opbons.
(®) Impert from Dump Project Folder C:\sers pteve Documents (dumes
Select the Dump Praject Foider to import. You can do 8 selective restore.
Load Foder Contents

() Impert from Seif-Contained Fle Coisers gteve Documents dumpd export.sq

Select Database Obgects 1o Import foly avallable for Project Folders)
[ime schema

Press [Start tmpert] tostart...

Figure 12-24. Data Import page

mp Schema Obgects

Demp Structure dad Dat et Pens Select Tabuex

10. Select the Import from Self-Contained File radio button.

11. Click the three dots to the right to select and find the SQL file you just created.
Click the New button next to the Default Schema drop-down box. Enter
simpleDB (or the name of the database you are importing) and click OK. Now
select the schema from the drop-down box. Click Start Import at the bottom right
of the page. The SQL code will now run and import your database.

12. You may not notice the new database at the bottom left of the page. Hit the
Reload button (two circular arrows) just above the box containing the database
schemas. It should now appear.

13. Let’s test our database. Go to the top menu and select Database. Then select
Connect to Database. Enter your database name (simpleDB) in the Default
Schema textbox. Click OK. The screen in Figure 12-25 will appear.

499

CHAPTER 12 © TAKE A BRIEF LOOK AT ORACLE MYSQL 8

f Localinstance MSOLED x a 307 = =0 3307 x
Fie Edit \iew GQuery Database Seever Tools Scriging Help

£8 ¢ STEAEE &

Mavigater m sqLadditions
MENAGEMENT Y EEIFFAEOIRDIO0 R meimien 4 » | % | wmwe -
© server Status 1® SELECT * FROM userss .

2 cllent Connections
A users and Pravileges et
I status and System Variables

& Dota Bxport

& oata partRestore

INSTANCE @)
B starup/ shtdown
A serveriogs
A Options File

PERFORMANCE
) Deshboard
&1 Pertormance Reports
&% Perfommance Schema Setup
SCHEMAS L Costed Help Snippels

. oses
b sakila a O Action Ouput -
¥ & simpledb ¢ Te A

Massge

B Functions

Infarmation

Figure 12-25. Schema query window

14. Enter a SQL command, such as the one shown in Figure 12-25, into the Query
window. Click either one of the lightning bolt icons at the top of the window to
run the script. If everything is working correctly, you should see a table of data
appear.

Now that our table exists, let’s have some fun and reverse engineer it. Follow these steps:
1. Goto the Database selection on the top menu. Select Reverse Engineer.
A parameter screen will appear. Keep all the default settings and click Next.

The next screen will verify the connections. Click Next.

> N

The next screen will list the current databases. In the list should be the database
you just loaded (simpledb). Select it and click Next.

5. The next screen will test the schema (database) to see whether it can be
engineered. Click Next.

6. You will see a verification screen showing the database you are using.
Click Execute.

7. A progress screen will appear. Click Next.

8. Finally, a screen telling you what was created will display. Click Finish.
You should see a display similar to Figure 12-26.

500

@ D=0

Duurgtion / Fatch

CHAPTER 12 © TAKE A BRIEF LOOK AT ORACLE MYSQL 8

% Localstance MySQLED = W7 x AT % WSOLMode® x EERDisgram 3
Eve Edt \ew frange Model [Qaabase Tools Soripteg Lielp

BEW -~ ago0lD [=00
Bird's Eye Diagram

Zoom: 000 - @ & Iy s @
) | o
=

Ty | CMtEROY
= L]
2]
Canaiog Tre =
¥ [ey 8
S Tables 3]
S Views
B Rewtine Groups w

< >

Catslog Layers Uses Types T

Descrigtion Editce]

¥ umerid MEDILMINT (6}
| T % frst_nam e ¥ SACHAR] 30
_l(¥ lnst_naem e VARCHAR (40)
W
o # emai VARCHAR(E0)
wm password CHAR(ED)
= & registraton_dste DATETIME -

'a

Desciighon Propebes H 4 ¢| Gt 3 Temslates

Figure 12-26. The simpledb ER diagram window

Congratulations, you just reverse engineered your database! Now you can make design changes and
engineer it to produce an updated database.

You can also make changes in a similar way to phpMyAdmin. Close the ER diagram window by closing the
tabs (click the X) at the top of the screen. This will return you to the schema query window (Figure 12-25). Find
the table you want to adjust in the bottom-left schema (database) window. To the right of the table name you will
see an information icon, a wrench icon, and a table icon. The information icon (when clicked) provides general
information about the table. The table icon will display the data in the table. The wrench icon will allow us to
make changes to the structure of the table. Click the wrench icon. The window in Figure 12-27 will appear.

Efe Edt lew Query [Qatshase Ferver Jooks Feriphng Help
8 6 & [® L=l
Navigator Query] simpledbusers SqLAdditiors
MANAGEMENT - - 4 > (B % | amow
1 =
© senwesas Fop, e = soum cmien |
L Client Connedtions . Colaton: |UER -dk ~| Engine: e Automatic ..||..:.. Ibar to manually get help for the current caret
B users ana Prviieges posith automat
IS0 Status and System Varisbles 5
& ata Export
& Dats
Cokuan Nome Datatype PEONN LQ
msTANCE @) ! wserid MEDRUMINT(E) g E
5 first_name VARCHAR(30)
4 stutup ! Shurdois 3 last_pame VARCHAR(40) 080
A seresLogs > email VARCHAR(5D) gg8o
7 Options e 5 password cHar(s) ogaan
4 registration_date DATETIME OMd0
PERFORMANCE goao
@ oashbaara
&7 Perfomance Reports (.
o vema Setup
SCHEMAS ws Cokumn Kame:
9, |Finer obgects Celation:
b saidls - Commants: | vral Stored
. ;J,;.‘t";':f; Frimary Key Mot Nl Unique
» [l users Bnary unsgned ZereFil
B views v
o Baita [nerement Generated
Infarmation
Tabler s " Coumes Indewes Foreignkers Trgges Pationing Optiors
Cnlmne: =
Chject Tnfo Session Apply Revert Cantext Help | Saippets

Figure 12-27.

The table structure screen

501

CHAPTER 12 TAKE A BRIEF LOOK AT ORACLE MYSQL 8

You might have trouble seeing all the details of this screen. Go to the View menu, click Panels, and then
click Hide Output Area. This will provide you the view shown in Figure 12-27. The use of this screen is similar
to the use of the same screen in phpMyAdmin.

Now let’s try to run our PHP files.

Using Our PHP Files with MySQL 8 Community Server

Before we can start using the files we created in this book, we need to set up user IDs and passwords to
access our schemas (databases). In Chapter 2, we created the user ID with the following information:

e Userid: horatio
e Password: Hmsv1ctOry
e Database (schema): simpledb

As shown in the previous directions, in MySQL Workbench, click the server information box on the
welcome page to access the server dashboard. Click the Users and Privileges link on the left-side menu. The
screen in Figure 12-28 will appear.

& Lol instance MySQLED
Eile Edt Veew Cuery [wsbase Server Tools Scriping Help

Sl o S8Fss E e @ D=0
O -

MANAGEMENT
Local ngtance MySOLED

Users and Privileges

A sers and Prvieges User A -
ES) status and System Vanables
& Data Export

O Server Status
2 Qient Connections

Uer From Host logn Acountlmts Adminsvatve Roles Schema Privieges
mysqlinfoschema localhost

L Data mperRestore mrsalsessca locainost

Fvicles tecalnest

roct localhost

B staup / snutdown SHA256 Password

A serverlogs

& COptsons Fise

NSTANCE §3

PERFORMANCE

@ Danboars

&7 Pertormance Reports

&% Performance Schema Setup
SCHEMAS -
a [o
T ~
>
¥ world

» T Tables

B views

Figure 12-28. The Users and Privileges screen

Click the Add Account button at the lower left of the screen. The screen shown in Figure 12-29 will
display.

502

CHAPTER 12 © TAKE A BRIEF LOOK AT ORACLE MYSQL 8

& MysdSlccalnont3dT x
Ede Edt Yew Query [astshase Server Jeols Scripng Help

S8 e dEEsaeE & @ D=1

Maigator. s i Cuery 1 simpledb.users users - Table
MANAGEMENT -
© server status 1 Privi
I client Connections Users and leges
é Users and Privileges s eeenrin
Status and System Variables
User From Host.
1 v =
- :;um horatic. Iecalhost
< Jinfoschems localhost
b, mysalsession localhost
INSTANCE) mysalays localhast
B startup/ shutdown AT %
A serverLogs raot Iscalhast
Options Fae
PERFORMAMNCE
@ Dashboard

& Performance Reports
& Pestomance Sehems Setup

SCHEMAS L

>

B Views

B Stered Procedures
Functions v

Infaemation

Table: users

Cokimne:
Ohbject Info Session
Figure 12-29. New user account screen

This screen is similar to the phpMyAdmin screen. Enter the information for the user. Notice that
Authentication Type should be set to Standard. PHP 7 requires this setting. Once you have entered the
required information, click Apply.

Now click the Administrative Roles tab. The screen in Figure 12-30 will display.

Ede [Edt \bew Query [esbsse Server Tools Soiptng Help

DG EDNERTE & ® 0=
o eyt e o
MANAGEMENT -
Q) Server Status 1)
5 ciient Connections and Privileges
& users and rivizges User Accounts Details for account horatioGlocalhost
IS0 status and System Variables - e e
& Dsta Export Lser From Host Login] e
3 haratio localhost | . - -
@ Dala Import/Rertore mysqlisfoschema localhost Foie Descripon Global Privieges -
fo——y -] ysqlaession lncalhost O osa] granis the rights to perform alltasks B amem
mysalays localhest O Grents rigs 4 b mainkein server & ALTERROUTINE
B startup s shutdaven newser % m} d g #ssess, monitar, and kil any user proce... B e
A serverLog: roct localhoct O useradmin h logi B creameroummie
Options File L securitpadmin nights ta g an.. [creae tapLeseace
O Mositoradmia minimum set of rights needed to monitor server [CREATE TEMPORARY TABLES
PERFORMANCE B4 oemanager granzs full ights on all detabases O createussr
€ Dushboard % DEDesigne rights 1o create #nd reverse enginesr any datshase sche E CREATE VIEW
to setup and DELETE
Perf ot
E_ ‘ormance Reports M sskupadmin minimal rights needed to backup any database B4 omoe
&% Performance Schesa Setup F Custom custom role 1 event
SCHEMAS . % :?Ll:ul!
@, [Fiter chjects B crantormon
w3 Tables - E moex
» [users INSERT
B viens b LocxTasies
'EF Stored Procedures Q ERECERS .. i
B0 Functions v < 3
Infoemanion Reveice & Privieges
Table: users - = i

Takimas
Object Infe Seesion

Figure 12-30. Setting user roles

503

CHAPTER 12 TAKE A BRIEF LOOK AT ORACLE MYSQL 8

You can decide what role (or roles) your user ID can perform from this screen. You can choose more
than one. You can also individually choose roles from the selection at the right. You can choose the settings
shown or your own. However, you will also need to select Execute on the right window. Programs will not
be able to use the ID if Execute is not selected. Once you are happy with your selection, click Apply. You can
optionally also set account limits for each user ID to restrict how many queries and updates will be allowed
to occur using the Account Limits tab.

We are now ready to test our programs! Make sure that your port setting in the php.ini file is set to
3307. Also make sure that Apache is running. We will now test the register-page program for the simpledb
database. Enter the following as your URL:

localhost/simpledb/register-page.php

J

The register page should appear. Enter some information and click the Register button. The “thank you’
page should display.

Note The default setting for SQL-MODE in MySQL 8 is Strict. This might cause you to receive an error
similar to the following:

Incorrect integer value " for column 'userid' at row 1

A SQL INSERT statement, as shown next, can cause this problem when attempting to place a string into an
integer location in a database:

$query = "INSERT INTO users (userid, first name, last name, email, password, registration date) ";
$query .="VALUES(" ', ?, 2, 2, 2, NOW())";

This error can be eliminated in either of the two ways shown here:
1. Change the query to not insert the auto-increment column. It will still auto-increment.
$query = "INSERT INTO users (first name, last name, email, password,
registration date) ";

$query .="VALUES(?, 2, 2, 2, NOW())";

2. Locate the my.inifile. This file is saved in the Program Data folder under the C drive.
The folder may be hidden from your view, so you might need to click View in your
Windows Explorer window and then click the box to view hidden files. The file is
located in the following location:

C:/Program Data/My SQL/MYSQL Server 8.0

Open the file in a text editor. Search for sq/-mode. The setting will be as follows:

sql-mode="STRICT TRANS_TABLES,NO ENGINE_SUBSTITUTION"

504

CHAPTER 12 © TAKE A BRIEF LOOK AT ORACLE MYSQL 8

Now change the setting to sql-mode="". Save the file and restart MySQL 8 from within Workbench. Your
registration should now work.

If you have other errors, you can review the migration documentation that can be accessed from the bottom
icon on the left menu on the welcome page of MySQL Workbench. You can also enter your error messages in a
search engine (Google) for suggestions on solutions.

You can go to the Client Connections screen (Figure 12-17) to view logging information for the accounts
that you create.

Summary

This chapter provided you with a quick explanation of the advantages of using MySQL 8. You also discovered
how to install the server and migrate your existing databases. In addition, you learned how to create a user
ID that can be used by programs or the database administrator. You also learned about the features of
MySQL Workbench.

505

APPENDIX A

Troubleshooting

As you worked through the chapters in this book, you probably encountered many error messages. This

is normal. Even seasoned programmers see error messages as they develop new projects. If you can'’t
immediately locate where a mistake was made, walk away and return later when your frustration has
subsided. Sometimes leaving the problem for a day and returning to it fresh the next day can help you clear
your mind and discover the problem.

Tip Make a copy of a faulty page and save it with a new name (or as a new version). This will allow you to
experiment by changing the code on the copy rather than messing up the original code.

Humans can infer a meaning from poorly written or spoken grammar. For instance, despite the double
negative, we know that “I ain’t got no money” means the man is broke. When listening to a hesitant speaker,
we mentally omit the “ums,” “ers,” and “you knows” from each sentence so that we can understand what the
speaker means. Computers are unable to apply common sense to code containing mistakes or unnecessary
characters. However, computers can provide helpful error messages, and they are usually right, so read them
carefully.

Although error messages can be frustrating, they are an extremely valuable tool because we learn better
and faster from our mistakes, and the error messages usually explain the mistakes in plain English. A small

number of messages may seem cryptic, but familiarity will eventually help you to understand them.

Tip Don’t try random changes to fix a problem; take time to think it through carefully. Then try one change
at a time by commenting out and replacing the line(s) of code. If that change does not work, delete the new
line and remove the comment-out characters to restore the original code. Comment out the sections where you
think the error occurred, but be careful that your comment-outs do not cause a mismatch of curly brackets or
other problems. Place the comment-outs around the code between a pair of existing curly brackets.

In this appendix, we have listed some of the most common problems, the error messages, and their
solutions to help you be successful. If your problem is not in the list, try entering the error message into a
search engine. There are many free sites and blogs that provide solutions to logical errors. Usually there is
more than one possible solution provided. As stated already, before you try a suggested solution, save your
original code in case the suggestion does not provide an answer to your problem.

© Adrian W. West and Steve Prettyman 2018 507
A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,
https://doi.org/10.1007/978-1-4842-3843-1

https://doi.org/10.1007/978-1-4842-3843-1

APPENDIXA © TROUBLESHOOTING

Browser Quirks

In the event of a display fault, don’t investigate the code until you have tried the page in a different browser.
For example, if the page display is unsatisfactory in one browser but good in another, you will need to use a
conditional style sheet for the browser that shows an unsatisfactory display. Alternatively, the latest version
of a browser may require the addition of vendor-specific adjustments. Although most browsers now claim to
be HTML5 and CSS3 compliant, there are usually exceptions that can cause you headaches.

Tables Not Displaying

When a table displays only the headings, it means that either the item being searched for does not exist in
the database table or the search criteria does not match the data in the database table. Figure A-1 shows a
typical case.

Contact Us

Home Page

Try our award winning service

To arrange a viewing please use the the Contact Us button on the menu and
quote the reference number.

Ref. Location Thumb Price Features Bedrooms Details Status

No houses displayed? Sorry we have nothing that matches your requirements at the moment

Figure A-1. A table may display only the headings

If you are sure that the data exists in the table being searched, then the problem is that the SQL SELECT
query contains one or more incorrect items. A typical query would be as follows:

$q = "SELECT ref number, location, thumb, price, type, mini_description, bedrooms, status
FROM houses WHERE location=? AND (price <= ?) AND type=? AND bedrooms=? ORDER BY ref number
ASC ";

Make a hard copy of the query so that you can delete and restore items. Then look for items that have a
corresponding item in the WHERE clause. Delete one matching pair at a time and test after each deletion.

If a populated table is then displayed, you know that the deleted item is the cause of the faulty display.
You may find that the three pages involved in the process have differing entries. For instance, in the search
page you may have the location items entered with hyphens such as South-Devon, Mid-Devon, and North-
Devon, whereas in the administrator’s add-a-house page you may have underscores such as South_Devon,
Mid_Devon, and North_Devon.

APPENDIXA © TROUBLESHOOTING

A Style Change Has No Effect

This is particularly frustrating and is often due to a style in some file that is taking precedence over the
style you are trying to change. The rogue style is probably lurking in one of the included files. To reduce the
possibility of this error occurring, always strive to put the styles in the main external style sheet and avoid
using inline styles.

If you are attempting to change a default Bootstrap style, usually you can create an ID for the control
you want to style and then adjust the styling in a CSS file. There are also some already defined style changes
available as classes within the Bootstrap code. Refer to the website (getbootstrap.com) or enter a search
value in your browser that includes the control you want to adjust, such as Bootstrap Button background color.

Included Items Missing from the Display

Includes and Requires will appear only when you view the page using a browser. Check that XAMPP or
easyPHP has been started and that Apache and MariaDB/MySQL are running. Also check that the included
files are actually in the folder specified in the PHP code.

A Page Fails to Validate

If styling instructions appear in an included file, the W3C validator will display a failure message such as
“Element style not allowed as child of element div” Remove the style instruction from included files and put
the style in the main style sheet.

Bootstrap will cause validation errors, usually four identical errors referring to the use of XML. These
errors take the following form:

Saw <?. Probable cause: Attempt to use an XML processing instruction in HTML.
(XML processing instructions are not supported in HTML.)
At line 18, column 4

You can safely ignore these errors as they do not affect the performance of a file in any way.

A PayPal Pull-Down Menu Does Not Work

Judging by the cries for help on the Internet, this is an occasionally frustrating problem. If using a pull-down
menu results in a PayPal error message, you would normally check the code carefully to see whether you can
spot the problem; this usually fails to produce a solution. If you upload the code to a forum for analysis, the
forum normally confirms your own analysis, i.e., that the code is correct. At the time of writing, if you send
an e-mail to PayPal, you will only receive a list of FAQs; rarely are the FAQs related to your problem.

To save time and frustration, don’t fiddle with the PayPal code but simply log in to your PayPal account,
set up a new pull-down menu, and copy the code; then replace the faulty code with the new code. When
setting up the pull-down menu, omit the currency symbols such as £ because they will display as a square
box or some other symbol. If you try to replace the currency symbols with an entity, the code will usually fail.

Access Denied

The error message looks something like this:
"Access denied for user 'root'@'localhost' <using password: YES>"

509

APPENDIXA © TROUBLESHOOTING

The YES means that the user entered a password. It does not mean that the user entered YES as the
password. If the user failed to enter a password, you would see NO instead of YES.

The error message means that one or more of the items in your database connection file does not match
the database details; it could be a misspelling in the connection file of any of the following items: user,
password, host, or database name.

PHP Error Levels

The two main throwable levels are as follows:

e Errors: These errors halt the script, and the fault must be corrected. If your code
is error-free, these are usually caused by external factors such as missing files or
the computer is out of memory. These errors can be captured and handled by the
program code, as we have seen in our examples. However, the proper reaction is to
display a message and shut down the program.

e Exceptions: Exceptions may or may not be something that would need to shut down
your program. For example, if the user attempts to divide by zero, you can capture
the exception and ask the user not to do so. However, if a SQL statement causes an
exception, something has not matched the column design of the database table. In
this case, you would need to display a message and close down the program.

In the examples in this book, we have captured both separately. This would allow us to treat the
responses differently if we so choose. In the examples we merely changed the information placed in the log
file to indicate it was either an error or an exception. You can capture all errors and exceptions in one catch
statement if you choose. You can even throw your own exceptions. For more information on exception and
error handling, visit this page:

http://php.net/manual/en/language.exceptions.php

In a live environment, the displaying of error messages to the user must be turned off in the php.ini file
in addition to handling the errors and exceptions with the try/catch blocks.

Call to an Undefined Function

You have called a function that you forgot to define, there is a spelling error in the function call, or you have
defined a function in a file that you forgot to include. You may have called what you thought was a standard
PHP function that does not actually exist.

Cannot Redeclare Function

You have created a function and declared it twice; remove one of the declarations. You can use include_once
or require_once to ensure that any code inserted from external files will be included only once. This can
reduce the chance of this problem occurring.

Undefined Index or Undefined Variable

Check the spelling of the index or variable, paying attention to the case of each letter. Check that the variable
has been assigned a value. Perhaps you forgot to initiate the variable before you called it. A missing dollar
sign at the beginning of a variable will also cause this error to appear.

510

http://php.net/manual/en/language.exceptions.php

APPENDIXA © TROUBLESHOOTING

Empty Variable Value

This error is caused by forgetting the initial dollar sign or misspelling a variable. Check the case of each letter
in a variable.

Headers Already Sent

Perhaps you called a header function after you sent some HTML (or even a space) to the browser. The
following piece of code will fail because the header statement is preceded by some HTML:

<html>

<?php
header("location:somefile.php");
2

This statement will work:

<?php
header("location:somefile.php");
2>

<html>

If you put a space before the <?php, the error message will re-appear.

Blank Screen

This can be caused by the same fault that produces the “headers already sent” message.

If you are expecting a display produced by a looping array and nothing appears, you probably forgot
that arrays start at zero, and you may have started your loop at 1.

Some incorrect HTML or PHP can produce a blank screen. The fault can also result from an error that
has halted the script.

Unexpected End of File in Line xxx

This is a common PHP error, and it often refers to the last line in the file. It usually means you have a
mismatched number of curly brackets or normal brackets. For instance, you may have 20 opening curly
brackets but only 19 closing brackets. To find the missing bracket, try indenting the PHP code so that the
brackets can be counted more easily. To find the error in a large file, print a hard copy of the code and then
number all the left brackets with a red pen and all the right brackets with a green pen. The number of red
brackets must equal the number of green brackets. You can also draw lines on the left margin of your paper
from the opening brackets to the closing brackets. Often this error is caused by using a normal bracket
instead of a curly bracket. Printing out your code can help you spot the difference.

In many code editor programs (such as Notepad++), you can click a bracket, and it will highlight the
corresponding closing bracket (if there is one). This can help you count brackets. However, you still need to
make sure the correct brackets correspond to each other.

511

APPENDIXA © TROUBLESHOOTING

Parse Error and Unexpected Characters

Almost all parse errors are caused by missing items in PHP statements. Opening curly brackets or normal
brackets may not have matching closing brackets. Opening quotation marks may not have a closing
quotation mark. If you forget to escape a quotation mark in a string, you will see a parse error. This section
covers some typical parse error messages.

You will see something like “unexpected (/)” or “unexpected (,).” These are the easiest PHP parsing
errors to spot because the PHP parser directs you to the line and column in the code where the error is
located.

Parse error: expecting (,) or (;) in /somefile.php on line 10

Often this means you have forgotten to close the statement with a semicolon.

A missing normal bracket ()) or quote mark may also trigger this error.

If you see an error message like the following, you have omitted a closing semicolon, but this time it
applies to the statement before line 10:

Parse error: unexpected T_echo, expecting (,) or (;) on /somefile.php on line 10

The incorrect nesting of quote marks can result in the “unexpected” type of error messages and a
display that you did not expect.

The following code will produce a parse error:
$some_variable = "table width="960px">";

The parser reads the first double quote and assumes that the double quote following the equal sign
signals the end of the statement.

Use a pair of single quotes around 960px to prevent this, as follows:
$some_variable = "table width='960px'>";

If you omit the final double quote, the parser will continue to read the code until it finds another
double quote. This could be several lines down so that the error message refers to that line rather than the

line where the error is located. If you can’t find the error on the line stated in the error message, move back
through the lines until you find the mistake.

Unexpected T_STRING

The usual causes are a missing semicolon, a missing quote, or a missing double quote. An example of a
missing quote follows:

$somevariable = 'fname ;
It should have been as follows:

$somevariable = 'fname' ;

512

APPENDIXA © TROUBLESHOOTING

Unexpected T_ELSE

Often this error results from having an unnecessary semicolon after an if clause as follows:

if (some condition exists);

{
}

$result = "that condition exists" ;

The error message can also appear if you have omitted one or more curly brackets or you have more
than one else clause in block of code. If you have more than one else clause, change the earlier ones to elseif
so that you have only one else clause in a block of code.

Wrong Equal Sign
Check your code to see where you have used the wrong equal sign. The rules for equal signs are as follows:

e Asingle equal sign (an assignment operator) is used to assign a value to a variable.

e Ifanitem is to be checked if it is equal to another item, you must use a double equal
sign (==). The case will be checked also. It must be the same for the items to be equal.

e Ifanitem is to be absolutely identical (same uppercase and lowercase letters and
same data type) to another item, you must use a triple equal sign (===). Remember
that PHP will convert a “2” to a 2, if needed, to do a comparison. The following would
be true because PHP will convert the string “2” to an integer 2 for you:

$value = "2";
if($value == 2)

The following would be false because you are checking that everything is exact:

if ($value === 2)

Failed to Open Stream

The server cannot find a file or an included file. Either the file being called is not in the correct folder or the
file has a spelling error. Sometimes we can forget to give the correct path for the file. The error message can
be the result of a statement like this:
<?php include("header.php") ?>;

Instead, the statement should have been as follows:

<?php include("includes/header.php") ?>;

Syntax Errors

SQL syntax errors produce an error message like this:

Error 1064 (42000): You have an error your SQL syntax

513

APPENDIXA © TROUBLESHOOTING

Fortunately, the message often gives a clue to the whereabouts and cause of the error. It will say
something like this: “near * FROM members at line 6.” This means that line 6 contains an asterisk, and near
that asterisk you will find the error.

Warning: Division by Zero

Neither PHP nor mathematics allows division by zero. The message will indicate the location of the error so
that you can correct it. Remember, this could be caused by a value that the user provided.

Display Is Not What Was Expected

Although many errors are the result of omitting characters, extraneous characters can display something you
did not intend; for instance, the following code seems fine at first glance:

for ($var = 0; $var =5; $var++) ;
{ echo "display something
";

}

The code was intended to loop through and display some variable five times. However, this does not
happen. This is because there should not be a semicolon after the for statement. The unnecessary semicolon
halts the loop.

Reference to a Primary Key Could Not Be Created

If you try to set a foreign key in one table that links to a primary key in another table, ensure that both keys
have the same type and length. Otherwise, you will see an error message stating that the reference to the
primary key could not be created.

Element <style> Not Allowed as Child of Element <div>

If this occurs when you use the W3C validator to check your code, it means that an included file contains an
internal style using <style></style> tags. This included style will appear within the <body></body> section of
the HTML document; style tags must appear within the <head></head> section. To remedy this, relocate the
style in either the main style sheet or as a link in the <head></head> section of the HTML page.

Problem with Prepared Statement

If an error message refers to code in a prepared statement or to the line of bind parameters code, check that
the number of question marks equals the number of bind parameters. Check that column names are used in
the queries and that the bind parameter uses the variables containing the user’s input, such as $fname, $In,
$e, and so on. Here is a correct example:

//If all the fields were filled out

$hp = password_hash($p, PASSWORD DEFAULT);

// Register the user in the database...

$query = "INSERT INTO users (user_id, fname, lname, email, psword,";
$query .= "addri, addr2, city, state country, zcode pcode, phone";

514

APPENDIXA © TROUBLESHOOTING

$query .= "registration date) VALUES ";

$query .= "(l Y 1,2,2,2,2,2,2,2,2,2, NOW())";

$q = mysqli_stmt_init($dbcon);

mysqli_stmt_prepare($q, $query);

// use prepared statement to ensure that only text is inserted

// bind the input from the form's fields to SOL Statement

mysqli stmt bind param($q, 'ssssssssss', $fname, $ln, $e, $hp, $adi, $ad2,
$cty, $cnty, $pcode, $ph);

// execute query

The INSERT statement contains 12 column names and 10 question marks. The user_id column name
and the registration_date column name are both automatic, i.e., not typed in by the user. The 10 items typed
in by the user are represented by 10 question marks and by 10 string symbols (s) in the bind parameters
statement. The two automatic column names are represented by ' ' and NOW() in the query, but these must
not appear in the bind parameters statement. Note that column names are used in the queries, but the bind
parameter uses the variables containing the user’s input (values), e.g., $fname, $In, $e, and so on.

Note You can also use PDO to create prepared statements. For more information, visit http://php.net/
manual/en/book.pdo.php.

Logical Errors

Some of the most difficult errors to determine are logical errors. These are caused by a logic problem in your
code. No error message will display. However, you will not get the results you are expecting. One common
debugging method to find logical problems is to temporarily place echo statements throughout your code to
discover where the program is flowing and what are the current values of key variables. Sometimes multiple
messages as simple as “I am here” placed in your functions and other areas can help you determine what
problem existed. Depending on what editor you have chosen to use, there may also be other debugger tools
available.

The Internet Is Your Friend

It is worth repeating that if you get an error message you don’t understand or you can’t determine the
problem, paste the message into a browser to discover how others have fixed the problem. There are also
many free blogs that will allow you to paste your code that is causing problems. Remember to not paste any
sensitive information (such as passwords) into these blogs! There are many programmers who respond to
these blogs in an attempt to help you. The programming community does try to support each other. But do
make sure to save your original code in case the suggestion did not work.

Summary

This chapter described some error messages, and appropriate solutions were suggested. No doubt you
encountered many error messages as you worked through this book. In fact, you will always have to deal
with error messages, unless you are superhuman. We recommend that if you recognize messages that are
not mentioned in this chapter, make a note of them and record the solutions.

515

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

APPENDIXA © TROUBLESHOOTING

We have come to the end of this book, and you should now have an understanding of the basic
principles for designing practical databases for websites. We hope you will regard this book as a starting
point for further study of PHP, SQL, MariaDB, MySQL, and in particular security. This simplified approach
to database design omitted such topics as object-oriented programming (OOP) and Ajax; none of them
is essential, but they are alternatives to the techniques employed in this book. Appendix B will help you
locate resources for further study. You can also learn more by combining techniques from the chapters in
this book.

Remember, there is always more to learn as a programmer. A successful IT professional is always
studying, practicing, and learning new techniques. You must stay current with today’s standards and tools.

516

APPENDIX B

Resources

We have included this quick reference section to save you from having to search through the book for
examples or an explanation of a certain piece of PHP/MySQL/MariaDB syntax. The PHP/MySQL/MariaDB
references are in alphabetical order for rapid searching.

The quick references in this appendix refer only to the PHP and MySQL/MariaDB used in the book.
PHP and MySQL/MariaDB can achieve much more; to extend your knowledge of PHP and MySQL/MariaDB
beyond the examples in this book, refer to the resources at the end of this appendix.

This appendix covers five topics, as follows:

e PHP quick reference

e Bootstrap template

e MySQL and phpMyAdmin quick reference
e What next?

° Resources

PHP Quick Reference

This section is a quick reference to PHP.

Arrays

Arrays are variables that can store multiple values. The files in previous chapters used an array to store
one or more error messages. The error array stored one type of element, i.e., error messages. Arrays can
be created that can store records containing many different types of elements such as names, addresses,
e-mail addresses, passwords, ages, registration dates, user levels, and phone numbers. The name of the array
should relate to its contents, such as user_details, error_messages, or cereals.

In an array named cereals, the multiple values might be oats, barley, corn, and wheat. The array can be
created using the following code:

$cereals = array[];

The values can be inserted as follows (note that the key for the first value is zero):

<?php
$cereals = array[];
$cereals[0] = "oats";

$cereals[1] = "barley";

© Adrian W. West and Steve Prettyman 2018 517
A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,
https://doi.org/10.1007/978-1-4842-3843-1

https://doi.org/10.1007/978-1-4842-3843-1

APPENDIX B * RESOURCES

$cereals[2] = "corn";
$cereals[3] = "wheat";
>

The number inside the square brackets is known as the key. The first key in our example has a value of
oats. The following code will display the content of the cereals array:

<html>

<head>

<title>The simple array page</title>
<meta charset=utf-8>

<style type="text/css">

.cntr {text-align:center; }

</style>

</head>

<body>

<h2 class="cntr">This is the Array Page</h2>
<p class="cntr">

<?php

$cereals = array();
$cereals[0] = "oats";
$cereals[1] = "barley";
$cereals[2] = "corn";
$cereals[3] = "wheat";
echo ("$cereals[0]" . "$cereals[1] " . "$cereals[2] " . $cereals[3]);
?>

</p>

</body>

</html>

This will display the following:

Oats barley corn wheat

Associative Arrays

Associative arrays allow you to use text instead of reference numbers for the key; this can provide more
explicit code. Associative arrays use the array operator symbol (=>). (Note that this symbol does not mean
equal to or greater than.) In the example given next, the => symbol indicates that the key Monday has the
value of Clean car. The key is case sensitive, so Monday is not the same as monday. Let’s look at an example
with seven key/value pairs in an array that we will call $events.

Caution Pay particular attention to the punctuation and quotes. Especially remember not to add a comma
after the final array value (Church in our example).

<html>

<head>

<title>The associative array page</title>
<meta charset="utf-8">

518

APPENDIX B * RESOURCES

<style type="text/css">
h2 { margin-left:150px; }
p {margin-left:250px; text-align:left; }
</style>
</head>
<body>
<h2 class="cntr">This is the associative array Page</h2>
<?php
$events = array(
'Monday' => 'Clean car',
'Tuesday' => 'Dental appointment’,
'Wednesday' => 'Shopping’,
'Thursday' => 'Gardening',
'Friday' => 'Fishing’,
'Saturday' => 'Football match',
'Sunday' => 'Church’
)s
foreach($events as $day => $event) {
echo "<p>$day: $event</p>\n";
}

>
</body>
</html>

The code produces the following display:

This is the associative array Page
Monday: Clean car

Tuesday: Dental appointment
Wednesday: Shopping

Thursday: Gardening

Friday: Fishing

Saturday: Football match

Sunday: Chuzrch

The downloadable files for this appendix include simple_array.php and assoc_array.php.

Comments
Comments prevent a piece of PHP code from displaying on the screen. They have three main uses.
e Reminding the programmer what a line of code achieves. Here’s an example:
// The next script retrieves all the records from the users table.
e Disabling a piece code for troubleshooting.
e Disabling a session to check a page’s styling and function.

PHP accepts three symbols to indicate a comment as follows:

//A single line comment
#A single line comment
/*A multiple line comment

519

APPENDIX B * RESOURCES

some text
some text
some text*/

Concatenation

Concatenating strings means joining them together by using a full stop; see $full_name, for example:

<?php
$first _name = 'Annie’;
$last name = 'Versary';

$full_name = $first_name . ' ' . $last_name;
echo $full name;
>

The display is as follows:

Annie Versary

Constants

Items that never change are stored as constants using the function define(). The function takes two
parameters: the name of the constant and its fixed value. Because we have no intention of changing our first
name, we could define it as a constant as follows:

<?php
define('MY_FNAME', 'Adrian');
echo = 'Hello ';

echo = MY_FNAME;
>

The display is as follows:

Hello Adrian

Note that constants do not use a dollar sign because they are not variables. Constants are case
insensitive. However, they are normally uppercase to easily detect within the code.

E-mailing with PHP
PHP provides an easy method for sending e-mails using the mail() function. The format is as follows:
mail($to,$subject,$message,$headers);

You can confirm that your hosting company’s e-mail server will respond to PHP instructions. Create a
PHP file named email.php, or use the downloadable file, and insert your own e-mail address in place of the
two dummy addresses.

<!doctype html>
<html lang=en>
<head>

520

APPENDIX B * RESOURCES

<title>Testing a simple email</title>
<meta charset=utf-8>

</head>

<body>

<?php
mail("me@myisp.co.uk", "This is a subject", "This is the body of the email", <~
"From:me@myisp.co.uk\r\n");

?>

</body>

</html>

Upload the file email.php to your host provider and then access the file from a browser. You will see a
blank page, but you should receive an e-mail via your usual e-mail client such as Windows Live Mail or a
web mail client.

The more practical version of multiple_email. php, shown next, includes multiple recipients and uses
variables instead of hard-coding. As a first test, we used an alternative e-mail address to replace recipient-1.
The e-mail addresses of cooperative friends or colleagues were used for recipient-3 and recipient-4. The
code shown next is provided in the downloadable files for the appendix:

<html>
<head>
<title>Testing an email for multiple recipients</title>
<meta charset="utf-8">
</head>
<body>
<?php
$to = " me@myisp.co.uk, recipient-2@someisp.co.uk ";
$subject = "My email test.";
$message = "This is the body of the email";
$headers = "From: me@myisp.co.uk\r\n";
$headers .= "Reply-To: me@myisp.co.uk\r\n";
$headers .= "CC: recipient-3@someisp.co.uk\r\n";
$headers .= "BCC: recipient-4@someisp.com\r\n";
mail($to,$subject,$message,$headers);
if (mail($to,$subject,$message,$headers)) { //#1

echo "The email has been sent!";}

else { echo "The e-mail has failed!"; }
?>
</body>
</html>

The elements To:, CC:, and BCC: can consist of several recipients by using a comma-separated list, as
shown in the line beginning with $to. To use the file with fewer recipients, simply delete the unwanted items.
Save the file as multiple_email.php, upload the file to a host, and then access the file from a browser. You
should receive the e-mail via your usual e-mail client such as Windows Live Mail or web mail.

521

APPENDIX B * RESOURCES

Explanation of the Code

The top section of an e-mail is the header. The variable called $headers supplies the header with its content.
The $headers variables are concatenated using a dot and an equal sign (.=), and each one is moved down a
line by the code (\r\n).

if (mail($to,$subject,$message,$headers)) { //#1
echo "The email has been sent!";}
else { echo "The e-mail has failed!"; }

This block of code is optional and may be deleted; it will let you know whether the e-mail was sent or
not, but it will not tell you whether it was received.

Functions

A function is a self-contained piece of reusable code that performs a task when called. PHP has more
than 1,000 built-in functions. In this book, you have been using several built-in functions, such as array(),
include(), require(), count(), and mysqli_connect().

You can create your own functions. A function name can contain letters, digits, and underscores but not
hyphens; the name must not begin with a digit; and function names are not case sensitive. A function can be
created by the web designer using the following format:

function function name()
{ task to be performed; }

Example: function greeting()
{ echo "Hello user!" ; }

The function can be called from within a script as follows:

<?php
greeting();
?>

This would display as “Hello user!”

include() vs. require()

Both functions pull a file into an HTML page or PHP script, with the difference being that if include() fails to
retrieve the file, the script will display an error message and will continue to run; if require() encounters the
same problem, it will stop the script. Use include() for including most files, but use require() for vital items
such as accessing the database connection file. If the connection fails, it is pointless to continue running the
script.

if, else, and elseif
A series of PHP conditional statements can take the following pattern:

if something is true
Do this
elseif something else is true

522

APPENDIX B * RESOURCES

Do that
else
Do something different from the previous two instructions.

You may use as many elseif statements as you like, but only one else is permitted, and it must be the last
item in the list of conditionals.

When students look at the code for the registration page, they ask why several else clauses appear one
after another when there should be only one. Some code that prompts the question is as follows:

if (empty($errors)) { // If no problems occurred in the user's input

//Determine whether the email address has already been registered for a user

$q = "SELECT user_id FROM users WHERE email = '$e' ";

$result=mysqli query ($dbcon, $q) ;

if (mysqli_num_rows($result) == 0){//The email address was not already registered «

therefore register the user in the users table
// Make the query
$q = "INSERT INTO users (user id, title, fname, lname, email, psword,
registration_date, «~
uname, class, addri, addr2, city, county, pcode, phone, paid) VALUES (' ',
"$title’, ~
"$fn', '$1n', '$e', SHAL('$p'), NOW(), '$uname','$class', '$ad1’', '$ad2’,
$ety', ~
"$cnty’, '$pcode’, "$ph', "$pd')";

$result = @mysqli_query ($dbcon, $q); // Run the query
if ($result) { // If the query ran without a problem

header ("location: register-thanks.php");
exit();
...} else { // If the query failed to run
// Error message
echo '<h2>System Error</h2>
<p class="error">
You could not be registered due to a system error. We apologize for «
the inconvenience.</p>';

// Debugging message

echo '<p>' . mysqli error($dbcon) . '

Query: ' . $q . '</p>';
} 7/ End of if ($result)

mysqli close($dbcon); // Close the database connection.
// Include the footer and stop the script

include ('includes/footer.php');
exit();

}else{//The email address is already registered

523

APPENDIX B * RESOURCES

echo '<p class="error">The email address is not acceptable because it
is «~
already registered</p>';

Yelse{ // Display the errors

The Explanation

The ifs and elses are shown in bold type; there are three ifs and three elses. The three elses appear to be
following each other, but in fact the ifs and elses are nested; they are each complete in themselves, as you
will see from the formatted summary that follows:

if (empty($errors)) { //If no problems occur in the user's input, run the query
if (mysqli_num_rows($result) == 0) { //The email address is not already registered, «
so continue to run the query
if ($result) { //If the query ran without a problem, continue to run the script
Yelse{ //If the query fails to run, display an error message
Yelse{ //The email address is already registered, display that information to the user
Yelse{ //If errors are detected, display the errors

Loops

Aloop is a device that searches through an array or a file item by item; it functions by executing a block of
code as long as a condition has not changed.

The while Loop

The while loop is used when the number of items that might be retrieved is unknown.
The following is the format for a while loop:

while (condition is true)

{
}

do something

We used while loops in pages that retrieved the results of search queries. The code looped through the
data in a database table and displayed records if they existed. This use of the while loop was as follows:

// Fetch and print all the records

while ($row = mysqli fetch_array($result, MYSQLI_ASSOC)) {
...echo '<tr>..

}

While records were found, the rows were retrieved and displayed in a table.

524

APPENDIX B * RESOURCES

The for Loop

The for loop and the foreach loop are used when the number of items is known. The for loop has the
following format:

for (start value, last value, expression) {
do something

}

The for loop used in the next example is restricted to a known number of iterations (i.e., 4):
<?php
for($x=0; $x<=3; $x++)
{

echo "Iteration: $x
";

}
>

The display would be as follows:
Iteration: 0
Iteration: 1
Iteration: 2
Iteration: 3
The foreach Loop

This is used with arrays with a known number of elements. If an array holds the three primary colors, you
know there are three items; therefore, we use foreach. The foreach loop has the following format:

foreach ($array as $value)

{
code to be executed
}
Here’s an the example of an array holding the three primary colors:
<?php

$primaries = array("red","yellow","blue");
foreach ($primaries as $value) {

echo "$value
";
}

2>

The display would be as follows:

red
yellow
blue

foreach was used in the next snippet of code for the registration pages in this book. Because the loop
followed some code that detected a number of error messages (or no messages) in the $errors array, the
number of messages is known to be either zero or a known amount.

525

APPENDIX B * RESOURCES

} else { // Display the errors
echo '<h2>Error!</h2>
<p class="error">The following error(s) occurred:
';
foreach ($errors as $msg) { // Display each error
echo " - $msg
\n";
}

echo '</p><h3>Please try again.</h3><p>
</p>';

}

The do while Loop

The do while loop executes the piece of code once, and then it will check the result. If the result is not equal
to a predetermined amount, it will continue to loop until the result is equal to the predetermined amount.
The do and the while are separated by the code that executes some task, as follows:

An initial variable;

do
{
code to be executed;
}
while (condition is true);
Example:
<?php
$x=1;
do
{
echo "Number: $x
";
$x = $x + 1;
}
while ($x<=3)
?>

The display would be as follows:

Number: 1
Number: 2
Number: 3
Numbers

Here are some examples of valid numbers for use in PHP scripts:
e Valid integers: 4 and -4
e Valid floating-point numbers: 4.0 or -4.0 or 40.44
e Invalid numbers: % or 3a or 04.01.14

The mathematical operators for numbers are as follows: add (+), subtract (-), multiply (*), and divide (/).

526

APPENDIX B * RESOURCES

Here’s an example:

<?php
$price = 100;
$sales tax = 0.2;
$total price = $price + ($price * $sales tax);
echo $total price;
?>

The total price displayed would be 120.

Prepared Statements

Prepared statements provide secure queries that prevent SQL injection attacks. If a prepared statement is
not used, the entire query is sent to MySQL/MariaDB in a vulnerable form. Prepared statements split the
query into two parts. First only the syntax is parsed and sent to MySQL (the statement). Then the values are
specified in a separate piece of code (the bind). MySQL then assembles the two components. The following
code demonstrates a prepared statement:

if (empty($errors)) { // If everything's OK.

// If no problems encountered, a register user in the database
//Determine whether the email address has already been registered
$query = "SELECT userid FROM users WHERE email = ? ";

$q = mysqli stmt init($dbcon);

mysqli stmt prepare($q, $query);

mysqli stmt bind param($q,'s', $emailtrim);

mysqli stmt_execute($q);

$result = mysqli stmt_get result($q);

if (mysqli_num_rows($result) == 0){//The email address has not been already
//registered, therefore register the user in the users table
[/mmmmmmmmmae Valid Entries - Save to database -----
//Start of the SUCCESSFUL SECTION. i.e. all the required fields
//were filled out
$hashed password = password hash($password, PASSWORD DEFAULT);
// Register the user in the database using an INSERT query
//Note that there are 15 elements in the query
$query =
"INSERT INTO users (userid, title, first name, last name, email, password, class, ";
$query .=
"address1, address2, city, state country, zcode pcode, phone, secret, registration date) ";
/713 of the elements are provided by the user's entries and their values are //represented
by question marks. The two automatic items user id and //Registration_date are represented
by ' ' and NOW ().
$query .= "VALUES ";
$query .= “(I l;?)?;?)?;?)?;?)?;?)?;?)?;?)NOW())";
$q = mysqli_stmt_init($dbcon);
mysqli_stmt_prepare($q, $query);
// use prepared statement to ensure that no dangerous code is inserted
// bind fields to SQL Statement
mysqli stmt bind param($q, 'sssssssssssss',
$titletrim, $first nametrim, $last nametrim, $emailtrim, $hashed password, $classtrim,
$addressitrim,

527

APPENDIX B * RESOURCES

$address2trim, $citytrim, $state countrytrim, $zcode pcodetrim, $phonetrim, $secrettrim);
// execute query

mysqli_stmt_execute($q);

if (mysqli_stmt_affected_rows($q) == 1) {

header ("location: register-thanks.php?class=" . $classtrim);
} else {
// echo 'Invalid query:' . $dbcon->error;

$errorstring = "System is busy, please try later";
echo "<p class=" text-center col-sm-2' style='color:red'>$errorstring</p>";
}
}else{//The email address is already registered
$errorstring = 'The email address is already registered.';
echo "<p class=' text-center col-sm-2' style='color:red'>$errorstring</p>";

}
} else {//End of SUCCESSFUL SECTION

Sessions

The period of uninterrupted time that a user spends viewing a web site is called a session. By using a PHP
built-in array named $_SESSION, a user’s data can be stored in a session as they move from page to page.
This is achieved by assigning the user’s data to a session as follows:

if (isset($_POST['id'])
{

$id = $ _POST['id'];

}

session_start()

$ SESSION['id'] = $id
do some action

The function session_start() must appear on every page where a session will be used. The function will
then either start a session or access an existing session. The function must appear in the page code before
anything is sent to the browser; it will not tolerate even a preceding space or empty line.

Logging In with a Session

We have used sessions in most chapters, and the login pages provide a typical example, as shown in the
following snippet:

<?php
// Check if the login form on the login page has been submitted
if ($_SERVER['REQUEST METHOD'] == 'POST') {
require ('mysqli_connect.php'); //connect to database
//Email validation code goes here and assign email alias as $e
// Password validate code goes here and assign password alias as $p
if ($e & $p){//if no problems were encountered
// Fetch the user_id, first name and user level for that email/password combination:
$hp = password hash($p, PASSWORD DEFAULT);
$query = "SELECT user id, fname, user level FROM users WHERE (email=? AND psword=?";
$q = mysqli_stmt_init($dbcon);

528

APPENDIX B * RESOURCES

mysqli stmt prepare($q, $query);

// bind $id to SQL Statement

mysqli stmt bind param($q, "ss", $e, $hp);

// execute query

mysqli_stmt_execute($q);

$result = mysqli_stmt get result($q);

// Was there a record that matched the email/password combination

if (mysqli_num_rows($result) == 1) {//if a database record matched the user's input
// Fetch the record and set the session data
session start(); #

$_SESSION = mysqli fetch_array ($result, MYSQLI_ASSOC);
$ SESSION['user level'] = (int) $ SESSION['user level']; // Ensure user level
is an integer

// Use a ternary operation to set the URL #2
$url = ($ SESSION['user level'] === 1) ? 'admin-page.php' : 'members-page.php';
header('Location: ' . $url); // Make the browser load either the members' or

the admin page
exit(); // Stop the script.
mysqli free result($result);
mysqli close($dbcon);
} else { // No match was made
echo '<p class="error">The email address and password entered do not match our
records.</p>"
}
} else { // If there was a system problem
echo '<p class="error">Please try again.</p>";
}
mysqli_close($dbcon);

} // End of submit conditional
>
<!-- Display the form fields--> #3
<div id="loginfields">
<?php include ('login_page.inc.php'); ?»
</div>

Note that the session_start() function (line #1) is not preceded by anything that is sent to the browser. It
is followed by code that takes the data from the found record and assigns the data to the session. A ternary
operator (line #2) then uses the data stored in the session to make the browser load either the members page or
the admin page. After the PHP code is processed, the code sends some information to the browser (line #3).

Logging Out

Sessions are located in the memory of the server for security, and closing the browser will end the session.
However, if the user wants to log out and then browse the website’s public pages, for security the user can log
out, and the code in the logout page shown next will destroy the session:

<?php

session_start();//access the current session

// If no session id variable exists, redirect the user
if (lisset($_SESSION['user id'])) {

529

APPENDIX B * RESOURCES

header("location:index.php");
exit();
telse{ //Destroy the session
$_SESSION = array(); // Destroy the variables stored in the session
session destroy(); // Destroy the session itself
setcookie (session _name(), '', time()-3600);
setcookie('PHPSESSID', time()-3600,'/"', 0, 0);//Destroy the cookie
header("location:index.php");
exit();

Ternary Operator

The ternary operator is a concise way of setting a conditional. The operator uses the symbols (?) and the
colon (:). This example is taken from Chapter 3 of this book.

// Use a ternary operation to set a page URL

$url = ($ SESSION['user level'] === 1) ? 'admin-page.php' : 'members-page.php';
header('Location: ' . $url);

exit(); // Stop the script

The first part (enclosed in brackets) takes the user_level in the session array and asks if it is identical to 1.
The three equal signs mean “identical to.” The item after the question mark is stating that if the user_level
is identical to 1, then assign admin-page.php to the variable named $url. The colon is the equivalent of
else. Therefore, if user_level is not identical to 1, $url is set so that it directs the user to members-page.php
(registered members have a user_level of 0). The variable $url therefore is set to a particular page, and the
user is redirected to that page using the header() function.

header('Location: ' . $url); // Make the browser load either the members' or the admin page
exit(); // Quit the script

The long-hand equivalent of the previous ternary statement is as follows:

if ($_SESSION['user level'] === 1) {
header('location: admin-page.php');

exit();

}else{
header('location: members-page.php');
exit();

}

Using Try/Catch

Here’s how to use a try/catch block:

<body>

<div id="container">

<header>
Includes go here for header, nav, aside etc
<div id="content"><!-- Start of the login page content. -->
<?php

530

APPENDIX B * RESOURCES

// This section processes submissions from the login form
// Check if the form has been submitted:
if ($_SERVER['REQUEST METHOD'] == 'POST') {
//connect to database
try {
require ('mysqli_connect.php');
// Validate the email address
if (lempty($_POST['email'])) {
$e = mysqli real escape_string($dbcon, $ POST['email']);
} else {
$e = FALSE;
echo '<p class="error">You forgot to enter your email address.
</p>';
}
// Validate the password
if (lempty($_POST['psword'])) {
$p = mysqli_real escape_string($dbcon, $_POST['psword']);
} else {
$p = FALSE;
echo '<p class="error">You forgot to enter your password.</p>';

}

if ($e && $p){//if no problems
// Retrieve the user id, psword, first name and user level for that
// email/password combination

$q = "SELECT user_id, psword, fname, user level FROM users WHERE email='$e'";
$result = mysqli_query ($dbcon, $q);

if($result == false) {
throw new Exception(mysqli_error($dbcon)."\n$q");

}

// Run the query and assign it to the variable $result
$result = mysqli_query ($dbcon, $q);
// Count the number of rows that match the email/password combination
//echo mysqli num rows($result);
if (mysqli num_rows($result) == 1) {
//if one database row (record) matches the input:-
// Start the session, fetch the record and insert the
// values in an array
$row = mysqli fetch array($result, MYSQLI NUM);
if (password verify($p, $row[1])) {
session_start();
// Ensure that the user level is an integer.
$ SESSION['user level'] = (int) $row[3];
// Use a ternary operation to set the URL
$url = ($_SESSION['user_level'] === 1) ? 'admin-page.php' :
'members-page.php';
header('Location: ' . $url);
// Make the browser load either the members or the admin page
} else { // No password match was made.
echo '<p class="error">Password/e-mail entered does not match our
records."';
echo '
Perhaps you need to register, just click the Register ;

531

APPENDIX B * RESOURCES

echo button on the header menu</p>";
}
} else { // No e-mail match was made.
echo '<p class="error">Password/e-mail entered does not match our
records."';
echo '
Perhaps you need to register, just click the Register ';
echo 'button on the header menu</p>';
}
} else { // If there was a problem.
echo '<p class="error">Please try again.</p>';
}

mysqli free result($result);
mysqli close($dbcon);
}

catch(Exception $e)

print "An Exception occurred. Message: " . $e->getMessage();
iatch(EIror $e)

érint "An Error occurred. Message:
i // no 'else' to allow user to enter values
?

;?—— Display the form fields-->

<div>

. $e->getMessage();

<?php require ('login page.inc.php'); 2>
</div>

<footer>
<?php include ('footer.php'); ?>
</footer>
</div>
</div>
</body>
</html>

The flow of a program will jump to the catch block whenever a problem occurs within a try block. In
the previous example, the flow would jump to the catch block if the mysqli_connect file was missing or
corrupt. It will also jump to the block if the SQL statements do not execute properly. These are examples of
exceptions caused by the program. Thus, it will jump to the exception block. If errors occur, such as a system
error, the code will jump to the error block. However, it will not jump to the block if the user inputs invalid
information. This possibility is handed by the code within the program itself.

Validation and Sanitization Filters

The following script validates an e-mail address using the filter_var() function:

//If the email address is present trim it
if (isset($_POST['email'])) {
$etrim = trim($_POST['email']);
//Validate the trimmed address

532

APPENDIX B * RESOURCES

$e = (filter var($etrim, FILTER VALIDATE EMAIL));

telse{
$errors[] = 'Your email address is invalid or you forgot to enter your email
address."';

}

Malicious user input can be sanitized by means of the filter_var function. If a user inputs script into a
registration form variable named $last_name, any HTML or JavaScript tags can be removed as follows:

$last_name ='<script>alert("some_alert ");</script>';
echo filter var($last name, FILTER SANITIZE STRING);

The <script></script> tags will be removed, leaving a harmless string.
Resources listing the filter_var functions are given later in this appendix.

Variables

Variables store values and can be accessed only on the page on which they are created. If you click a link
to switch to another page, the next page knows nothing about that variable. However, there are ways of
passing the variable’s value to another page. Variables begin with a dollar sign, $. Following the dollar sign,
the variable’s name can be text (uppercase or lowercase), hyphens, or underscores. The name can include
numbers but must not start with a number.

Here's an example: $first_name.

Variables are case sensitive; $Firstname is not the same as $firstname.

Variables: Predefined

You have used PHP predefined variables in most of the chapters . They allowed us to transfer data from a
form to a handler or from one HTML page to another. Predefined variables always begin with a dollar sign
and an underscore, as shown in the following four examples:

$ SERVER, $ POST['fname'] $ GET["fname"], $ SESSION['fname'],

In our tutorials, the predefined variable $_POST(['fname'] was assigned to a shorter variable like this:

$fname = $ POST['fname'];

Variables: String

String variables are groups of characters enclosed in single or double quotes. Here’s an example:

$my pet = 'cat'; $animal = "dog"; $birthday = 'March 10th, 1952°';

Bootstrap Template

Each HTML page in this textbook is formatted with Bootstrap. To keep the discussion of Bootstrap as simple as
possible, the same basic template was used each time. This template is based on the use of 12 small columns.

<div class="container col-sm-12">

533

APPENDIX B * RESOURCES

The content in the columns is defined by the use of rows.

<div class="row mx-auto">

Within each row, the columns can be divided as needed to lay out the display of information. In many
examples, the rows were divided to provide the layout for labels and form input.

<label for="user name" class="col-sm-4 col-form-label">User Name*:</label>
<div class="col-sm-8">
<input type="text" class="form-control" id="user name" name="user name">
</div>
</div>

In the previous example, the row is divided into a four-column section to hold the label and an eight-
column section to hold the text box.

H H H H H H H H H H H H
L L L L I I I I I I

L L L L I I I I I I

F F F F F F F F F F F

The previous table demonstrates the often-used layout for HTML pages in this textbook. The header (H)
is defined with 12 columns that cover the width of the page. When a form is used, a label (L) is defined that
covers four columns. The textbox (or other form input object) (I) is defined to cover six columns. The footer
(F) is defined as the same width as the header, 12 columns.

If a third column is needed (the information column to the right), then the format is defined as follows:

H H H H H H H H H H H H
L L L L I I I I I I X X
L L L L I I I I I I X X
F F F F F F F F F F F F

The template includes the same size header (H) and footer (F). However, now the rows for the form
have been expanded to the maximum of 12 columns. The label (L) is still four columns, and the input object
(1) is still six columns. However, we now have added two columns for the information column (X).

Of course, there are exceptions and minor variations in the book; however, we have attempted to stay with
one of these formats to keep things easier. One exception is the display of tables. When a table is displayed,
depending on the amount of data it contains, it might be displayed with six, eight, or twelve columns.

For more information on Bootstrap, visit www.getbootstrap.com.

MySQL and phpMyAdmin Quick Reference

Here is how you connect to a database:

A typical connection file
// Create a connection to the database and to MySOL
// Set the encoding to utf-8

534

www.getbootstrap.com

APPENDIX B

// Set the database access details as constants

define ('DB_USER', 'turing');

define ('DB_PASSWORD', 'Comput3rm3n');

define ('DB_HOST', 'localhost');

define ('DB_NAME', 'shopdb');

// Make the connection:

$dbcon = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB NAME);
// Set the encoding...optional but recommended

mysqli set charset($dbcon, 'utf8');

Always test the connection file before adding or populating tables.
Create a test file named test.php as follows:

<!DOCTYPE html>

<html>

<head>

<title>test</title>

</head>

<body>

// Create a connection to the database and to MySQL
// Set the encoding to utf-8

// Set the database access details as constants
define ('DB_USER', 'turing');

define ('DB_PASSWORD', 'Comput3rm3n');

define ('DB_HOST', 'localhost');

define ('DB_NAME', 'shopdb');

// Make the connection:

$dbcon = new mysqli(DB_HOST, DB_USER, DB_PASSWORD, DB NAME);
// Set the encoding...optional but recommended
mysqli_set_charset($dbcon, 'utf8');

</body>

</html>

date_time

When using phpMyAdmin to populate a table from scratch, the post_date or reg_date entry might

RESOURCES

automatically be the year zero BC with a time of 00.00. To solve this problem, edit the date/time column for
each entry and click the icon to the right of the post_date or reg_date field. A pop-up date picker will enable

you to add a date/time by moving the slide buttons in Figure B-1.

If you want to use the pop-up calendar while you are populating, enter everything else, but leave the

date/time until last.

535

APPENDIX B * RESOURCES

M 7 Server 127.0.0.1 » @ Dalabase: msgboarddb - BB Table: forum
[©] Browse | ¢ Structure | [} sQL | 4 Search| ¥< Insert | &) Exportl @ Import | =3 Privileges | 4° Operations ¥
' . ' I March 2018 0|
Column _ Type _ Function _Null \
8 z Su Mo Tu We Th Fr Sa
post_id ini(8) unsigned | v "
1[=2]3
uname varchar(12) ! ,J 4 5 6 7 8 9 10
11| 12| 13| 14| 15| 16| 17
subject varchar(60) | v 18| 19| 20| 21| 22| 23| 24
25| 26| 27 28 29 30| 31
: 1
Time [18:41:00 |
Hour ;
Minute D
message text v Second
Millisecond
Microseconc
Time Zone
+0000 ¥ 4
post_date datetime v| [2018-03-01 18:41:00 | &

Figure B-1. Database data input screen popup calendar

INSERT

When using the INSERT query to insert data into a table, the query has two parts: the column names and the
VALUES. This is shown in the following example:

$q = "INSERT INTO users (user id, title, fname, lname, email, psword, registration date) «
VALUES (" ', '$title', '$fn', '$1In', '$e', "$p', NOW())";

The number and order of the column names must exactly match the number and order of the values.

SELECT

The elements of a SELECT query must be in the following order:
SELECT (column or expression) AS (set an alias) FROM (table) WHERE (condition) ORDER BY (column)

AS and ORDER BY are optional and may be omitted. ORDER BY can be followed by the keyword ASC or
DESC to specify how the selected items are to be ordered. The number of records selected can be specified
by putting LIMIT and an integer at the end of the query.

UPDATE

Let’s say Rose Bush has a user_id value of 15 and wants to alter her e-mail address. You can use the UPDATE
query to change it as follows:

$q = "UPDATE users SET email ='rbush@mynewisp.co.uk' WHERE user id = 15 LIMIT 1 ";

536

APPENDIX B * RESOURCES

Storage Engines and phpMyAdmin

To view a list of quotations by Mark Twain, you would use a full-text search and enter the words Mark Twain.
Early versions of MySQL insisted on using the MyISAM storage engine. Since MySQL version 5.6.4, the
InnoDB storage engine allows full-text searches.

Changing the Storage Engine on an Existing Populated Table

The current storage engine used by mySQL/MariaDB is InnoDB. If you have older code and want to

change an existing table’s storage engine from MyISAM to InnoDB, this is quite easily accomplished in
phpMyAdmin as long as you have not changed collations or decreased a column size. As a precaution,
before changing the engine, always back up your table using the phpMyAdmin Export facility. After changing
the engine, check that all is well with the website and then back up the table again. The steps are as follows:

1. In phpMyAdmin, click the name of your database in the left panel.
In the left panel, click the table you want to change.

Click the Operations tab.

Use the storage engine’s pull-down menu to select the engine.

Click Go.

LA

What Next?

We hope this book has inspired you to explore more advanced PHP techniques for developing databases.
For increased reliability and integrity, you will need to learn about transactions.

Transactions ensure that items such as orders are truly completed before inserting them into the
database table. Transactions allow the user to roll back to amend the order details or even cancel the order.

You might want to examine the merits of procedural PHP versus object-oriented PHP (OOP); both will
produce the same outcome, but OOP can be advantageous for maintaining very large websites. This book
used procedural PHP.

JavaScript, Ajax, and jQuery can add enhancements to a database-driven website; help on these topics
is provided in the following resources. Use the resources to keep abreast of improvements and modifications
in PHP and MYSQL. Most importantly, watch for any new developments for improving security. Because
arrays and functions are central to PHP database design, try to learn more about them.

Now that you are familiar with the terminology used for MySQL/MariaDB databases and PHP, you will
be able to benefit from the available books and online resources. The following resources will help you to
move on from the basic techniques described in this book.

Resources

The following are resources that you may find helpful.

Books on PHP and MySQL for Databases

Before buying a book on PHP and MySQL/MariaDB, be sure to read the introduction on the book’s web page
(or online store). If possible, borrow a copy before committing to a purchase. You may find that the book is
far too advanced, that it covers what you have already learned, or that it relies on frameworks that hide or
complicate the basic code you want to learn. Also check for the latest edition of the book.

537

APPENDIX B * RESOURCES

Here are some suggested reference books to help you advance your PHP skills:

PHP and MYSQL Web Development (fifth edition)
Authors: Luke Welling & Laura Thompson
ISBN-13:978-1491978917

ISBN-10: 1491978910

PHP and MySQL for Dynamic Websites: Visual QuickPro Guide (5th Edition)
Authors: Larry Ullman (Author)

ISBN-13:978-0134301846

ISBN-10: 0134301846

Learning PHP, MySQL & JavaScript: With jQuery
Author: Robin Nixon

ISBN-13:978-1491978917

ISBN-10: 1491978910

Beginning PHP and MySQL (fifth edition)
Authors: Jason Gilmore and Frank M Kromann
ISBN-10: 1430260432

ISBN-13: 978-1430260431

Responsive Web Design with HTML5 and CSS3 (second edition)
Author: Ben Fain

ISBN-13: 978-1784398934

ISBN-10: 1784398934

PHP and MySQL Internet Resources
Here are some Internet resources:
e www.htmlite.com/: Great for practical PHP scripts and MySQL
o http://larryullman.com/forums: Larry Ullman’s superb forum
e www.phpbuilder.com: Many PHP tutorials and a forum
e www.w3schools.com/php/: A good selection of PHP scripts
e www.php.net: The original PHP website

e http://net.tutsplus.com/tutorials/php/getting-clean-with-php/: Good
examples of the use of filter_var for validating and sanitizing user input

E-commerce Resources

The previous book resources contain some information on e-commerce websites. The CD provided with
PHP and MYSQL Web Development by Luke Welling and Laura Thompson has a good example of a custom
shopping cart.

For resources dealing specifically with e-commerce, try Effortless E-Commerce with PHP and MySQL by
Larry Ullman (New Riders, ISBN-13: 978-0-321-65622-3).

538

http://www.htmlite.com/:
http://larryullman.com/forums:
http://www.phpbuilder.com
http://www.w3schools.com/php/:
http://www.php.net
http://net.tutsplus.com/tutorials/php/getting-clean-with-php/:

APPENDIX B * RESOURCES

Online Tutorials

One online tutorial gives instructions using 20 videos averaging 15 minutes each. View this here:
www. youtube.com/playlist?1ist=PL442E340A42191003

Of course, you won't be able to create an e-commerce website by viewing videos; you also need a great
deal of documentation so that you can study the code and adapt it. However, the videos give an excellent
outline of the enormous amount of work that it requires to create a fully operational e-commerce website.

Resources for Creating a Forum

These are resources for creating a forum.

PayPal Forums

e For the United States: https://www.paypal-community.com/t5/US-PayPal-
Community/ct-p/US

Third-Party Shopping Carts
Third-party shopping carts are available from the following resources:

e Stripeis a payment gateway for PHP-based websites. Charges are low for successful
transactions, and it operates by means of a user’s credit/debit card. The website
development team will require a good knowledge of JavaScript because the gateway
depends on JavaScript and jQuery. For more information, visit https://stripe.com.
For the UK version, visit https://stripe.com/gb.

e Authorize.netis a U.S. and Canadian payment gateway that accepts credit/debit
cards; it requires a setup fee of $99 and $20 monthly payments. You can find details
atwww.authorize.net.

Summary

This appendix provided an alphabetical list of the main PHP code required for creating interactive websites
and databases. This was followed by a brief reference for MySQL/MariaDB and phpMyAdmin. The question
“What next?” was posed, and some suggestions were offered. To help you to progress beyond the basic
instruction given in this book, a list of resources was provided.

539

http://www.youtube.com/playlist?list=PL442E340A42191003
https://www.paypal-community.com/t5/US-PayPal-Community/ct-p/US
https://www.paypal-community.com/t5/US-PayPal-Community/ct-p/US
https://stripe.com
https://stripe.com/gb
http://authorize.net
www.authorize.net

Index

A

Address/phone number searching
create, 222-224
editing, 229-235
<form> section, 224
new table display, 225-228
Administrator
administration page
create, 106-107
logout page, 107-109
membership secretary, 104
new header, 105
requirements, 104
login
fields, 98
header, 91
page, 92
sessions, 99
verification code, 95
logindb database, 76-77
login/logout function, 109
members-page, 101
redundant buttons
login button, 78

members’ page, header menu for, 82

new header, 80

new password page, 79

revised registration page, 80

“thank you” page, 82
registration page

members, 87

membership secretary, 88

new header, 84

process-register-page.php, 84
user_level

Jack Smith’s record, 90

new column name insertion, 89

ordinary member, 90
phpMyAdmin, 88
real-world administrator, 91

© Adrian W. West and Steve Prettyman 2018

symbol, 89
title creation, 89
users table, 76-77
Apache, 4
Arrays, 73
associative, 518-519
cereals, 517
error, 517
Assignment operator, 45
Associative arrays, 518-519

Backup database table, 286
Blank screen, 511

Bootstrap template, 533-534
Bootstrap toolkit, 38

C

Catch block, 530
Comical quotes page, 409
Concatenating strings, 520
Custom cart website
checkout page, 477
confirmation page, 470
customdb.sq]l, 433
database and tables, 452-453
flowchart, 450-451
forgotten password page, 460
home page, 452
login page, 457
search page, 464
tables, 454-456, 465
view cart page, 473

D

Database management system (DBMS), 3

Data Definition Language (DDL), 480
Data Protection Act, 2, 47

A. W. West and S. Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases,

https://doi.org/10.1007/978-1-4842-3843-1

https://doi.org/10.1007/978-1-4842-3843-1

INDEX

define() function, 520
The Devon Bird Reserves website
birds table, 351
header, 350-351
home page, 347-349
main menu, 349-350
online payments (see Online payments)
reserve’s location table, 355
three joined tables, 362-363

Dove Gallery, 432. See also Custom cart website;

PayPal cart website
do while loop, 526
Dynamic websites. See Interactive websites

E

EasyPHP package
DevServer, 13
download, 12
install, 12
phpMyAdmin Security, 13-17
Echo statement, 58, 73
E-commerce websites
custom cart (see Custom cart website)
etchings method, 432
PayPal (see PayPal cart website)
requirements, 433
security warning, 433
E-mailing, 520-522
Equal signs, rules for, 513
Error messages
access denied, 509-510
blank screen, 511
browser quirks, 508
curly bracket, 511
division by zero, 514
empty variable value, 511
header function, 511
help, 515
included files, 509
logical errors, 515
parse error, 512
PHP error levels, 510
prepared statement, 514
primary key, 514
pull-down menu, 509
redeclare function, 510
style changes, 509
syntax errors, 513
tables not displaying, 508
T_ELSE, 513
T_STRING, 512
undefined function, 510
undefined index/variable, 510
unexpected characters, 512

542

validation errors, 509

W3C validator, 514

wrong equal sign, 513
Etchings method, 432

FG

filter_var() function, 202-204
First normal form (1NF), 337
Folders and filing system, 200
foreach loop, 525-526
Foreign keys, 339

for loop, 525

H

Host migration
backup database table, 286
last minute improvements
mobile size registration page, 253
mysqli_connect.php, 239-240
process_edit_your_account, 253
secure form (see Secure
feedback form)
updated accounts, 240-252
logging exceptions and errors, 272-274
remote host
admintable database, 282
admintable.sql file, 277-279
error message, 275
Export tab, 275
GUI, 281
Linux/Windows package, 280
MySQL and MySQLi installation, 280
mysqli_connect.php file, 282-284
open/save file, 276
PHP and MySQL installation, 280
public_html folder, 285
SQL file, 275
universal header, 269-272

,J,K
include() function
and require() function, 37
footer file, 41-42
header file, 37-39
information column, 40-41
menu file, 39-40
page process, 42
Information Commissioner’s Office (ICO), 2
Interactive websites, 2
arrays, 73-74
change password page, 65-71
database connection

code explanation, 45-47
mysqli_connect.php, 44-45

registration page (see Registration page)

displaying error messages, 60
interactive elements, 33
password change
confirmation, 72

PHP keyword echo, 58
simpledb folder, 34
temporary template

create, 34-36

registration menu, 42

with two menus, 43
testing tutorial’s pages, 72
“thank you” page, 58-60
viewing members’ records, 61
View Users page, 61

L

Logical errors, 515
Loops
do while, 526
foreach, 525-526
for loop, 525
while, 524

MariaDB, 2-3
Members registration
additional suggestions, 174
addresses header menu, 175-176
login page, 175
members names, 174
Message board
converting to forum, 428-429
database, 378
enhancements, 428
features, 377
full text search
create, 422-423
ignores, 421
quotes_found page, 427-428
results, 424
gateway page, 400
header.php, 420-421
home page
comical quotes page, 409-411
for Forum’s Website, 381-382
header, 382-384
Wise Quotes page, 413-415
logging out, 400
login page, 395
member table

attributes, 394
create, 378
forum, 379
posting quotations
e-mail addresses, 405
form creation, 403-405
functions, 407
processing, 406-408
pull-down menu, 402
subject, 402
quotations, 378
registration form, 385
requirement, 377
search facilities, 417
“thank you” page, 393
Mnemonic, 192
Multiple tables
birdsdb database
create, 337
foreign key, 339
joining data tables, 342-344
location table, 339
mysqli_connect.php, 338-339
populate birds table, 340-342
reserves_info, 345-346
duplicate entries, 336
joined tables, 358
normalization, 336-337
relational databases, 335
MySQL
database
administrator, 2
developer, 2
interactive database tables, 3
interactive web sites, 2
membership secretary, 2
tables of data, 1
user, 2
WAMP, 5
XAMPP (see XAMPP)
mysqli_connect.php file, 282-284
and phpMyAdmin, 534-536
resources, 538-539
Workbench
data screen, 494-495
design models, 489
performance dashboard, 495
sakila database, 491
salika_full design model, 490
server dashboard, 492
status screen, 492-493
users and privileges, 493-494
welcome screen, 489
MySQL 8, 11
MySQL 8 Community Server

INDEX

543

INDEX

MySQL 8 Community Server (cont.)
add new users, 488
advantages, 479-481
authentication method, 486-487
database migration, 498-502
download, 481-483
PHP 7, 495-498
port number, 486
product installation, 485
setup, 484
using PHP files, 502-505

N

Normalization, 336-337

(0

Online payments
payment method, 367-371
printable form, 371-375
printing forms style sheet, 376
registration form, 366

PQ

Pagination process
admin_view_users.php, 121-122
print option, 122
revised administration header, 127
search menu button, 122
table display creation, 122
total membership, 122

PayPal cart website

announce prices and fee payments, 157-168

connection file, 435
create database and tables, 434
debit/credit card images, 168
home page
index.php, 438
to search for paintings, 441
palpaldb.sql, 433
Register button, 157
shopping cart buttons
add painting page, 446
create business account, 444
credit/debit card logos, 444
View Cart button, 445
tables, 435-437
“thank you” page, 168-173
PHP
arrays, 517-519
Bootstrap template, 533-534
comments, 519
concatenating strings, 520
constants, 520

544

functions, 522
if, else, and elseif, 522-524

include() function (see include() function)

include() vs. require(), 522
loops (see Loops)
mail() function, 520-522
mathematical operators, 526
MySQL and phpMyAdmin
connection file, 534-535
date/time, 535
INSERT query, 536
SELECT query, 536
storage engine, 537
UPDATE query, 536
vs. OOP, 537
prepared statements, 527
resources, 538-539
sessions
logging in, 528-529
logging out, 529-530
ternary operator, 530
try/catch block, 530
validation and sanitization filter, 532
valid numbers, 526
variables, 533

PHP 7, 495-498
phpMyAdmin

accessing, 17-18
admin page
new database creation, 111
register-page.php file, 113
revised page, 114
users table, 113
database creation, 21, 23-24
deleting records
page creation, 145-149
wrong record, 145
editing records
error array, 144
interface creation, 139
pagination
admin_view_users.php, 121-122
print option, 122
revised administration header, 127
search menu button, 122
table display creation, 122
total membership, 122
revised view users page
edit and delete records, 115
edit_user.php, 120
interactive table, 115
new page creation, 116
new table format, 115
search criteria
edit and delete records, 128
final form handler, 135

hard coding, 131
search form, 132
temporary page, 128
security, 13-17
SQL window, 27-30
table creation, 24-27
table deletion, 31
Postaldb database
documentation flowchart, 155-156
ENUM, 154
multi-column table creation, 151-152
mysqli_connect.php, 152
table creation, 153
preg_match() function, 221
Prepared statement, 514, 527
Product catalog creation
admin/add a house page
Add button, 310
admin page code, 311-318
confirmation message, 310
delete sold house, 310
pull-down menus, 310
administration plan, 287
administrator’s page header, 318-319
administrator’s search page
advert_search.php, 325-327
found_houses.php page, 328
for specific house, 325
catalog display, 296-303
contact form handler, 332-333
Contact Us page, 303, 329-332
file for connecting database, 289-290
full stock display, 320-323
home page with search capability
header code, 293
home page code, 294-296
main menu code, 293
house details page, 304-309
new database, 288
result page creation, 298, 303
search result header, 304
security, 290

R

Registration form
extent, 156-157
new page creation, 157-168
pagination
admin_view_users table, 177-181
table creation, 177-181
PayPal
debit/credit card images, 168
“thank you” page, 168-173
searching and editing

INDEX

editing screen creation, 185
extra columns creation, 182
form modification, 184
Registration page, 206
annual registration fee, 47
code explanation, 50, 54
creation, 48, 52
Data Protection Act, 47
interface, 47
redundant buttons, 48
require() function, 37

S

Sanitization
definition, 202
filter_var() function, 202-204
validation and, 532-533
Second normal form (2NF), 337
Secure feedback form
code explanation, 260-261, 264-265
Contact Us form, 255-260
feedback-handler.php, 261-263
feedback reply, 254-255
PHP function mail(), 266
“thank you” page and error
message, 266-268
Secure Sockets Layer (SSL), 202
Security
database, 200
HTML tags, 201
layer of, 200-201
session_start() function, 100
Storage engine, 537
Structured Query Language (SQL) dump file
add title column, 197-199
create prices table, 199
database, 191-192
registering members, 195-197
users.sql, 193-195
Syntax errors, 513

T U

Ternary operator, 530
Try/catch block, 530-532

Vv

Validation
definition, 202
e-mail address, 203
filter_var() function, 203
and sanitization filter, 532-533
telephone numbers, 205

545

INDEX

W database transfer, 6
download, 6
while loop, 524 folders, 18-19
Windows, Apache, MySQL/MariaDB, and PHP icon, 8
(WAMP), 4-5 installing, 6-7
Wise Quotes page, 413 phpMyAdmin
accessing, 17
X Y Z database creation, 21-27
L SQL window, 27-30
XAMPP table creation, 24-27
Apache, 8-9 table deletion, 31
closing, 10 security console, 13-17
control panel, 8-10 time-saving shortcuts, 8
database planning, 20 versions, 6

546

	Contents
	About the Authors
	Acknowledgments
	Introduction
	Chapter 1: Create and Test a Database and Table
	Defining Developer, Administrator, and User
	Defining Interactive Websites
	Using MariaDB or MySQL Only for Interactive Database Tables
	Methods for Developing and Maintaining Databases
	A Brief Look Inside Web Server Communication

	A Free Development Platform for Testing
	Using XAMPP on Your Own Computer
	Will I Be Able to Transfer the Database from XAMPP or EasyPHP to a Remote Host?

	Downloading and Installing XAMPP
	Starting XAMPP

	Closing XAMPP
	Where Is MariaDB and MySQL 8?

	Using EasyPHP on Your Own Computer
	Download and Install EasyPHP
	Starting EasyPHP
	Closing EasyPHP
	phpMyAdmin Security

	Accessing phpMyAdmin Directly
	The Familiar Bits
	Planning a Database: The Essential First Step
	Creating a Database Using phpMyAdmin
	Create a Table Using phpMyAdmin

	The SQL Alternative
	Deleting Databases and Tables

	Summary

	Chapter 2: Create Web Pages That Interact with Users
	Creating the Folder for Holding the Database Pages
	Creating the Temporary Template
	Introducing the PHP include() Function
	The Included Header File
	The Included Menu File
	The Included Information Column
	The Included Footer File
	How Does the Server Process the Page?

	The Interactive Version of the Template
	Connecting to the Database
	Explanation of the Code
	The Registration Page
	Explanation of the Code
	Explanation of the Code

	The PHP Keyword echo
	The “Thank You” Page
	Displaying Error Messages That Are Collected in an Array
	Hashing the Password
	Viewing Members’ Records
	The View Users Page
	Explanation of the Code

	The Change Password Page
	Explanation of the Code
	Explanation of the Code

	Confirming a Successful Password Change
	Testing the Tutorial’s Pages

	More About Arrays
	Summary

	Chapter 3: Create Login/Logout Functionality for Members and an Administrator
	Creating the logindb Database and users Table
	Removing or Replacing Redundant Menu Buttons in the Headers
	Adding a Login Button to the Home Page Header
	Removing Redundant Buttons from the Registration and New Password Headers
	The Revised Registration Page
	The New Header for the New Password Page
	A New Header Menu for the Members page
	Amend the Header for the “Thank You” Page

	The Registration Page and Undesirable Characters
	Explanation of the Code
	Registering Some Members

	Differentiating Between Two Types of Membership
	Creating User Levels to Limit Access to Private Pages
	Log In
	The Header for the Login Page
	The Login Page
	Explanation of the Code
	Explanation of the Code
	Sessions

	A Members-Only Page
	Explanation of the Code

	Planning the Administrator’s Role
	A New Header for the Administration Page
	The Administrator’s Page
	Explanation of the Code
	The Logout Page
	Explanation of the Code

	Testing the Login/Logout Function
	Amending and Deleting Individual Records

	Summary

	Chapter 4: Create an Administration Interface
	The Administration Database
	The Users Table

	Revising the View Users Page to Include Editing and Deleting
	Explanation of the Code

	Displaying Pages of Records (Pagination)
	Explanation of the Code

	Planning the Search Criteria
	A Temporary Search Page for Displaying Specified Members
	Explanation of the Code

	The Search Form
	Explanation of the Code

	The Final Form Handler for Receiving Search Form Input
	Explanation of the Code

	Editing Records
	Explanation of the Code
	Deleting Records
	Explanation of the Code

	Summary

	Chapter 5: Expand and Enrich Your Website
	Creating a New Database, a Table with 15 Columns, and a Price Table
	Creating the File for Connecting to the Database
	Creating the Tables
	Using ENUM

	The Importance of Documentation
	Extending the Registration Form and Adding a Pull-Down Menu
	Always Announce Prices and Fee Payments Up-Front
	Explanation of the Code
	Explanation of the Code

	Adding PayPal Debit/Credit Card Images
	Including PayPal on the “Thank You” Page
	Explanation of the Code

	Registering Some Members
	A Small Amendment to the Login Page

	Amending the Administrator’s Header
	Adding Class and Paid to the admin_view_users Table
	Explanation of the Code

	Searching and Editing Records
	Explanation of the Code
	Modifying the Form for Editing Records

	Summary

	Chapter 6: Add the Finishing Touches: Security and Validation
	Creating the Database
	Creating the File for Connecting to the Database

	Creating the users Table by Importing a SQL Dump File
	Registering Some Members Manually

	Adding a Title Column to the users Table
	Creating the Prices Table by Importing a SQL Dump File

	Tidying Up the Folders and Filing System
	Degrees of Security
	Adding a Layer of Security
	An Increased Layer of Protection

	Validation and Sanitization
	The filter_var() Function
	Validation
	Sanitization
	Validating Telephone Numbers

	A Safer Registration Page
	Explanation of the Code
	Explanation of the Code

	Searching for a Title, an Address, or a Telephone Number
	Explanation of the Code
	Viewing the Retrieved Title, Address, and Phone Number
	Explanation of the Code
	Editing the Title, Addresses, and Telephone Numbers
	Explanation of the Code

	Summary

	Chapter 7: Migrate to a Host and Back Up Your Website Database
	Making Last-Minute Changes
	Creating a New Database
	Details of the Downloaded File for Connecting to the Database

	Allowing Members to Update Their Own Records
	Explanation of the Code

	A Secure Feedback Form
	What Does a Feedback Reply Look Like?

	The Feedback Form
	Explanation of the Code
	Explanation of the Code

	The “Thank You” Page and the Error Messages

	A Common Header
	Explanation of the Code

	Logging Exceptions and Error
	Migrating the Database and Tables to a Remote Host
	A Puzzling Error Message
	Creating and Exporting the SQL File
	To Create a Dump File of a Table or Tables
	What Does a SQL Dump Look Like?
	Investigate the Remote Host’s Server

	Using the GUIs on a Remote Host’s Server
	Connecting to the Database on the Remote Host
	Securely Uploading the mysqli_connection.php File
	Uploading the Interactive Pages to the Host

	Backing Up Your Database
	Summary

	Chapter 8: Create a Product Catalog
	Preparing the Database and Administration Plan
	Creating a New Database
	Creating the File for Connecting to the Database
	Security
	Creating a Home Page with Search Capability
	The Header for the Majority of the Pages
	The Home Page Code

	Displaying the Catalog
	Explanation of the Code

	The Header for the Page of Search Results
	Creating the House Details Page
	Explanation of Code

	Creating the Admin/Adding a House Page
	The Header for the Administrator’s Page
	Administrator’s View of the Entire Stock of Houses for Sale
	The Administrator’s Search Page
	The Result of a Search

	The Contact Us Page
	Summary

	Chapter 9: Join Multiple Tables and Other Enhancements
	Introduction to Multiple Tables
	Normalization
	Creating the Database and Tables
	Viewing the Connection File
	Creating a Second Table
	Foreign Keys

	Preparing the Tables for Joining
	Populating the Two Tables

	Joining Data from the Two Tables
	Creating the Third Table
	Creating Pages to Display the Data from Your Joined Tables
	The Home Page
	The Main Menu for the Pages
	The Header for All the Pages
	The Page for Viewing the Birds
	Explanation of the Code

	The Page for Viewing the Locations and Habitats of the Reserves
	Displaying Data from the Joined Tables
	Creating a Page to Display the Three Joined Tables
	Explanation of the Code

	Payments by Check
	A Choice of Payment Method
	The Check Payment
	Explanation of the Code

	Printing Online Forms
	Summary

	Chapter 10: Create a Message Board
	The Plan
	Creating the Database
	Creating the Tables
	Creating the Second Table
	Creating the Registration Form
	The “Thank You” Page

	Populating the Members Table
	The Login Page
	Explanation of the Code

	Logging Out
	Creating a Gateway to a Choice of Quotes
	The Form for Posting Quotations
	Explanation of the Code
	Processing the Postings

	Explanation of the Code

	Posting Some Quotations
	The Comical Quotes Page
	Explanation of the Code
	The Header for the Comical Quotes Page

	The Wise Quotes Page
	Explanation of the Code
	The Header for the Wise Quotes Page

	Adding Search Facilities
	Explanation of the Code

	The Header for ViewPosts.php
	Searching for Specific Words or Phrases
	The Full Text Search Form

	Displaying the Search Results
	Explanation of the Code
	The Header for the quotes_found Page

	Enhancing the Message Board
	Converting the Message Board to a Forum

	Summary

	Chapter 11: E-commerce: A Brief Introduction
	Security Warning
	The Plan
	Creating the PayPal Cart Site
	Creating the PayPal Cart Database and Tables
	Viewing the Connection File
	Populating the PayPal Cart Tables
	The PayPal Cart Home Page
	Using the PayPal Cart Home Page to Search for Paintings
	Explanation of the Code

	Integrating with the PayPal Shopping Cart Buttons
	Explanation of the Code

	Creating a Custom Cart
	The Custom Cart Home Page
	Create the Custom Cart Database and Tables
	Exploring the Custom Shopping Cart
	The Custom Cart Login Page
	Explanation of the Code

	Retrieving a Forgotten Password
	Explanation of the Code

	The Custom Cart Search Page
	Adding Paintings to a Table for a Custom Shopping Cart
	Explanation of the Code
	Explanation of the Code
	Explanation of the Code

	The Checkout Page
	The Additional Administrative Tasks

	Summary

	Chapter 12: Take a Brief Look at Oracle MySQL 8
	Advantages of Upgrading
	Installing MySQL 8 Community Server
	Exploring the Features of MySQL Workbench
	Connecting PHP 7 to the MySQL 8 Community Server
	Migrating to MySQL 8 Community Server
	Using Our PHP Files with MySQL 8 Community Server
	Summary

	Appendix A: Troubleshooting
	Browser Quirks
	Tables Not Displaying
	A Style Change Has No Effect
	Included Items Missing from the Display
	A Page Fails to Validate
	A PayPal Pull-Down Menu Does Not Work
	Access Denied
	PHP Error Levels
	Call to an Undefined Function
	Cannot Redeclare Function
	Undefined Index or Undefined Variable
	Empty Variable Value
	Headers Already Sent
	Blank Screen
	Unexpected End of File in Line xxx
	Parse Error and Unexpected Characters
	Unexpected T_STRING
	Unexpected T_ELSE
	Wrong Equal Sign
	Failed to Open Stream
	Syntax Errors
	Warning: Division by Zero
	Display Is Not What Was Expected
	Reference to a Primary Key Could Not Be Created
	Element <style> Not Allowed as Child of Element <div>
	Problem with Prepared Statement
	Logical Errors
	The Internet Is Your Friend
	Summary

	Appendix B: Resources
	PHP Quick Reference
	Arrays
	Associative Arrays
	Comments
	Concatenation
	Constants
	E-mailing with PHP
	Explanation of the Code

	Functions
	include() vs. require()
	if, else, and elseif
	The Explanation

	Loops
	The while Loop

	The for Loop
	The foreach Loop

	The do while Loop
	Numbers
	Prepared Statements
	Sessions
	Logging In with a Session
	Logging Out

	Ternary Operator
	Using Try/Catch
	Validation and Sanitization Filters
	Variables
	Variables: Predefined
	Variables: String

	Bootstrap Template
	MySQL and phpMyAdmin Quick Reference
	date_time
	INSERT
	SELECT
	UPDATE
	Storage Engines and phpMyAdmin
	Changing the Storage Engine on an Existing Populated Table

	What Next?
	Resources
	Books on PHP and MySQL for Databases
	PHP and MySQL Internet Resources
	E-commerce Resources
	Online Tutorials
	Resources for Creating a Forum
	PayPal Forums
	Third-Party Shopping Carts

	Summary

	Index

