
http://freepdf-books.com

http://freepdf-books.com

SECOND EDITION

Building Android Apps with
HTML, CSS, and JavaScript

Jonathan Stark
with Brian Jepson

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

Building Android Apps with HTML, CSS, and JavaScript, Second Edition
by Jonathan Stark with Brian Jepson

Copyright © 2012 Jonathan Stark. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Brian Jepson
Production Editor: Kristen Borg
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

September 2010: First Edition.
January 2012: Second Edition.

Revision History for the Second Edition:
2012-01-10 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449316419 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Building Android Apps with HTML, CSS, and JavaScript, the image of a maleo, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31641-9

[LSI]

1326207514

http://freepdf-books.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449316419

To Erica & Cooper

http://freepdf-books.com

http://freepdf-books.com

Table of Contents

Preface . ix

1. Getting Started . 1
Web Apps Versus Native Apps 1

What Is a Web App? 1
What Is a Native App? 1
Pros and Cons 2
Which Approach Is Right for You? 2

Web Programming Crash Course 3
Introduction to HTML 3
Introduction to CSS 6
Introduction to JavaScript 9

2. Basic Styling . 13
Don’t Have a Website? 13
First Steps 15

Prepare a Separate Android Stylesheet 19
Control the Page Scaling 20

Adding the Android CSS 22
Adding the Android Look and Feel 26
Adding Basic Behavior with jQuery 28
What You’ve Learned 33

3. Advanced Styling . 35
Adding a Touch of Ajax 35
Traffic Cop 36

Setting Up Some Content to Work With 38
Routing Requests with JavaScript 39

Simple Bells and Whistles 41
Progress Indicator 41
Setting the Page Title 44

v

http://freepdf-books.com

Handling Long Titles 46
Automatic Scroll-to-Top 47
Hijacking Local Links Only 49
Roll Your Own Back Button 49

Adding an Icon to the Home Screen 56
What You’ve Learned 57

4. Animation . 59
With a Little Help from Our Friend 59
Sliding Home 59
Adding the Dates Panel 62
Adding the Date Panel 65
Adding the New Entry Panel 68
Adding the Settings Panel 70
Putting It All Together 74
Customizing jQTouch 76
What You’ve Learned 78

5. Client-Side Data Storage . 79
Web Storage 79

Saving User Settings to Local Storage 80
Saving the Selected Date to Session Storage 84

Web SQL Database 85
Creating a Database 86
Inserting Rows 90
Selecting Rows and Handling Result Sets 93
Deleting Rows 97

Web Database Error Code Reference 101
What You’ve Learned 102

6. Going Offline . 103
The Basics of the Offline Application Cache 103
Online Whitelist and Fallback Options 107
Creating a Dynamic Manifest File 113
Debugging 117

The JavaScript Console 118
What You’ve Learned 120

7. Going Native . 121
Introduction to PhoneGap 121
Building Your App Locally with Eclipse and the Android SDK 122

Download and Install Eclipse Classic 122
Download and Install the Android SDK 123

vi | Table of Contents

http://freepdf-books.com

Install the ADT Plug-In in Eclipse 123
Add Android Platforms and Other Components 124
Download the Latest Copy of PhoneGap 125
Set Up a New Android Project 125
Running Kilo as an Android App 127

Controlling the Phone with JavaScript 129
Beep, Vibrate, and Alert 129
Geolocation 133
Accelerometer 140

What You’ve Learned 143

8. Submitting Your App to the Android Market . 145
Preparing a Release Version of Your App 145

Removing Debug Code 145
Versioning Your App 146
Compile and Sign Your App 147

Uploading Your App to the Android Market 147
Distributing Your App Directly 149
Further Reading 153

Appendix: Detecting Browsers with WURFL . 155

Table of Contents | vii

http://freepdf-books.com

http://freepdf-books.com

Preface

Thanks to mobile phones, we have moved from virtually no one having access to in-
formation to virtually everyone having access to the vast resources of the Web. This is
arguably the most important achievement of our generation. Despite its overarching
importance, mobile computing is in its infancy. Technical, financial, and political forces
have created platform fragmentation like never before, and it’s going to get worse before
it gets better.

Developers who need to engage large and diverse groups of people are faced with a
seemingly impossible challenge: “How do we implement our mobile vision in a way
that is feasible, affordable, and reaches the greatest number of participants?” In many
cases, the answer is web technologies. The combination of advances in HTML5 and
mobile devices has created an environment in which even novice developers can build
mobile apps that improve people’s lives on a global scale.

Google’s Android operating system is a compelling addition to the mobile computing
space. In true Google fashion, the platform is open, free, and highly interoperable. The
development tools are full-featured and powerful, if a bit geeky, and run on a variety
of platforms.

Carriers and handset manufacturers have jumped on the Android bandwagon. The
market is beginning to flood with Android devices of all shapes and sizes. This is a
double-edged sword for developers. On one hand, more devices mean a bigger market.
On the other hand, more devices mean more fragmentation. As with the fragmentation
in the general mobile market, fragmentation on Android can often be addressed by
building apps with HTML, CSS, and JavaScript.

I’m the first to admit that not all apps are a good fit for development with web tech-
nologies. That said, I see a lot of apps written with native code that could have just as
easily been done with HTML. When speaking to developers who aren’t sure which
approach to take, I say this:

If you can build your app with HTML, CSS, and JavaScript, you probably should.

ix

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

Using open source, standards-based web technologies gives you the greatest flexibility,
the broadest reach, and the lowest cost. You can easily release it as a web app, then
debug and test it under load with thousands of real users. Once you are ready to rock,
you can use PhoneGap to convert your web app to a native Android app, add a few
device-specific features if you like, and submit to the Android Market—or offer it for
download from your website. Sounds good, right?

Who Should Read This Book
I’m going to assume you have some basic experience reading and writing HTML, CSS,
and JavaScript (jQuery in particular). Chapter 5 includes some basic SQL code, so a
passing familiarity with SQL syntax would be helpful but is not required.

What You Need to Use This Book
This book avoids the Android SDK wherever possible. All you need to follow along
with the vast majority of examples is a text editor and the most recent version of Google
Chrome (a cutting-edge web browser that’s available for both Mac and Windows at
http://www.google.com/chrome). You do need to have the Android SDK for the Phone-
Gap material in Chapter 7, where I explain how to convert your web app into a native
app that you can submit to the Android Market.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

x | Preface

http://freepdf-books.com

http://www.google.com/chrome

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Building Android Apps with HTML,
CSS, and JavaScript, 2nd edition by Jonathan Stark (O’Reilly). Copyright 2012 Jonathan
Stark, 978-1-4493-1641-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Preface | xi

http://freepdf-books.com

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920022886.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments
Writing a book is a team effort. My heartfelt thanks go out to the following people for
their generous contributions.

Tim O’Reilly, Brian Jepson, and the rest of the gang at ORM for making the experience
of writing this book so rewarding and educational.

David Kaneda for his wonderfully obsessive pursuit of beauty. Whether it’s a bit of
code or a user interface animation, he can’t sleep until it’s perfect, and I love that.

The gang at Nitobi for creating and continuing to support PhoneGap.

Brian Fling for broadening my view of mobile beyond just the latest and greatest hard-
ware. Brian knows mobile from back in the day; he’s a wonderful writer, and on top
of that, a very generous guy.

PPK, John Gruber, John Allsopp, and John Resig for their contributions to and support
of the underlying technologies that made this book possible.

Joe Bowser, Brian LeRoux, Sara Czyzewicz, and the swarm of folks who generously
posted comments and questions on the OFPS site for this book. Your feedback was
very helpful and much appreciated.

My wonderful family, friends, and clients for being understanding and supportive while
I was chained to the keyboard.

xii | Preface

http://freepdf-books.com

http://shop.oreilly.com/product/0636920022886.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com

And finally, Erica. You make everything possible. I love you!

Preface | xiii

http://freepdf-books.com

http://freepdf-books.com

CHAPTER 1

Getting Started

Before we dive in, I’d like to quickly establish the playing field. In this chapter, I’ll define
key terms, compare the pros and cons of the two most common development ap-
proaches, and give a crash course on the three core web technologies used in this book.

Web Apps Versus Native Apps
First, I’d like to define what I mean by web app and native app and consider their pros
and cons.

What Is a Web App?
To me, a web app is basically a website that is specifically optimized for use on a
smartphone. The site content can be anything from a standard small business brochure
site to a mortgage calculator to a daily calorie tracker—the content is irrelevant. The
defining characteristics of a web app are that the user interface (UI) is built with web
standard technologies, it is available at a URL (public, private, or perhaps behind a
login), and it is optimized for the characteristics of a mobile device. A web app is not
installed on the phone, it is not available in the Android Market, and it is not written
with Java.

What Is a Native App?
In contrast, native apps are installed on the Android phone, they have access to the
hardware (speakers, accelerometer, camera, etc.), and they are written with Java. The
defining characteristic of a native app, however, is that it’s available in the Android
Market—a feature that has captured the imagination of a horde of software entrepre-
neurs worldwide, myself included.

1

http://freepdf-books.com

Pros and Cons
Different applications have different requirements. Some apps are a better fit with web
technologies than others. Knowing the pros and cons of each approach will help you
make a better decision about which path is appropriate for your situation.

Here are the pros of native app development:

• Millions of registered credit card owners are one click away

• You can access all the cool hardware features of the device

Here are the cons of native app development:

• You have to pay to become an Android developer

• Your app will run only on Android phones

• You have to develop using Java

• The development cycle is slow (develop, compile, deploy, repeat)

Here are the pros of web app development:

• Web developers can use their current authoring tools

• You can use your current web design and development skills

• Your app will run on any device that has a web browser

• You can fix bugs in real time

• The development cycle is fast

Here are the cons of web app development:

• You cannot access the all cool hardware features of the phone

• You have to roll your own payment system if you want to charge for the app

• It can be difficult to achieve sophisticated UI effects

Which Approach Is Right for You?
Here’s where it gets exciting. The always-online nature of the Android phone creates
an environment in which the lines between a web app and a native app get blurry. There
are even some little-known features of the Android web browser (see Chapter 6) that
allow you to take a web app offline if you want. What’s more, several third-party
projects—of which PhoneGap is the most notable—are actively developing solutions
that allow web developers to take a web app and package it as a native app for Android
and other mobile platforms.

2 | Chapter 1: Getting Started

http://freepdf-books.com

For me, this is the perfect blend. I can write in my preferred language, release a product
as a pure web app (for Android and any other devices that have a modern browser),
and use the same code base to create an enhanced native version that can access the
device hardware and potentially be sold in the Android Market. This is a great way to
create a “freemium” model for your app—allow free access to the web app and charge
for the more feature-rich native version.

Web Programming Crash Course
The three main technologies we will use to build web apps are HTML, CSS, and Java-
Script. We’ll quickly cover each to make sure we’re all on the same page before plowing
into the fancy stuff.

Introduction to HTML
When you are browsing the web, the pages you are viewing are just text documents
sitting on someone else’s computer. The text in a typical web page is wrapped in HTML
tags, which tell your browser about the structure of the document. With this informa-
tion, the browser can decide how to display the information in a way that makes sense.

Consider the web page snippet shown in Example 1-1. On the first line, the string
Hi there! is wrapped in a pair of h1 tags. Notice that the open tag and the close tag are
slightly different: the close tag has a slash (/) as the second character, while the open
tag does not have a slash.

Wrapping text in h1 tags tells the browser that the words enclosed are a heading, which
will cause it to be displayed in large bold text on its own line. There are also h2, h3, h4,
h5, and h6 heading tags. The lower the number, the more important the header, so text
wrapped in an h6 tag will be smaller (i.e., less important-looking) than text wrapped in
an h3 tag.

After the h1 tag in Example 1-1, there are two lines wrapped in p tags. These are called
paragraph tags. Browsers will display each paragraph on its own line. If the paragraph
is long enough to exceed the width of the browser window, the text will bump down
and continue on the next line. In either case, a blank line will be inserted after the
paragraph to separate it from the next item on the page.

Example 1-1. HTML snippet

<h1>Hi there!</h1>
<p>Thanks for visiting my web page.</p>
<p>I hope you like it.</p>

You can also put HTML tags inside other HTML tags. Example 1-2 shows an unordered
list (ul) tag that contains three list items (li). In a browser, this appears as a bulleted
list with each item on its own line. When you have a tag or tags inside another tag, the

Web Programming Crash Course | 3

http://freepdf-books.com

inner tags are called child elements, or children, of the parent tag. So in this example,
the li tags are children of the ul parent.

Example 1-2. Unordered list

 Pizza
 Beer
 Dogs

The tags covered so far are all block tags. The defining characteristic of block tags is
that they are displayed on a line of their own, with no elements to the left or right of
them. That is why the heading, paragraphs, and list items progress down the page
instead of across it. The opposite of a block tag is an inline tag, which, as the name
implies, can appear in a line. The emphasis tag (em) is an example of an inline tag, and
it looks like this:

<p>I really hope you like it.</p>

The granddaddy of the inline tags—and arguably the coolest feature of HTML—is the
a tag. The “a” stands for anchor, but at times I’ll also refer to it as a link or hyperlink.
Text wrapped in an anchor tag is clickable, such that clicking on it causes the browser
to load a new HTML page.

To tell the browser which new page to load, we have to add what’s called an at-
tribute to the tag. Attributes are named values that you insert into an open tag. In an
anchor tag, you use the href attribute to specify the location of the target page. Here’s
a link to Google’s home page:

Google

That might look like a bit of a jumble if you are not used to reading HTML, but you
should be able to pick out the URL for the Google home page. You’ll be seeing a lot of
a tags and href attributes throughout the book, so take a minute to get your head around
this if it doesn’t make sense at first glance.

There are a couple of things to keep in mind regarding attributes. Dif-
ferent HTML tags allow different attributes. You can add multiple
attributes to an open tag by separating them with spaces. You never add
attributes to a closing tag. There are hundreds of possible combinations
of attributes and tags, but don’t sweat it—we only have to worry about
a dozen or so in this entire book.

The HTML snippet that we’ve been looking at would normally reside in the body section
of a complete HTML document. An HTML document is made up of two sections: the
head and the body. The body is where you put all the content that you want users to
see. The head contains information about the page, most of which is invisible to the
user.

4 | Chapter 1: Getting Started

http://freepdf-books.com

The body and head are always wrapped in an html element. Example 1-3 shows the
snippet in the context of a proper HTML document. For now the head section contains
a title element, which tells the browser what text to display in the title bar of the
window.

Example 1-3. A proper HTML document

<html>
 <head>
 <title>My Awesome Page</title>
 </head>
 <body>
 <h1>Hi there!</h1>
 <p>Thanks for visiting my web page.</p>
 <p>I hope you like it.</p>

 Pizza
 Beer
 Dogs

 </body>
</html>

Normally, when you are using your web browser you are viewing pages that are hosted
on the Internet. However, browsers are perfectly good at displaying HTML documents
that are on your local machine as well. To show you what I mean, I invite you to crack
open a text editor and enter the code in Example 1-3.

Picking the Right Text Editor
Some text editors are not suited for authoring HTML. In particular, you want to avoid
editors that support rich text editing, like Microsoft WordPad (Windows) or TextEdit
(Mac OS X). These types of editors can save their files in formats other than plain text,
which will break your HTML. If you must use TextEdit, save in plain text by choosing
Format→Make Plain Text. In Windows, use Notepad instead of WordPad.

If you are in the market for a good text editor, my recommendation on the Mac is
TextMate. For Windows, both the E Text Editor and Sublime Text are great.

If free is your thing, you can download Text Wrangler for Mac. For Windows, Note-
pad2 and Notepad++ are highly regarded. Linux comes with an assortment of text
editors, such as vi, nano, emacs, and gedit.

When you are finished entering the code from Example 1-3, save it to your desktop as
test.html and then open it with Chrome by either dragging the file onto the Chrome
application icon or opening Chrome and selecting File→Open File. Double-clicking
test.html will work as well, but it could open in your text editor or another browser,
depending on your settings.

Web Programming Crash Course | 5

http://freepdf-books.com

http://macromates.com/
http://www.e-texteditor.com/
http://www.sublimetext.com/
http://www.barebones.com/products/TextWrangler/
http://www.flos-freeware.ch/notepad2.html
http://www.flos-freeware.ch/notepad2.html
http://notepad-plus-plus.org/

Even if it’s not your favorite browser, you should use Chrome when
testing your Android web apps on a desktop web browser, because
Chrome is the closest desktop browser to Android’s mobile browser.
Chrome is available for Mac and Windows from http://google.com/
chrome.

Introduction to CSS
As you’ve seen, browsers render certain HTML elements with distinct styles (for ex-
ample, headings are large and bold, paragraphs are followed by a blank line, and so
forth). These styles are very basic and are primarily intended to help the reader under-
stand the structure and meaning of the document.

To go beyond this simple structure-based rendering, you use Cascading Style Sheets
(CSS). CSS is a stylesheet language that you use to define the visual presentation of an
HTML document. You can use CSS to define simple things like the text color, size, and
style (bold, italic, etc.), or complex things like page layout, gradients, opacity, and much
more.

Example 1-4 shows a CSS rule that instructs the browser to display any text in the body
element using the color red. In this example, body is the selector (this specifies what is
affected by the rule) and the curly braces enclose the declaration (the rule itself). The
declaration includes a set of properties and their values. In this example, color is the
property, and red is the value of the color property.

Example 1-4. A simple CSS rule

body { color: red; }

Property names are predefined in the CSS specification, which means that you can’t
just make them up. Each property expects an appropriate value, and there can be lots
of appropriate values and value formats for a given property.

For example, you can specify colors with predefined keywords like red, or by using
HTML color code notation, which uses a hexadecimal notation: a hash/pound sign
(#) followed by three pairs of hexadecimal digits (0–F) representing (from left to right)
red, green, and blue values (red is represented as #FF0000). Properties that expect meas-
urements can accept values like 10px, 75%, and 1em. Example 1-5 shows some common
declarations. The color code shown for background-color corresponds to the CSS
“gray.”

Example 1-5. Some common CSS declarations

body {
 color: red;
 background-color: #808080;
 font-size: 12px;
 font-style: italic;

6 | Chapter 1: Getting Started

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

http://google.com/chrome
http://google.com/chrome

 font-weight: bold;
 font-family: Arial;
}

Selectors come in a variety of flavors. If you want all of your hyperlinks (the a element)
to display in italics, add the following to your stylesheet:

a { font-style: italic; }

If you want to be more specific and only italicize the hyperlinks that are contained
somewhere within an h1 tag, add the following to your stylesheet:

h1 a { font-style: italic; }

You can also define your own custom selectors by adding id and/or class attributes to
your HTML tags. Consider the following HTML snippet:

<h1 class="loud">Hi there!</h1>
<p id="highlight"> Thanks for visiting my web page.</p>
<p>I hope you like it.</p>

 <li class="loud">Pizza
 Beer
 Dogs

If we add (more on this in a moment) .loud { font-style: italic; } to the CSS for
this HTML, Hi there! and Pizza will show up italicized because they both have the
loud class. The dot in front of the .loud selector is important—it’s how the CSS knows
to look for HTML tags with a class of loud. If you omit the dot, the CSS will look for a
loud tag, which doesn’t exist in this snippet (or in HTML at all, for that matter).

Applying CSS by id is similar. To add a yellow background fill to the highlight para-
graph tag, use the following rule:

#highlight { background-color: yellow; }

Here, the # symbol tells the CSS to look for an HTML tag with the ID highlight.

To recap, you can opt to select elements by tag name (e.g., body, h1, p), by class name
(e.g., .loud, .subtle, .error), or by ID (e.g., #highlight, #login, #promo). And, you can
get more specific by chaining selectors together (e.g., h1 a, body ul .loud).

There are differences between class and id. Use class attributes when
you have more than one item on the page with the same class value.
Conversely, id values have to be unique to a page.

When I first learned this, I figured I’d just always use class attributes so
I wouldn’t have to worry about whether I was duping an ID value.
However, selecting elements by ID is much faster than by class, so you
can hurt your performance by overusing class selectors.

Web Programming Crash Course | 7

http://freepdf-books.com

Applying a stylesheet

So now you understand the basics of CSS, but how do you apply a stylesheet to an
HTML page? Quite simple, actually! First, you save the CSS somewhere on your server
(usually in the same directory as your HTML file, though you can put it in a subdirec-
tory). Next, link to the stylesheet in the head of the HTML document, as shown in
Example 1-6. The href attribute in this example is a relative path, meaning it points to
a text file named screen.css in the same directory as the HTML page. You can also
specify absolute links, such as the following:

http://example.com/screen.css

If you are saving your HTML files on your local machine, you’ll want
to keep things simple: put the CSS file in the same directory as the HTML
file and use a relative path, as shown in Example 1-6.

Example 1-6. Linking to a CSS stylesheet

<html>
 <head>
 <title>My Awesome Page</title>
 <link rel="stylesheet" href="screen.css" type="text/css" />
 </head>
 <body>
 <h1 class="loud">Hi there!</h1>
 <p id="highlight"> Thanks for visiting my web page.</p>
 <p>I hope you like it.</p>

 <li class="loud">Pizza
 Beer
 Dogs

 </body>
</html>

Example 1-7 shows the contents of screen.css. You should save this file in the same
location as the HTML file.

Example 1-7. A simple stylesheet

body {
 font-size: 12px;
 font-weight: bold;
 font-family: Arial;
}

a { font-style: italic; }
h1 a { font-style: italic; }

.loud { font-style: italic; }
#highlight { background-color: yellow; }

8 | Chapter 1: Getting Started

http://freepdf-books.com

It’s worth pointing out that you can link to stylesheets that are hosted
on domains other than the one hosting the HTML document. However,
it’s considered very rude to link to someone else’s stylesheets without
permission, so please only link to your own.

For a quick and thorough crash course in CSS, I highly recommend CSS Pocket Refer-
ence: Visual Presentation for the Web by Eric Meyer (O’Reilly). Meyer is the last word
when it comes to CSS, and this particular book is short enough to read during the typical
morning carpool (unless you are the person driving, in which case it could take con-
siderably longer—did I say “crash” course?).

Introduction to JavaScript
At this point you know how to structure a document with HTML and how to modify
its visual presentation with CSS. Now I’ll show you how JavaScript can make the web
do stuff.

JavaScript is a scripting language that you can add to an HTML page to make it more
interactive and convenient for the user. For example, you can write some JavaScript
that will inspect the values typed in a form to make sure they are valid. Or, you can
have JavaScript show or hide elements of a page depending on where the user clicks.
JavaScript can even contact the web server to execute database changes without re-
freshing the current web page.

Like any modern scripting language, JavaScript has variables, arrays, objects, and all
the typical control structures (e.g., if, while, for). Example 1-8 shows a snippet of
JavaScript that illustrates many core concepts of the language (don’t try putting this in
your HTML file yet; I’ll show you how to combine HTML and JavaScript in a moment).

Example 1-8. Basic JavaScript syntax

var foods = ['Apples', 'Bananas', 'Oranges'];
for (var i=0; i<foods.length; i++) {
 if (foods[i] == 'Apples') {
 alert(foods[i] + ' are my favorite!');
 } else {
 alert(foods[i] + ' are okay.');
 }
}

Here’s an explanation of what’s happening here:

Define an array (a list of values) named foods that contains three elements.

Open a typical for loop that initializes a variable named i to 0 and specifies an exit
criteria—in this case, exit when i is greater than the length of the foods array, and
increment i by 1 each time through the loop (i++ is shorthand for “add 1 to the
current value of i”).

Web Programming Crash Course | 9

http://freepdf-books.com

http://oreilly.com/catalog/9780596515058
http://oreilly.com/catalog/9780596515058

A garden variety if that checks to see if the current element of the array is equal to
Apples.

Displayed if the current element of the array is equal to Apples.

Displayed if the current element of the array is not equal to Apples.

Here are some points about JavaScript’s syntax that are worth noting:

• Statements are terminated with semicolons (;)

• Code blocks are enclosed in curly braces ({})

• Variables are declared using the var keyword

• Array elements can be accessed with square bracket notation ([])

• Array keys are assigned beginning at 0

• The single equals sign (=) is the assignment operator (assigns a value to a variable)

• The double equals sign (==) is the equivalence logical operator (compares two val-
ues and evaluates to true if they are equivalent)

• The plus sign (+) is the string concatenation operator (combines two strings
together)

For our purposes, the most important feature of JavaScript is that it can interact with
the elements of an HTML page (the cool kids call this “manipulating the DOM”).
Example 1-9 shows a simple bit of JavaScript that changes some text on the page when
the user clicks on the h1. Create a new file in your text editor, save it as onclick.html,
and open the document in your browser. Click the text labeled “Click me!” and watch
it change.

DOM stands for Document Object Model and in this context it repre-
sents the browser’s understanding of an HTML page. You can read more
about the DOM here: http://en.wikipedia.org/wiki/Document_Object
_Model.

Example 1-9. Simple onclick handler

<html>
 <head>
 <title>My Awesome Page</title>
 <script type="text/javascript" charset="utf-8">
 function sayHello() {
 document.getElementById('foo').innerHTML = 'Hi there!';
 }
 </script>
 </head>
 <body>
 <h1 id="foo" onclick="sayHello()">Click me!</h1>
 </body>
</html>

10 | Chapter 1: Getting Started

http://freepdf-books.com

http://en.wikipedia.org/wiki/Document_Object_Model
http://en.wikipedia.org/wiki/Document_Object_Model

Here’s an explanation:

A script block at the head of the HTML document.

This line defines a single JavaScript function named sayHello() inside the script
block.

The sayHello() function contains a single statement that tells the browser to look
through the document for an element that has the ID foo, and set its inner HTML
contents to Hi there! The effect of this in the browser is that the text “Click me!”
will be replaced with “Hi there!” when the user clicks the h1 element.

End of the sayHello() function.

End of the script block.

The onclick attribute of the h1 element tells the browser to do something when the
user clicks the h1 element, namely, to run the sayHello() function.

Back in the bad old days of web development, different browsers had different support
for JavaScript. This meant that your code might run in Safari 2 but not in Internet
Explorer 6. You had to take great pains to test each browser (and even different versions
of the same browser) to make sure your code would work for everyone. As the number
of browsers and browser versions grew, it became impossible to test and maintain your
JavaScript code for every environment. At that time, web programming with JavaScript
was hell.

Enter jQuery. jQuery is a relatively small JavaScript library that allows you to write
your JavaScript code in a way that will work the same in a wide variety of browsers.
What’s more, it greatly simplifies a number of common web development tasks. For
these reasons, I use jQuery in most of my web development work, and I’ll be using it
for the JavaScript examples in this book. Example 1-10 is a jQuery rewrite of Exam-
ple 1-9. Create a new file in your text editor, copy this listing into it, and save it as
jquerytest.html. Next, download jquery.js into the same directory. Then open the file
in your web browser and try it out.

jQuery downloads, documentation, and tutorials are available at http:
//jquery.com. To use jQuery as shown in Example 1-9, you will need to
download it from there, rename the file you downloaded (such as
jquery-1.4.2.min.js) to jquery.js, and put a copy of it in the same direc-
tory as your HTML document.

Example 1-10. jQuery onclick handler

<html>
 <head>
 <title>My Awesome Page</title>
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript" charset="utf-8">

Web Programming Crash Course | 11

http://freepdf-books.com

http://jquery.com
http://jquery.com

 function sayHello() {
 $('#foo').text('Hi there!');
 }
 </script>
 </head>
 <body>
 <h1 id="foo" onclick="sayHello()">Click me!</h1>
 </body>
</html>

This line includes the jquery.js library. It uses a relative path, meaning the file exists
in the same directory as the page that is using it (this example won’t function cor-
rectly unless the jQuery library, jquery.js, is there). However, you can include it
directly from a variety of places where it’s available.

Notice the reduction in the amount of code we need to write to replace the text in
the h1 element. This might not seem like a big deal in such a trivial example, but I
can assure you that it’s a lifesaver in complex solutions.

We’ll be seeing plenty of real-world jQuery examples later on, so I’m going to leave it
at that for the moment.

12 | Chapter 1: Getting Started

http://freepdf-books.com

CHAPTER 2

Basic Styling

Ultimately, we are going to build a native Android app using HTML, CSS, and Java-
Script. The first step on this journey is to get comfortable styling HTML to look like a
mobile app. In this chapter, I’ll show you how to apply CSS styles to a bunch of existing
HTML pages so that they are easily navigable on an Android phone. So, in addition to
moving closer to building a native app, you’ll be learning a practical (and valuable) skill
that you can use immediately.

Don’t Have a Website?
If you’ve been testing all your web pages locally on your personal computer, you won’t
be able to view them on your Android phone without setting up a server. You have a
couple choices:

• Host your web pages on a web server and connect to that server from your Android
phone. Chances are good that your Internet Service Provider (ISP) offers compli-
mentary web hosting, but this usually only supports basic features such as HTML.
By the time we get to Chapter 6, we’re going to need to use PHP, a scripting lan-
guage that runs on the web server, so you should look into an inexpensive hosting
service. Many companies, such as Laughing Squid, offer entry-level hosting with
PHP for under $10 a month.

• Host them on a web server running on your computer and connect to the web
server running on your computer from your Android phone. This only works when
your Android phone and computer are on the same WiFi network.

This chapter is set up so you can try the examples as you go through it. So, no matter
which option you choose for viewing the web pages, try reloading them in a browser
(preferably the Android browser) each time you add something new to one of the sam-
ples. However, be sure to save your file in your text editor before you reload it in the
browser, or you won’t see your changes.

13

http://freepdf-books.com

http://laughingsquid.us/

Running a Web Server Locally
Linux, Windows, and Mac OS X each include some sort of web server. On Mac OS X,
open System Preferences, choose Sharing, and enable Web Sharing. Once you’ve
started Web Sharing, the Web Sharing preferences will display the URL of your personal
website (this includes anything you’ve put in the Sites directory in your home directory).
It will be of the form http://local-hostname/~your-username. After you start Web
Sharing, try putting the test.html file you created in Chapter 1 into the Sites directory
in your home directory. Click the link shown in the Web Sharing preferences pane
(which might be something like http://10.0.1.29/~your-username/), and then add
test.html after the URL (leaving you with something like http://10.0.1.29/~your-user
name/test.html), and load that page.

On Windows, open the Control Panel, choose Programs, and click Turn Windows
Features On or Off. Check the box labeled Internet Information Services and then click
the + to its left; continue to drill down into World Wide Web Services→Application
Development Features, then check the box to enable CGI (you’ll need the CGI feature
to install PHP in Chapter 6). Click OK. After you’ve done this, you can put your web
documents in your IIS document root, which is typically located at C:\inetpub
\wwwroot. Try this with the test.html file you created in Chapter 1; you should be able
to load that file by going to http://localhost/test.html in your browser.

You’ll probably need to authenticate each time you put files into that folder. To work
around this problem, you can either use the IIS Manager (Start→Control Panel→System
and Security→Administrative Tools) to add a new virtual directory in a folder you have
permissions to modify, or you can give yourself control of C:\inetpub\wwwroot (right-
click on the folder, choose Properties→Security, and then click Edit→Add, type your
username, click OK, then allow Full Control and click OK). If you want to connect to
your Windows web server, even over your local network, you’ll need to go into the
Control Panel→System and Security→Windows Firewall→Allow A Program or Feature
Through Windows Firewall and enable World Wide Web Services.

If you’d prefer to run Apache on Windows, check out a prepackaged solution such as
EasyPHP, or check out the Wikipedia page on this topic at http://en.wikipedia.org/wiki/
Comparison_of_WAMPs.

On some versions of Linux, such as Ubuntu, you will need to go through some addi-
tional steps to install and enable a web server. For example, on Ubuntu, you can install
Apache at the command line with sudo apt-get install apache2. Next, enable the user
directory module with sudo a2enmod userdir. Once that’s done, restart Apache with
this command: sudo /etc/init.d/apache2 restart. After you’ve done that, you can
create a directory called public_html in your home directory and access any files in there
with a URL such as http://local-hostname/~your-username.

14 | Chapter 2: Basic Styling

http://freepdf-books.com

http://10.0.1.29/~your-username/
http://10.0.1.29/~your-username/test.html
http://10.0.1.29/~your-username/test.html
http://localhost/test.html
http://www.easyphp.org/
http://en.wikipedia.org/wiki/Comparison_of_WAMPs
http://en.wikipedia.org/wiki/Comparison_of_WAMPs

First Steps
Theory is great, but I’m a “show me, don’t tell me” kinda guy, so let’s dive in.

Imagine you have a website that you want to “mobile-ize” (Figure 2-1). In this scenario,
there are a number of easy things you can do to optimize a site for Android. I’ll go over
your options in this chapter. Example 2-1 shows an abbreviated version of the website
shown in Figure 2-2. This is the HTML you’ll be working with in this chapter.

Figure 2-2 shows what the abbreviated version of the web page looks like on the An-
droid phone, and Figure 2-3 shows it on the desktop version of Chrome for comparison.
It’s usable, but far from optimized for Android.

If you’d like to try styling this example as you go through the chapter,
you can download the HTML and supporting files from this book’s
website (see “How to Contact Us” on page xii). The desktop stylesheet
(screen.css) is not shown as it is not essential, but you can use the style-
sheet from the previous chapter if you’d like to have something to play
with.

Figure 2-1. The desktop version of a typical website looks fine on a large screen

First Steps | 15

http://freepdf-books.com

Example 2-1. The HTML document we’ll be styling

<html>
<head>
 <link rel="stylesheet" href="screen.css" type="text/css" />
 <title>Jonathan Stark</title>
</head>
<body>
<div id="container">
 <div id="header">
 <h1>Jonathan Stark</h1>
 <div id="utility">

 About
 Blog
 Contact

 </div>
 <div id="nav">

 Consulting Clinic
 On Call
 Development
 O'Reilly Media, Inc.

 </div>
 </div>
 <div id="content">
 <h2>About</h2>
 <p>Jonathan Stark is a web developer, speaker, and author. His
 consulting firm, Jonathan Stark Consulting, Inc., has attracted
 clients such as Staples, Turner Broadcasting, and the PGA Tour.
 ...
 </p>
 </div>
 <div id="sidebar">
 <img alt="Manga Portrait of Jonathan Stark"
 src="jonathanstark-manga-small.png"/>
 <p>Jonathan Stark is a mobile and web application developer who the
 Wall Street Journal has called an expert on publishing desktop
 data to the web.</p>
 </div>
 <div id="footer">

 Services
 About
 Blog

 <p class="subtle">Jonathan Stark Consulting, Inc.</p>
 </div>
</div>
</body>
</html>

16 | Chapter 2: Basic Styling

http://freepdf-books.com

Figure 2-2. Desktop version of a typical website looks all right on an Android phone, but we can do
a lot better

First Steps | 17

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

Figure 2-3. Desktop version of the abbreviated web page in the Chrome browser

For years, web developers used tables to lay out elements in a grid. Ad-
vances in CSS and HTML have rendered that approach not only obso-
lete, but undesirable. Today, we primarily use the div element (along
with a variety of attributes) to accomplish the same thing, but with more
control. Although a complete explanation of div-based layouts is well
outside the scope of this book, you’ll see plenty of examples of it as you
read through the book. To learn more, please check out Designing with
Web Standards by Jeffrey Zeldman (New Rider Press), which covers the
issue in greater detail.

18 | Chapter 2: Basic Styling

http://freepdf-books.com

Prepare a Separate Android Stylesheet
I’m as DRY as the next guy but for the sake of clarity I’m going to make a clean break
between our desktop browser stylesheet and the Android stylesheet. This approach
goes against the concepts of Responsive Web Design, and may or may not make sense
for your web site (or web app) depending on a variety of factors. An in depth discussion
of Responsive Web Design is beyond the scope of this book, but if you’re working in
mobile, you should spend some time getting familiar with the concepts involved. The
definitive article was posted by Ethan Marcotte on A List Apart (http://www.alistapart
.com/articles/responsive-web-design/).

DRY stands for “don’t repeat yourself,” and is a software development
principle that states, “Every piece of knowledge must have a single, un-
ambiguous, authoritative representation within a system.” The term
was coined by Andrew Hunt and David Thomas in their book The
Pragmatic Programmer (Addison-Wesley Professional).

To specify a stylesheet specifically for Android (as well as any similarly small device
such as the iPhone or Windows Phone), replace the stylesheet link tag in the sample
HTML document with ones that use the following expressions:

<link rel="stylesheet" type="text/css"
 href="android.css" media="only screen and (max-width: 600px)" />
<link rel="stylesheet" type="text/css"
 href="desktop.css" media="screen and (min-width: 601px)" />

I specifically used max-width and min-width here so that you can resize
your desktop browser and see the mobile version of the page.

The Wireless Universal Resource File (WURFL) contains information
you can use to identify a huge number of wireless devices, including
Android devices. If you need to detect Android devices with a width
greater than 600px (such as a tablet) or if you don’t want the mobile
version of the site to appear when users resize their browser window
below 600px, you can use WURFL’s PHP API to precisely detect specific
browsers. See the Appendix for more information on WURFL.

Here, desktop.css refers to your existing desktop stylesheet, and android.css is a new file
that we’ll be discussing in detail in a bit. The desktop.css file is not essential, but you
can use the stylesheet from the previous chapter if you’d like.

First Steps | 19

http://freepdf-books.com

http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/

If you’re following along using the sample HTML document shown in
Example 2-1, you’ll need to rename screen.css to desktop.css, but since
we’re focused on the Android stylesheet, you can ignore the desktop
stylesheet completely. If it fails to load, your browser won’t get too
upset.

However, if you’d like to use Chrome to test the Android-optimized
version of the site, you should replace the reference to desktop.css with
a reference to android.css. That way, you’ll get to run the Android ver-
sion of your site whether you load it from a phone or the desktop
browser.

Regrettably, Internet Explorer will not understand these expressions, so we have to add
a conditional comment (shown in bold) that links to the desktop version of the CSS:

<link rel="stylesheet" type="text/css"
 href="android.css" media="only screen and (max-width: 600px)" />
<link rel="stylesheet" type="text/css"
 href="desktop.css" media="screen and (min-width: 601px)" />
<!--[if IE]>
<link rel="stylesheet" type="text/css" href="desktop.css" media="all" />
<![endif]-->

So now it’s time to edit the HTML document (if you haven’t already done that as you
were following along)—delete the existing link to the screen.css file, and replace it with
the lines just shown. This way, you will have a clean slate for the Android-specific CSS
in this chapter.

Control the Page Scaling
Unless you tell it otherwise, the Android browser will assume your page is 980px wide
(you can see this back in Figure 2-2). In the majority of cases, this works great. However,
you are going to format the content specifically for the smaller dimensions of the An-
droid phone, so you must let the mobile browser know about it by adding a viewport
meta tag to the head element of the HTML document:

<meta name="viewport" content="user-scalable=no, width=device-width" />

Desktop browsers will ignore the viewport meta tag, so you can include
it without worrying about the desktop version of your site.

Merely by suppressing the desktop stylesheet and configuring your viewport, you will
have already given your Android users an enhanced experience (see Figure 2-4). To
really impress them, let’s start building the android.css stylesheet.

20 | Chapter 2: Basic Styling

http://freepdf-books.com

If you don’t set the viewport width, the page will be zoomed out when
it first loads. It’s tough to say exactly what the zoom level will be because
the Android browser includes a setting that allows users to set the de-
fault zoom. The options are Far, Medium (the default), or Close. Even
if you do set the viewport width, these user-defined settings will affect
the zoom level of your app.

Figure 2-4. Setting the viewport to the width of the device makes your pages a lot more readable on
Android

First Steps | 21

http://freepdf-books.com

Adding the Android CSS
There are a number of UI conventions that make an Android app look like an Android
app. In the next section, we’ll add the distinctive title bar, lists with rounded corners,
finger-friendly links that look like glossy buttons, etc. With the text editor of your
choice, create a file named android.css and add the code shown in Example 2-2 to it,
then save the file in the same directory as your HTML document.

Example 2-2. Setting some general site-wide styles on the HTML body element

body {
 background-color: #ddd; /* Background color */
 color: #222; /* Foreground color used for text */
 font-family: Helvetica;
 font-size: 14px;
 margin: 0; /* Amount of negative space around the
 outside of the body */
 padding: 0; /* Amount of negative space around the
 inside of the body */
}

All text on Android is rendered using a custom font named Droid (as of
Android 4.0, Droid has been replaced by a new font, Roboto). The Droid
font family was specifically built for mobile devices, has excellent char-
acter set support, and contains three variants: Droid Sans, Droid Sans
Mono, and Droid Serif. Therefore, specifying a font family of Helvetica
as we’ve done here will only have an effect on devices other than
Android.

Now let’s attack the header div that contains the main home link (i.e., the logo link)
and the primary and secondary site navigation. The first step is to format the logo link
as a clickable title bar. Add the following to the android.css file:

#header h1 {
 margin: 0;
 padding: 0;
}
#header h1 a {
 background-color: #ccc;
 border-bottom: 1px solid #666;
 color: #222;
 display: block;
 font-size: 20px;
 font-weight: bold;
 padding: 10px 0;
 text-align: center;
 text-decoration: none;
}

22 | Chapter 2: Basic Styling

http://freepdf-books.com

We’ll format the primary and secondary navigation ul blocks identically, so we can just
use the generic tag selectors (i.e., #header ul) as opposed to the tag IDs (i.e., #header
ul#utility, #header ul#nav):

#header ul {
 list-style: none;
 margin: 10px;
 padding: 0;
}
#header ul li a {
 background-color: #FFFFFF;
 border: 1px solid #999999;
 color: #222222;
 display: block;
 font-size: 17px;
 font-weight: bold;
 margin-bottom: -1px;
 padding: 12px 10px;
 text-decoration: none;
}

Pretty simple so far, right? With this little bit of CSS, we have already made a big
improvement on the Android page design (Figure 2-5). Next, add some padding to the
content and sidebar divs to indent the text from the edge of the screen a bit (Figure 2-6):

#content, #sidebar {
 padding: 10px;
}

You might be wondering why we’re adding padding to the content and
sidebar elements instead of setting it globally on the body element itself.
The reason is that it’s very common to have elements displayed edge to
edge (as with the header in this example). Because of this, padding ap-
plied to the body or some other element that’s wrapped around lots of
others can become more trouble than it’s worth.

The content in the footer of this page is basically a rehash of the navigation element
(the ul element with the ID nav) at the top of the page, so you can remove the footer
from the Android version of the page by setting the display to none, as follows:

#footer {
 display: none;
}

Adding the Android CSS | 23

http://freepdf-books.com

Figure 2-5. A little bit of CSS can go a long way toward enhancing the usability of your Android app

24 | Chapter 2: Basic Styling

http://freepdf-books.com

Figure 2-6. Indenting text from the edges

Adding the Android CSS | 25

http://freepdf-books.com

Adding the Android Look and Feel
Time to get a little fancier. Starting from the top of the page, add a 1-pixel white drop
shadow to the header text and a CSS gradient to the background:

#header h1 a {
 text-shadow: 0px 1px 1px #fff;
 background-image: -webkit-gradient(linear, left top, left bottom,
 from(#ccc), to(#999));
}

In the text-shadow declaration, the parameters from left to right are: horizontal offset,
vertical offset, blur, and color. Most of the time, you’ll be applying the exact values
shown here to your text because that’s what usually looks good on Android, but it is
fun to experiment with text-shadow because it can add a subtle but sophisticated touch
to your design.

On most browsers, it’s fine to specify a blur radius of 0px. However,
Android requires you to specify a blur radius of at least 1px. If you
specify a blur of 0, the text shadow will not show up on Android devices.

The -webkit-gradient line deserves special attention. It’s an instruction to the browser
to generate a gradient image on the fly. Therefore, you can use a CSS gradient anywhere
you would normally specify a url() (e.g., background image, list style image). The
parameters from left to right are as follows: the gradient type (can be linear or
radial), the starting point of the gradient (can be left top, left bottom, right top, or
right bottom), the end point of the gradient, the starting color, and the ending color.

You cannot reverse the horizontal and vertical portions of the four gra-
dient start and stop point constants (i.e., left top, left bottom, right
top, or right bottom). In other words, top left, bottom left, top right,
and bottom right are invalid values.

The next step is to add the traditional rounded corners to the navigation menus:

#header ul li:first-child a {
 -webkit-border-top-left-radius: 8px;
 -webkit-border-top-right-radius: 8px;
}
#header ul li:last-child a {
 -webkit-border-bottom-left-radius: 8px;
 -webkit-border-bottom-right-radius: 8px;
}

As you can see, we’re using corner-specific versions of the -webkit-border-radius
property to apply an 8-pixel radius to both the top two corners of the first list item and
the bottom two corners of the last list item (Figure 2-7).

26 | Chapter 2: Basic Styling

http://freepdf-books.com

Figure 2-7. Gradients, text shadows, and rounded corners start to transform your web page into a
native-looking Android app

It would be cool if you could just apply the border radius to the enclosing ul, but it
doesn’t work. If you try it, you’ll see that the square corners of the child list items will
overflow the rounded corners of the ul, thereby negating the effect.

Technically, we could achieve the rounded list effect by applying the radius corners to
the ul, if we set the background color of the ul to white and set the background of its
child elements to transparent. However, when users click the first or last items in the

Adding the Android Look and Feel | 27

http://freepdf-books.com

list, the tap highlight will show up squared-off and it looks terrible. Your best bet is to
apply the rounding to the a tags themselves as I’ve demonstrated here.

The occurrences of :first-child and :last-child above are called
pseudoclasses. Pseudoclasses are a special type of CSS selector that allow
you to target elements that meet certain implicit contextual criteria. In
other words, you can style things based on characteristics—such as
where they are in a list, whether they have cursor focus, or if they have
been clicked—without having to manually update your markup. For
example, li:first-child will select the first li that is the child of its
ul parent. Without the code pseudoclass, we’d have to manually add a
class to the first li to let the browser know that it was the first one.

Adding Basic Behavior with jQuery
The next step is to add some JavaScript to the page to support some basic dynamic
behavior. In particular, we will allow users to show and hide the big honking navigation
section in the header so that they only see it when they want to. To make this work,
we’ll write some new CSS and use some JavaScript to apply the new CSS to the existing
HTML.

First, let’s take a look at the new CSS. Step 1 is to hide the ul elements in the header
so they don’t show up when the user first loads the page. If you are following along at
home, open your android.css file and add the following:

#header ul.hide {
 display: none;
}

This won’t actually hide anything until you add the hide class to the ul elements (you’ll
do this shortly with some JavaScript). Next, define the styles for the button that will
show and hide the menu. We haven’t created the HTML for the button yet. For your
information, it’s going to look like this:

<div class="leftButton" onclick="toggleMenu()">Menu</div>

I’ll describe the button HTML in detail in the section “Adding Basic Behavior with
jQuery” on page 30, so don’t add the preceding line of code to your HTML file. The
important thing to understand is that it’s a div with the class leftButton and it’s going
to be in the header.

Here is the CSS style for the button (you can go ahead and add this to the android.css
file):

#header div.leftButton {
 position: absolute;
 top: 7px;
 left: 6px;
 height: 30px;
 font-weight: bold;

28 | Chapter 2: Basic Styling

http://freepdf-books.com

 text-align: center;
 color: white;
 text-shadow: rgba (0,0,0,0.6) 0px -1px 1px;
 line-height: 28px;
 border-width: 0 8px 0 8px;
 -webkit-border-image: url(images/button.png) 0 8 0 8;
}

For the graphics used in this chapter, you can download the example
files from the book’s catalog page (see the section “How to Contact
Us” on page xii) and copy them from the images directory. Put these
copies into an images subdirectory beneath the directory that contains
your HTML document (you’ll probably need to create the images di-
rectory). We’ll be talking about jQTouch in detail in Chapter 4.

Taking it from the top, set the position to absolute to remove the div from the
document flow. This allows you to set its top and left pixel coordinates.

Set the height to 30px so it’s big enough to tap easily.

Style the text bold, white with a slight drop shadow, and centered in the box.

In CSS, the rgb function is an alternative to the familiar hex notation typically used
to specify colors (e.g., #FFFFFF). rgb(255, 255, 255) and rgb(100%, 100%, 100%) are
both the same as #FFFFFF. More recently, the rgba() function has been introduced,
which allows you to specify a fourth parameter that defines the alpha value (i.e.,
opacity) of the color. The range of allowable values is 0 to 1, where 0 is fully trans-
parent and 1 is fully opaque; decimal values between 0 and 1 will be rendered
translucent.

The line-height declaration moves the text down vertically in the box so it’s not
flush against the top border.

The border-width and -webkit-border-image lines require a bit of explanation. These
two properties together allow you to assign portions of a single image to the border
area of an element. If the box resizes because the text increases or decreases, the
border image will stretch to accommodate it. It’s really a great thing because it means
fewer images, less work, less bandwidth, and shorter load times.

The border-width line tells the browser to apply a 0 width border to the top, an 8px
border to the right, a 0 width border to the bottom, and an 8px width border to the
left (i.e., the four parameters start at the top of the box and work their way around
clockwise). You don’t need to specify a color or style for the border.

With the border widths in place, you can apply the border image. The five param-
eters from left to right are: the URL of the image, the top width, the right width, the
bottom width, and the left width (again, clockwise from top). The URL can be ab-
solute (http://example.com/myBorderImage.png) or relative. Relative paths are based
on the location of the stylesheet, not the HTML page that includes the stylesheet.

Adding Basic Behavior with jQuery | 29

http://freepdf-books.com

When I first encountered the border-image property, I found it odd
that I had to specify the border widths when I had already done so
with the border-width property. After some painful trial and error, I
discovered that the widths in the border-image property are not bor-
der widths; they are the widths to slice from the image. Taking the
right border as an example, I’m telling the browser to take the left
8px of the image and apply them to the right border, which also
happens to have an 8px width.

It is possible to do something irrational such as applying the right 4
pixels of an image to a border that is 20px wide. To make this work
properly, you have to use the optional parameters of webkit-border-
image that instruct the image what to do with the slice in the available
border space (repeat, stretch, round, etc.). In three years of trying, I
have failed to come up with any sane reason to do this, so I won’t
waste space here describing this confusing and impractical option of
an otherwise killer feature.

Okay, time for some JavaScript. In preparation for the JavaScript you’re about to write,
you need to update your HTML document to include jquery.js and android.js. Add
these lines to the head section of your HTML document:

<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="android.js"></script>

jQuery downloads, documentation, and tutorials are available at http:
//jquery.com. To use jQuery, you will need to download it from there,
rename the file you downloaded (such as jquery-1.7.1.min.js) to
jquery.js, and put a copy of it in the same directory as your HTML
document.

The primary duty of the JavaScript in android.js is to allow users to show and hide the
nav menus. Copy the following JavaScript into a file called android.js and save it in the
same folder as the HTML file:

if (window.innerWidth && window.innerWidth <= 600) {
 $(document).ready(function(){
 $('#header ul').addClass('hide');
 $('#header').append(
 '<div class="leftButton" onclick="toggleMenu()">Menu</div>');
 });
 function toggleMenu() {
 $('#header ul').toggleClass('hide');
 $('#header .leftButton').toggleClass('pressed');
 }
}

30 | Chapter 2: Basic Styling

http://freepdf-books.com

http://jquery.com
http://jquery.com

The entire block of code is wrapped in an if statement that checks to make sure the
innerWidth property of the window object exists (it doesn’t exist in some versions of
Internet Explorer) and that the width is less than or equal to 600px (a reasonable
maximum width for the most phones). By adding this line, we ensure that the code
executes only when the user is browsing the page with a typical Android phone or
some other similarly sized device.

If you are testing your Android web pages using the desktop version
of Chrome as described in “Don’t Have a Website?” on page 13, the
if statement here will evaluate to false if your browser’s window
width is too large. Manually resize your window to be as narrow as
possible and refresh the page.

Here we have the so-called document ready function. If you are new to jQuery, this
can be a bit intimidating, and I admit that it took me a while to memorize the syntax.
However, it’s worth taking the time to commit it to memory, because you’ll be using
it a lot. The document ready function basically says, “When the document is ready,
run this code.” More on why this is important in a sec.

This is typical jQuery code that begins by selecting the uls in the header and adding
the hide CSS class to them. Remember, hide is the selector we used in the CSS above.
The net effect of executing this line is to, well, “hide” the header ul elements.

Had we not wrapped this line in the document ready function, it
would have most likely executed before the uls were even finished
loading. This means the JavaScript would load, and this line would
fail because the uls wouldn’t exist yet. Then, the page would con-
tinue loading, the uls would appear, and you’d be scratching your
head (or smashing your keyboard), wondering why the JavaScript
wasn’t working.

Here is where we append a button to the header that will allow the user to show and
hide the menu (Figure 2-8). It has a class that corresponds to the CSS we wrote
previously for .leftButton, and it has an onclick handler that calls the function
toggleMenu() that comes next.

The toggleMenu()function uses jQuery’s toggleClass() function to add or remove
the specified class to the selected object. On this line, we toggle the hide class on the
header uls.

Here, we toggle the pressed class on the header leftButton.

Come to think of it, we haven’t written the CSS for the pressed class yet, so let’s do so
now. Go back to android.css and insert the following:

#header div.pressed {
 -webkit-border-image: url(images/button_clicked.png) 0 8 0 8;
}

Adding Basic Behavior with jQuery | 31

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

Figure 2-8. The Menu button has been added to the toolbar dynamically using jQuery

As you can see, we’re simply specifying a different image for the button border (it
happens to be slightly darker). This will add a two-state effect to the button that should
make it evident to the user that the button can both show and hide the menu (see
Figure 2-9). Figure 2-10 shows a stretched-out view of the page showing both the menu
and some of the text.

32 | Chapter 2: Basic Styling

http://freepdf-books.com

What You’ve Learned
In this chapter, we covered the basics of converting an existing web page to a more
Android-friendly format. We even used a bit of dynamic HTML to show and hide the
navigation panels. In the next chapter, we’ll build on these examples while exploring
some more advanced JavaScript concepts; in particular, some yummy Ajax goodness.

Figure 2-9. The Menu button displays darker when it has been pressed

What You’ve Learned | 33

http://freepdf-books.com

Figure 2-10. A tall view of the completed basic Android CSS

34 | Chapter 2: Basic Styling

http://freepdf-books.com

CHAPTER 3

Advanced Styling

In our quest to build an Android app without Java, we’ve discussed how to use CSS to
style a collection of HTML pages to look like an Android app. In this chapter, we’ll lay
the groundwork to make those same pages behave like an Android app. Specifically,
we’ll discuss:

• Using Ajax to turn a full website into a single-page app.

• Creating a Back button with history using JavaScript.

• Saving the app as an icon on the home screen.

Adding a Touch of Ajax
The term Ajax (Asynchronous JavaScript and XML) has become such a buzzword that
I’m not even sure I know what it means anymore. For the purposes of this book, I’m
going to use the term Ajax to refer to the technique of using JavaScript to send requests
to a web server without reloading the current page (e.g., to retrieve some HTML, submit
a form). This approach makes for a very smooth user experience, but does require that
you reinvent a lot of wheels.

For example, if you are loading external pages dynamically, the browser will not give
any indication of progress or errors to the users. Furthermore, the Back button will not
work as expected unless you take pains to support it. In other words, you have to do a
lot of work to make a sweet Ajax app. That said, the extra effort can really pay off,
because Ajax allows you to create a much richer user experience.

35

http://freepdf-books.com

Traffic Cop
For the next series of examples, we’ll write a single page called android.html that will
sit in front of all the site’s other pages. Here’s how it works:

1. On first load, android.html will present the user with a nicely formatted version of
the site navigation.

2. We’ll then use jQuery to “hijack” the onclick actions of the nav links, so when the
user clicks a link, the browser page will not navigate to the target link. Rather,
jQuery will load a portion of the HTML from the remote page and deliver the data
to the user by updating the current page.

We’ll start with the most basic functional version of the code and improve it as we go
along. If you’ve still got example files hanging around from Chapter 2, either move
them out of the way or set up a new empty subdirectory on your web server to work
in as you make your way through this chapter.

The HTML for the android.html wrapper page is extremely simple (see Example 3-1).
In the head section, set the title and viewport options and include links to a stylesheet
(android.css) and two JavaScript files: jquery.js and a custom JavaScript file named
android.js.

You must put a copy of jquery.js in the same directory as the HTML file.
For more information on where to get jquery.js and what to do with it,
see “Introduction to JavaScript” on page 11. You should do this now
before proceeding further.

The body has just two div containers: a header with the initial title in an h1 tag and an
empty div container, which will end up holding HTML snippets retrieved from other
pages.

Example 3-1. This simple HTML wrapper markup will sit in front of the rest of the site’s pages

<html>
<head>
 <title>Jonathan Stark</title>
 <meta name="viewport" content="user-scalable=no, width=device-width" />
 <link rel="stylesheet" href="android.css" type="text/css" media="screen" />
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript" src="android.js"></script>
</head>
<body>
 <div id="header"><h1>Jonathan Stark</h1></div>
 <div id="container"></div>
</body>
</html>

36 | Chapter 3: Advanced Styling

http://freepdf-books.com

Let’s move on to the android.css file. As you can see in Example 3-2, we’re going to
shuffle some of the properties from previous examples in Chapter 2 (e.g., some of the
#header h1 properties have been moved up to #header), but overall everything should
look familiar (if not, please review Chapter 2).

Example 3-2. The base CSS for the page is just a slightly shuffled version of previous examples

body {
 background-color: #ddd;
 color: #222;
 font-family: Helvetica;
 font-size: 14px;
 margin: 0;
 padding: 0;
}
#header {
 background-color: #ccc;
 background-image: -webkit-gradient(linear, left top, left bottom,
 from(#ccc), to(#999));
 border-color: #666;
 border-style: solid;
 border-width: 0 0 1px 0;
}
#header h1 {
 color: #222;
 font-size: 20px;
 font-weight: bold;
 margin: 0 auto;
 padding: 10px 0;
 text-align: center;
 text-shadow: 0px 1px 1px #fff;
}
ul {
 list-style: none;
 margin: 10px;
 padding: 0;
}
ul li a {
 background-color: #FFF;
 border: 1px solid #999;
 color: #222;
 display: block;
 font-size: 17px;
 font-weight: bold;
 margin-bottom: -1px;
 padding: 12px 10px;
 text-decoration: none;
}
ul li:first-child a {
 -webkit-border-top-left-radius: 8px;
 -webkit-border-top-right-radius: 8px;
}
ul li:last-child a {
 -webkit-border-bottom-left-radius: 8px;
 -webkit-border-bottom-right-radius: 8px;

Traffic Cop | 37

http://freepdf-books.com

}
ul li a:active,ul li a:hover {
 background-color:blue;
 color:white;
}
#content {
 padding: 10px;
 text-shadow: 0px 1px 1px #fff;
}
#content a {
 color: blue;
}

Setting Up Some Content to Work With
This JavaScript loads a document called index.html, and will not work without it. Before
you proceed, copy the HTML file from Example 2-1 into the same directory as an-
droid.html, and rename it index.html. However, none of the links in it will work unless
the targets of the links actually exist. You can create these files yourself or download
the example code from this book’s website (see “How to Contact Us” on page xii).

If you want a few functioning links to play with, you can create
about.html, blog.html, and consulting-clinic.html. To do so, just dupli-
cate index.html a few times and change the filename of each copy to
match the related link. For added effect, you can change the content of
the h2 tag in each file to match the filename. For example, the h2 in
blog.html would be <h2>Blog</h2>.

At this point, you should have the following files in your working directory:

android.html
You created this in Example 3-1.

android.css
You created this in Example 3-2.

index.html
A copy of the HTML file from Example 2-1.

about.html
A copy of index.html, with the h2 set to “About”.

blog.html
A copy of index.html, with the h2 set to “Blog”.

consulting-clinic.html
A copy of index.html, with the h2 set to “Consulting Clinic”.

38 | Chapter 3: Advanced Styling

http://freepdf-books.com

Routing Requests with JavaScript
The JavaScript in android.js is where all the magic happens in this example. Create this
file in the same directory as your android.html file. Please refer to Example 3-3 as we
go through it line by line.

Example 3-3. This bit of JavaScript in android.js converts the links on the page to Ajax requests

$(document).ready(function(){
 loadPage();
});
function loadPage(url) {
 if (url == undefined) {
 $('#container').load('index.html #header ul', hijackLinks);
 } else {
 $('#container').load(url + ' #content', hijackLinks);
 }
}
function hijackLinks() {
 $('#container a').click(function(e){
 e.preventDefault();
 loadPage(e.target.href);
 });
}

Here we’re using jQuery’s document ready function to have the browser run the
loadPage() function when the browser has finished constructing the page.

The loadPage() function accepts a single parameter called url and then checks (on
the next line) whether a value has been sent.

If a value is not sent into the function (as will be the case when it is called for the
first time from the document ready function), url will be undefined and this line will
execute. This line and the following are examples of jQuery’s load() function. The
load() function is excellent for adding quick and dirty Ajax functionality to a page.
If this line were translated into English, it would read, “Get all of the ul elements
from the #header element of index.html and insert them into the #container element
of the current page. When you’re done, run the hijackLinks() function.”

index.html refers to the home page of the site. If your home page is
named differently, you’d use that filename here instead. If you’ve
been following the instructions in this chapter exactly, you used
index.html.

This line is executed if the url parameter has a value. It says, in effect, “Get the
#content element from the url that was passed into the loadPage() function and
insert it into the #container element of the current page. When you’re done, run the
hijackLinks() function.”

Traffic Cop | 39

http://freepdf-books.com

Once the load() function has completed, the #container element of the current
page will contain the HTML snippet that was retrieved. Then, load() will run the
hijackLinks() function.

On this line, hijackLinks() finds all of the links in that new snippet of HTML and
binds a click handler to them using the lines of code that follow. Click handlers are
automatically passed an event object, which we’re capturing as the function param-
eter e. The event object of a clicked link contains the URL of the remote page in
e.target.href.

Normally, a web browser will navigate to a new page when the user clicks a link.
This navigation response is called the default behavior of the link. Since we are han-
dling clicks and loading pages through JavaScript, we need to prevent this default
behavior. On this line, which (along with the next line) is triggered when a user clicks
one of the links, call the built-in preventDefault() method of the event object. If we
leave that line out, the browser will dutifully leave the current page and navigate to
the URL of clicked link.

When the user clicks, pass the URL of the remote page to the loadPage() function,
and the cycle starts all over again.

One of my favorite things about JavaScript is that you can pass a func-
tion as a parameter to another function. Although this looks weird at
first, it’s extremely powerful and allows you to make your code modular
and reusable. If you’d like to learn more, you should check out Java-
Script: The Good Parts by Douglas Crockford (O’Reilly). In fact, if you
are working with JavaScript, you should check out everything by Doug-
las Crockford; you’ll be glad you did.

Click handlers do not run when the page first loads; they run when the user actually
clicks a link. Assigning click handlers is like setting booby traps; you do some initial
setup work for something that may or may not be triggered later.

It’s worth taking a few minutes to read up on the properties of the event
object that JavaScript creates in response to user actions in the browser.
A good reference is located at http://www.w3schools.com/htmldom/dom
_obj_event.asp.

When testing the code in this chapter, be sure you point your browser at the an-
droid.html page. Web servers will typically default to displaying index.html if you just
navigate to the directory that the files are in. Normally this is helpful, but in this case
it will cause a problem.

40 | Chapter 3: Advanced Styling

http://freepdf-books.com

http://oreilly.com/catalog/9780596517748
http://oreilly.com/catalog/9780596517748
http://www.w3schools.com/htmldom/dom_obj_event.asp
http://www.w3schools.com/htmldom/dom_obj_event.asp

Simple Bells and Whistles
With this tiny bit of HTML, CSS, and JavaScript, we have essentially turned an entire
website into a single-page application. However, it still leaves quite a bit to be desired.
Let’s slick things up a bit.

Progress Indicator
Since we are not allowing the browser to navigate from page to page, the user will not
see any indication of progress while data is loading. We need to provide some feedback
to users to let them know that something is, in fact, happening (Figure 3-1). Without
this feedback, users may wonder if they actually clicked the link or missed it, and will
often start clicking all over the place in frustration. This can lead to increased server
load and application instability (i.e., crashing).

Figure 3-1. Without a progress indicator of some kind, your app will seem unresponsive and your
users will get frustrated

Simple Bells and Whistles | 41

http://freepdf-books.com

Thanks to jQuery, providing a progress indicator only takes two lines of code. We’ll
just append a loading div to the body when loadPage() starts and remove the loading
div when hijackLinks() is done. Example 3-4 shows a modified version of Exam-
ple 3-3. The lines you need to add to android.js are shown in bold.

Example 3-4. Adding a simple progress indicator to the page

$(document).ready(function(){
 loadPage();
});
function loadPage(url) {
 $('body').append('<div id="progress">Loading...</div>');
 if (url == undefined) {
 $('#container').load('index.html #header ul', hijackLinks);
 } else {
 $('#container').load(url + ' #content', hijackLinks);
 }
}
function hijackLinks() {
 $('#container a').click(function(e){
 e.preventDefault();
 loadPage(e.target.href);
 });
 $('#progress').remove();
}

See Example 3-5 for the CSS you need to add to android.css to style the progress div.

Example 3-5. CSS added to android.css used to style the progress indicator

#progress {
 -webkit-border-radius: 10px;
 background-color: rgba(0,0,0,.7);
 color: white;
 font-size: 18px;
 font-weight: bold;
 height: 80px;
 left: 60px;
 line-height: 80px;
 margin: 0 auto;
 position: absolute;
 text-align: center;
 top: 120px;
 width: 200px;
}

42 | Chapter 3: Advanced Styling

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

Simulating Real-World Network Performance
If you are testing this web application on a local network, the network speeds will be
so fast you won’t ever see the progress indicator. If you are running your server on Mac
OS X, you can slow all incoming web traffic by typing a couple of ipfw commands at
the terminal. For example, these commands will slow all web traffic to 1 kilobyte per
second:

sudo ipfw pipe 1 config bw 1KByte/s
sudo ipfw add 100 pipe 1 tcp from any to me 80

You should use your computer’s hostname or external IP address in the URL (for ex-
ample, mycomputer.local rather than localhost). When you’re done testing, delete the
rule with sudo ipfw delete 100 (you can delete all custom rules with ipfw flush).

If you are using IIS on Windows, you can install the Bit Rate Throttling Media Services
extension from http://www.iis.net/download/BitRateThrottling. Open the IIS Manager,
select your web site, and double-click Bit Rate Throttling under the Media Services
group. Using the list of actions on the right, add a throttle setting for the HTML MIME
type (text/html) and set it to something slow (1 kbps is good). Enable Bit Rate Throt-
tling, and your pages should be loading very slowly now. Don’t forget to disable Bit
Rate Throttling when you’re done testing!

You can do similar things on Linux as well. For more information, check out the fol-
lowing links:

• http://linux-ip.net/articles/Traffic-Control-HOWTO/classless-qdiscs.html

• http://lartc.org/howto/lartc.ratelimit.single.html

But if all you want to do is to delay the JavaScript execution so the “Loading” message
appears onscreen as long as possible, you can add the following lines of code to the top
of the hijackLinks() function:

var stopTime = new Date().getTime() + 5000;
while (new Date().getTime() < stopTime);

This is not the right way to delay the execution of something in JavaScript—you should
use JavaScript’s setTimeout function for that—but this sure is a good way to make sure
your JavaScript freezes and does nothing (except eat up your device’s CPU) during this
time. So be sure to take those lines of code out as soon as you can, or you’ll be cursing
the day you ever typed them in.

Simple Bells and Whistles | 43

http://freepdf-books.com

http://www.iis.net/download/BitRateThrottling
http://linux-ip.net/articles/Traffic-Control-HOWTO/classless-qdiscs.html
http://lartc.org/howto/lartc.ratelimit.single.html

Setting the Page Title
Our site happens to have a single h2 at the beginning of each page that would make a
nice page title (see Figure 3-2). You can see this in the HTML source shown in Chap-
ter 2. To be more mobile-friendly, we’ll pull that title out of the content and put it in
the header (see Figure 3-3). Again, jQuery to the rescue: you can just add three lines to
the hijackLinks() function to make it happen. Example 3-6 shows the hijackLinks
function with these changes.

Figure 3-2. Before moving the page heading to the toolbar…

44 | Chapter 3: Advanced Styling

http://freepdf-books.com

Figure 3-3. …and after moving the page heading to the toolbar

Example 3-6. Using the h2 from the target page as the toolbar title

function hijackLinks() {
 $('#container a').click(function(e){
 e.preventDefault();
 loadPage(e.target.href);
 });
 var title = $('h2').html() || 'Hello!';
 $('h1').html(title);
 $('h2').remove();
 $('#progress').remove();
}

Simple Bells and Whistles | 45

http://freepdf-books.com

I added the title lines before the line that removes the progress indicator.
I like to remove the progress indicator as the very last action because I
think it makes the application feel more responsive.

The double pipe (||) in the first line of inserted code (shown in bold) is the JavaScript
logical operator OR. Translated into English, that line reads, “Set the title variable to
the HTML contents of the h2 element, or to the string ‘Hello!’ if there is no h2 element.”
This is important because the first page load won’t contain an h2 because we are just
grabbing the nav uls.

This point probably needs some clarification. When users first load the
android.html URL, they are only going to see the overall site navigation
elements, as opposed to any site content. They won’t see any site content
until they tap a link on this initial navigation page.

Handling Long Titles
Suppose we had a page on our site with a title too long to fit in the header bar (Fig-
ure 3-4). We could just let the text break onto more than one line, but that would not
be very attractive. Instead, we can update the #header h1 styles such that long text will
be truncated with a trailing ellipsis (see Figure 3-5 and Example 3-7). This might be my
favorite little-known CSS trick.

Example 3-7. Adding an ellipsis to text that is too long for its container

#header h1 {
 color: #222;
 font-size: 20px;
 font-weight: bold;
 margin: 0 auto;
 padding: 10px 0;
 text-align: center;
 text-shadow: 0px 1px 1px #fff;
 max-width: 160px;
 overflow: hidden;
 white-space: nowrap;
 text-overflow: ellipsis;
}

Here’s the rundown: max-width: 160px instructs the browser not to allow the h1 element
to grow wider than 160px. Then, overflow: hidden instructs the browser to chop off
any content that extends outside the element borders. Next, white-space: nowrap pre-
vents the browser from breaking the line into two. Without this line, the h1 would
just get taller to accommodate the text at the defined width. Finally, text-overflow:
ellipsis appends three dots to the end of any chopped-off text to indicate to the user
that she is not seeing the entire string.

46 | Chapter 3: Advanced Styling

http://freepdf-books.com

Automatic Scroll-to-Top
Let’s say you have a page that is longer than the viewable area on the phone. The user
visits the page, scrolls down to the bottom, and clicks on a link to an even longer page.
In this case, the new page will show up “prescrolled” instead of at the top as you’d
expect.

Technically, this makes sense because we are not actually leaving the current (scrolled)
page, but it’s certainly a confusing situation for the user. To rectify the situation, we
can add a scrollTo() command to the loadPage() function (Example 3-8).

Figure 3-4. Text wrapping in the toolbar is not very attractive…

Simple Bells and Whistles | 47

http://freepdf-books.com

Whenever a user clicks a link, the page will first jump to the top. This has the added
benefit of ensuring the loading graphic is visible if the user clicks a link at the bottom
of a long page.

Example 3-8. It’s a good idea to scroll back to the top when a user navigates to a new page

function loadPage(url) {
 $('body').append('<div id="progress">Loading...</div>');
 scrollTo(0,0);

Figure 3-5. …but we can beautify it with a CSS ellipsis

48 | Chapter 3: Advanced Styling

http://freepdf-books.com

 if (url == undefined) {
 $('#container').load('index.html #header ul', hijackLinks);
 } else {
 $('#container').load(url + ' #content', hijackLinks);
 }
}

Hijacking Local Links Only
Like most sites, ours has links to external pages (i.e., pages hosted on other domains).
We shouldn’t hijack these external links, because it wouldn’t make sense to inject their
HTML into our Android-specific layout. As shown in Example 3-9, we can add a con-
ditional that checks the destination URL to see if it matches the domain name that the
page was loaded from. If it matches, the link is hijacked and the content is loaded into
the current page (i.e., Ajax is in effect). If not, the browser will navigate to the URL
normally.

Example 3-9. You can allow external pages to load normally by checking the domain name of the URL

function hijackLinks() {
 $('#container a').click(function(e){
 var url = e.target.href;
 if (url.match(window.location.hostname)) {
 e.preventDefault();
 loadPage(url);
 }
 });
 var title = $('h2').html() || 'Hello!';
 $('h1').html(title);
 $('h2').remove();
 $('#progress').remove();
}

The url.match function uses a language, regular expressions, that is
often embedded within other programming languages such as Java-
Script, PHP, and Perl. Although this regular expression is simple, more
complex expressions can be a bit intimidating, but are well worth be-
coming familiar with. My favorite regex page is located at http://www
.regular-expressions.info/javascriptexample.html.

Roll Your Own Back Button
The elephant in the room at this point is that the user has no way to navigate back to
previous pages (remember that we’ve hijacked all the links, so the browser page history
won’t work). Let’s address that by adding a Back button to the top left corner of the
screen. First, we’ll update the JavaScript, and then we’ll do the CSS.

Simple Bells and Whistles | 49

http://freepdf-books.com

http://www.regular-expressions.info/javascriptexample.html
http://www.regular-expressions.info/javascriptexample.html

Adding a standard toolbar Back button to the app means keeping track of the user’s
click history. To do this, we’ll have to:

• Store the URL of the previous page so we know where to go back to

• Store the title of the previous page so we know what label to put on the Back button

Adding this feature touches on most of the JavaScript we’ve written so far in this chap-
ter, so I’ll go over the entire new version of android.js line by line (see Example 3-10),
and then show you the CSS you need to support it. The result will look like Figure 3-6.

Example 3-10. Expanding the existing JavaScript example to include support for a Back button

 var hist = [];
 var startUrl = 'index.html';
 $(document).ready(function(){
 loadPage(startUrl);
 });
 function loadPage(url) {
 $('body').append('<div id="progress">Loading...</div>');
 scrollTo(0,0);
 if (url == startUrl) {
 var element = ' #header ul';
 } else {
 var element = ' #content';
 }
 $('#container').load(url + element, function(){
 var title = $('h2').html() || 'Hello!';
 $('h1').html(title);
 $('h2').remove();
 $('.leftButton').remove();
 hist.unshift({'url':url, 'title':title});
 if (hist.length > 1) {
 $('#header').append('<div class="leftButton">'+hist[1].title+'</div>');
 $('#header .leftButton').click(function(){
 var thisPage = hist.shift();
 var previousPage = hist.shift();
 loadPage(previousPage.url);
 });
 }
 $('#container a').click(function(e){
 var url = e.target.href;
 if (url.match(window.location.hostname)) {
 e.preventDefault();
 loadPage(url);
 }
 });
 $('#progress').remove();
 });
}

This line initializes a variable named hist as an empty array. Since it is defined
outside of any functions, it exists in the global scope and will be available everywhere
in the page. Notice that it doesn’t use the full word history as the variable name,

50 | Chapter 3: Advanced Styling

http://freepdf-books.com

because that is a predefined object property in JavaScript and you should avoid it in
your own code.

This line defines the relative URL of the remote page to load when the user first visits
android.html. You might recall that earlier examples checked for url == undefined
to handle the first page load, but in this example we are using the start page in a few
places. Therefore, it makes sense to define it globally.

This line and the next make up the document ready function definition. Unlike pre-
vious examples, we’re passing the start page to the loadPage() function.

On to the loadPage() function. This line and the next are verbatim from previous
examples.

This if...else statement determines which elements to load from the remote page.
For example, if we want the start page, we grab the uls from the header; otherwise,
we grab the content div.

On this line, the url parameter and the appropriate source element are concatenated
as the first parameter passed to the load function. As for the second parameter, we’re
passing an anonymous function (an unnamed function that is defined inline) directly.
As we go through the anonymous function, you’ll notice a strong resemblance to
the hijackLinks() function, which has been replaced by this anonymous function.
For example, the following three lines are identical to previous examples.

On this line, we remove the .leftButton object from the page. This might seem weird
because we haven’t yet added it to the page; we’ll be adding it a couple steps down.

Here we use the built-in unshift method of the JavaScript array to add an object to
the beginning of the hist array. The object has two properties: url and title—the
two pieces of information we need to support the Back button display and behavior.

This line includes the built-in length method of the JavaScript array to find out how
many objects are in the history array. If there is only one object in the history array,
it means the user is on the first page. Therefore, we don’t need to display a Back
button. However, if there is more than one object in the hist array, we need to add
a button to the header.

This line adds the .leftButton I mentioned above. The text of the button will be the
same as the title of the page before the current page, which is what we’re accessing
with the hist[1].title code. JavaScript arrays are zero-based, so the first item in
the array (the current page) has an index of 0. In other words, index 0 is the current
page, index 1 is the previous page, index 2 is the page before that, and so on.

This block of code binds an anonymous function to the click handler of the Back
button. Remember, click handler code executes when the user clicks, not when the
page loads. So, after the page loads and the user clicks to go back, the code inside
this function will run.

Simple Bells and Whistles | 51

http://freepdf-books.com

This line and the next use the built-in shift method of the array to remove the first
two items from the hist array, then the last line in the function sends the URL of
the previous page to the loadPage() function.

The remaining lines were copied exactly from previous examples, so I won’t rehash
them here.

This is the URL-matching code introduced earlier in this chapter.

Please go visit http://www.hunlock.com/blogs/Mastering_Javascript_Ar
rays for a full listing of JavaScript array functions with descriptions and
examples.

Figure 3-6. It wouldn’t be a mobile app without a glossy, left-arrow Back button

52 | Chapter 3: Advanced Styling

http://freepdf-books.com

http://www.hunlock.com/blogs/Mastering_Javascript_Arrays
http://www.hunlock.com/blogs/Mastering_Javascript_Arrays

Now that we have our Back button, all that remains is to purty it up with some CSS
(see Example 3-11). We’ll start off by styling the text with font-weight, text-align,
line-height, color, and text-shadow. We’ll continue by placing the div precisely where
we want it on the page with position, top, and left. Then, we’ll make sure that long
text on the button label will truncate with an ellipsis using max-width, white-space,
overflow, and text-overflow. Finally, we’ll apply a graphic with border-width and
-webkit-border-image. Unlike the earlier border image example, this image has a dif-
ferent width for the left and right borders because the image is made asymmetrical by
the arrowhead on the left side.

Don’t forget that you’ll need an image for this button. You’ll need to
save it as back_button.png in the images folder underneath the folder
that holds your HTML file. See “Adding Basic Behavior with
jQuery” on page 29 for tips on finding or creating your own button
images.

Example 3-11. Add the following to android.css to beautify the Back button with a border image

#header div.leftButton {
 font-weight: bold;
 text-align: center;
 line-height: 28px;
 color: white;
 text-shadow: 0px -1px 1px rgba(0,0,0,0.6);
 position: absolute;
 top: 7px;
 left: 6px;
 max-width: 50px;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 border-width: 0 8px 0 14px;
 -webkit-border-image: url(images/back_button.png) 0 8 0 14;
}

By default, Android displays an orange highlight on clickable objects that have been
tapped (Figure 3-7). This may appear only briefly, but removing it is easy and makes
the app look much better. Fortunately, Android supports a CSS property called
-webkit-tap-highlight-color, which allows you to suppress this behavior. We can do
this here by setting the tap highlight to a fully transparent color (see Example 3-12).

Example 3-12. Add the following to android.css to remove the default tap highlight effect

#header div.leftButton {
 font-weight: bold;
 text-align: center;
 line-height: 28px;
 color: white;
 text-shadow: 0px -1px 1px rgba(0,0,0,0.6);

Simple Bells and Whistles | 53

http://freepdf-books.com

 position: absolute;
 top: 7px;
 left: 6px;
 max-width: 50px;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 border-width: 0 8px 0 14px;
 -webkit-border-image: url(images/back_button.png) 0 8 0 14;
 -webkit-tap-highlight-color: rgba(0,0,0,0);
}

Figure 3-7. By default, Android displays an orange highlight to clickable objects that have been tapped

54 | Chapter 3: Advanced Styling

http://freepdf-books.com

In the case of the Back button, there could be at least a second or two of delay before
the content from the previous page appears. To avoid frustration, we can configure the
button to look clicked the instant it’s tapped. In a desktop browser, this is a simple
process: you just add a declaration to your CSS using the :active pseudoclass to specify
an alternate style for the object that the user clicked. I don’t know if it’s a bug or a
feature, but this approach does not work on Android; the :active style is ignored.

I toyed around with combinations of :active and :hover, which brought me some
success with non-Ajax apps. However, with an Ajax app like the one we are using here,
the :hover style is sticky (i.e., the button appears to remain “clicked” even after the
finger is removed).

Fortunately, the fix is pretty simple—use jQuery to add the class clicked to the button
when the user taps it. I’ve opted to apply a darker version of the button image to the
button in the example (see Figure 3-8 and Example 3-13). You’ll need to make sure
you have a button image called back_button_clicked.png in the images subfolder. See
“Adding Basic Behavior with jQuery” on page 29 for tips on finding or creating your
own button images.

Example 3-13. Add the following to android.css to make the Back button looked clicked when the
user taps it

#header div.leftButton.clicked {
 -webkit-border-image: url(images/back_button_clicked.png) 0 8 0 14;
}

Since we’re using an image for the clicked style, it would be smart to
preload the image. Otherwise, the unclicked button graphic will disap-
pear the first time it’s tapped while the clicked graphic downloads. I’ll
cover image preloading in the next chapter.

With the CSS in place, we can now update the portion of the android.js that assigns the
click handler to the Back button. First, we add a variable, e, to the anonymous function
to capture the incoming click event. Then, we wrap the event target in a jQuery selector
and call jQuery’s addClass() function to assign the clicked CSS class to the button:

$('#header .leftButton').click(function(e){
 $(e.target).addClass('clicked');
 var thisPage = hist.shift();
 var previousPage = hist.shift();
 loadPage(lastUrl.url);
});

A special note to any CSS gurus in the crowd: the CSS Sprite technique—
popularized by A List Apart—is not an option in this case because it
requires setting offsets for the image. The -webkit-border-image prop-
erty does not support image offsets.

Simple Bells and Whistles | 55

http://freepdf-books.com

Adding an Icon to the Home Screen
Hopefully, users will want to add an icon for your web app to their home screens (this
is called a “launcher icon”). They do this by bookmarking your app and adding a
bookmark shortcut to their home screens. This is the same process they use to add any
bookmark to their home screens. The difference is that we’re going to specify a custom
image to display in place of the default bookmark icon.

Figure 3-8. It might be tough to tell in print, but the clicked Back button is a bit darker than the default
state

56 | Chapter 3: Advanced Styling

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

First, upload a .png image file to your website. To maintain a consistent visual weight
with other launcher icons, it’s recommended that the file be 56px × 56px if its visible
area is basically square, and 60px × 60px otherwise. You’ll have to experiment with
your specific graphic to settle on the perfect dimensions.

Because Android is built to run on many different devices with a variety
of screen sizes and pixel densities, creating icons that look good every-
where is fairly involved. For detailed instructions and free downloadable
templates, please visit the Icon Design page on the Android developer
site (http://developer.android.com/guide/practices/ui_guidelines/icon_de
sign.html#launcherstructure).

Next, add the following line to the head section of the “traffic cop” HTML document
(android.html), android.html (replace myCustomIcon.png with the absolute or relative
path to the image):

<link rel="apple-touch-icon-precomposed" href="myCustomIcon.png" />

As you might have noticed, this is an Apple-specific directive that has
been adopted by Android.

What You’ve Learned
In this chapter, you’ve learned how to convert a normal website into an Ajax applica-
tion, complete with progress indicators and a native-looking Back button. In the next
chapter, you’ll learn how to make your app come alive by adding native UI animations.
That’s right; here comes the fun stuff!

What You’ve Learned | 57

http://freepdf-books.com

http://developer.android.com/guide/practices/ui_guidelines/icon_design.html#launcherstructure
http://developer.android.com/guide/practices/ui_guidelines/icon_design.html#launcherstructure

http://freepdf-books.com

CHAPTER 4

Animation

Android apps have a number of distinctive animation characteristics that add context
and meaning for the user. For example, pages slide left as users drill down through
links, and slide right as they navigate back. In this chapter, you’ll learn how to add
characteristic behaviors like sliding, page flip, and more to your web app. These changes
will make your web app almost indistinguishable from a native application.

With a Little Help from Our Friend
I’ll be honest: making a web page animate like a typical native app is hard. Fortunately,
an enterprising young lad named David Kaneda has created a JavaScript library called
jQTouch that makes mobile web development a whole heckuva lot easier. jQTouch is
an open source jQuery plug-in that handles virtually everything we learned in the pre-
vious chapter, as well as a boatload of much more complex stuff that would be truly
painful to write from scratch.

At the time of this writing, the stable release of jQTouch is v1.0b3.1,
which you can download at https://github.com/senchalabs/jQTouch/zip
ball/b3.1. Some fairly significant changes are planned for the next release
of jQTouch. If a newer version is available by the time you read this,
you might want to stick with v1.0b3.1 while you go through the rest of
the book, and upgrade to the latest version only after you are comfort-
able with the underlying concepts.

Sliding Home
We are going to build a simple calorie-tracking application called Kilo that allows the
user to add and delete food entries for a given date. All told, there will be five panels:
Home, Settings, Dates, Date, and New Entry. We’ll start off with two panels and work
our way up as we go.

59

http://freepdf-books.com

https://github.com/senchalabs/jQTouch/zipball/b3.1
https://github.com/senchalabs/jQTouch/zipball/b3.1

We will be assigning CSS classes to some of the HTML elements (e.g.,
toolbar, edgetoedge, arrow, button, back). In every case, these classes
correspond to predefined CSS class selectors that exist in the default
jQTouch theme. Bear in mind that you can create and use your own
classes by modifying existing jQTouch themes or creating your own
from scratch; we’re just using the defaults in the examples here.

We’re going to start from scratch here, so you can put aside the files you created in the
preceding chapters. To begin, let’s create a file named index.html and add the HTML
given in Example 4-1 for the Home and About panels.

Example 4-1. HTML for the Home and About panels in index.html

<html>
 <head>
 <title>Kilo</title>
 </head>
 <body>
 <div id="home">
 <div class="toolbar">
 <h1>Kilo</h1>
 </div>
 <ul class="edgetoedge">
 <li class="arrow">About

 </div>
 <div id="about">
 <div class="toolbar">
 <h1>About</h1>
 Back
 </div>
 <div>
 <p>Kilo gives you easy access to your food diary.</p>
 </div>
 </div>
 </body>
</html>

The HTML here basically amounts to a head with a title and a body with two children,
both divs:

This div (as well as the about div that appears a few lines down) will become a panel
in the application by virtue of the fact that they are direct descendants of the body.

Inside each panel div, there is a div with a class of toolbar. This toolbar class is
specifically predefined in the jQTouch themes to style an element like a traditional
mobile phone toolbar.

This unordered list tag has the class edgetoedge. The edgetoedge class tells jQTouch
to stretch the list all the way from left to right in the viewable area.

60 | Chapter 4: Animation

http://freepdf-books.com

On this line there is an li that contains a link with its href pointing at the About
panel. Including the arrow class on the li is optional; doing so will add a chevron to
the right side of the item in the list.

The toolbar elements each contain a single h1 element that will become the panel
title. On this line, there are links with the classes button and back, which tell jQTouch
to make the button look and act like a Back button.

The href on the Back button is set to #. Normally, this would tell the
browser to return to the top of the current document. But when using
jQTouch, it navigates back to the previous panel instead. In more ad-
vanced scenarios, you might want to use a specific anchor, such as
#home, which instructs the Back button to navigate to a particular panel
regardless of what the previous panel was.

With the basic HTML in place, it’s time to add jQTouch to the party. Once you’ve
installed jQTouch into the same directory as the HTML document (see “Installing
jQTouch” below), just add a few lines of code to the head of your page (Example 4-2).

Installing jQTouch
For this and other examples in this book, you will need to download jQTouch from
http://www.jqtouch.com, unzip it, and move the jqtouch and themes directories into the
same directory as your HTML document. You will also need to go into the jqtouch
directory and rename the jQuery JavaScript file (such as jquery.1.4.2.min.js) to jquery.js.

Example 4-2. Adding these lines to the head of your document will activate jQTouch

<link type="text/css" rel="stylesheet" media="screen"
 href="jqtouch/jqtouch.css">
<link type="text/css" rel="stylesheet" media="screen"
 href="themes/jqt/theme.css">
<script type="text/javascript" src="jqtouch/jquery.js"></script>
<script type="text/javascript" src="jqtouch/jqtouch.js"></script>
<script type="text/javascript">
 var jQT = $.jQTouch({
 icon: 'kilo.png'
 });
</script>

This line includes the jqtouch.css file. This file defines some hardcore structural
design rules that are very specific to handling animations, orientation, and other
Android-specific minutiae. This file is required and there should be no reason for
you to edit it.

This line specifies the CSS for the selected theme, in this case, the jqt theme, which
comes with jQTouch. The classes that we’ve been using in the HTML correspond
to CSS selectors in this document. jQTouch comes with two themes available by

Sliding Home | 61

http://freepdf-books.com

http://www.jqtouch.com

default. You can also make your own by duplicating a default theme and making
changes to it or writing a new one from scratch.

jQTouch requires jQuery, so it is included here. jQTouch comes with its own copy
of jQuery (which you need to rename to jquery.js, as described earlier), but you can
link to another copy if you prefer.

This is where we include jQTouch itself. Notice that you have to include jQTouch
after jQuery or ain’t nothin’ gonna work.

This brings us to the script block where we initialize the jQTouch object and send
in a property value: icon.

jQTouch exposes several properties that allow you to customize the behavior and
appearance of your app. You’ll see several throughout the course of this book, and
they are all optional. However, you’ll pretty much always be using at least a few of
them.

In this case, icon tells jQTouch where to look for the custom home screen icon.

The difference between the application before jQTouch (Figure 4-1) and after (Fig-
ure 4-2) is dramatic, but the truly astonishing change is that you’ve just added gorgeous
left/right sliding to your app with 10 lines of code. jQTouch is awesome, and we’re just
getting started.

Adding the Dates Panel
Let’s add the Dates panel. The Dates panel will have a list of relative dates beginning
with today and going back to five days ago. Add the HTML for the Dates panel (shown
in Example 4-3) right after the About panel, just before the closing </body> (in a mo-
ment, I’ll show you how to add a link to this from the Home panel).

Example 4-3. The HTML for the Dates panel

<div id="dates">
 <div class="toolbar">
 <h1>Dates</h1>
 Back
 </div>
 <ul class="edgetoedge">
 <li class="arrow">Today
 <li class="arrow">Yesterday
 <li class="arrow">2 Days Ago
 <li class="arrow">3 Days Ago
 <li class="arrow">4 Days Ago
 <li class="arrow">5 Days Ago

</div>

62 | Chapter 4: Animation

http://freepdf-books.com

Like the About panel, the Dates panel has a toolbar with a title and Back button. After
the toolbar, there is an unordered edgetoedge list of links. Notice that all of the links
have unique IDs (i.e., 0 through 5) but the same href (i.e., #date)—more on that in a bit.

Next, you have to update the Home panel with a link to the Dates panel. Add the line
shown in bold to the Home panel in index.html:

<div id="home">
 <div class="toolbar">
 <h1>Kilo</h1>
 </div>

Figure 4-1. Kilo before jQTouch…

Adding the Dates Panel | 63

http://freepdf-books.com

 <ul class="edgetoedge">
 <li class="arrow">Dates
 <li class="arrow">About

</div>

And just like that, we’ve added a new panel to the app (Figure 4-3). If you click Dates,
the Dates panel will appear, as shown in Figure 4-4. Clicking on an item on the Dates
panel doesn’t do anything yet. Let’s rectify that situation by adding a panel to display
a date item (the Date panel).

Figure 4-2. …and Kilo after jQTouch

64 | Chapter 4: Animation

http://freepdf-books.com

Adding the Date Panel
The Date panel looks a lot like the previous panels, with a couple of exceptions (refer
to Example 4-4). Add the HTML for the Date panel right after the Dates panel, just
before the closing </body>.

Figure 4-3. The Home panel now has a link to the Dates panel

Adding the Date Panel | 65

http://freepdf-books.com

Example 4-4. The HTML for the Date panel

<div id="date">
 <div class="toolbar">
 <h1>Date</h1>
 Back
 +
 </div>
 <ul class="edgetoedge">
 <li id="entryTemplate" class="entry" style="display:none">
 Label
 000
 Delete

</div>

Figure 4-4. The Dates panel consists of a toolbar with a Back button and a clickable list of relative dates

66 | Chapter 4: Animation

http://freepdf-books.com

The Date panel toolbar has an additional button. When clicked, this button will
display the New Entry panel (which we have not yet built). The link has a class of
slideup, which tells jQTouch that we want the target panel to slide up from the
bottom of the screen, rather than in from the left or right like normal navigation.

The other unusual aspect of this panel is that we define a list item with the style set
to display:none, effectively making it invisible.

As you’ll see in a bit, we’ll use this invisible list item as a template to display entries
once they are created. At this point, there are no entries, so the panel will be empty
aside from the toolbar.

Now that you’ve added the Date panel, clicking any item on the Dates panel will slide
the empty Date panel (Figure 4-5) into view.

Figure 4-5. Other than the toolbar, the Date panel is empty to begin with

Adding the Date Panel | 67

http://freepdf-books.com

Adding the New Entry Panel
Example 4-5 shows the source code for the New Entry panel. Add this code to the end
of index.html, before the closing </body>.

Example 4-5. The HTML for the New Entry panel

<div id="createEntry">
 <div class="toolbar">
 <h1>New Entry</h1>
 Cancel
 </div>
 <form method="post">
 <ul class="rounded">
 <input type="text" placeholder="Food" name="food" id="food"
 autocapitalize="off" autocorrect="off"
 autocomplete="off" />
 <input type="text" placeholder="Calories" name="calories"
 id="calories" autocapitalize="off" autocorrect="off"
 autocomplete="off" />
 <input type="submit" class="submit" name="action"
 value="Save Entry" />

 </form>
</div>

The first thing to point out about the New Entry panel is that rather than having a
Back button, it has a Cancel button.

Cancel buttons in jQTouch behave just like back buttons: they re-
move the current page from view with the reverse animation that it
came into view. However, cancel buttons are not shaped like a left
arrow as back buttons are.

I used a Cancel button here for the New Entry panel because it slides
up on the way in, and will therefore slide down on the way out. It
would be counterintuitive to click a left-pointing Back button and
then have the panel slide down.

This HTML form contains an unordered (bulleted) list of three items: two text fields
and a submit button. Embedding form controls in an li allows the jqt theme to style
the form as shown in Figure 4-6.

Each of the text inputs has quite a few attributes defined:

type="text"
Defines the form control to be a single line text entry field.

placeholder
A string of text to display in the form input when the input is empty.

68 | Chapter 4: Animation

http://freepdf-books.com

name
The name that will be associated with the value provided by the user when the
form is submitted.

id
A unique identifier for the element in the context of the entire page.

autocapitalize
Allows you to control the autocapitalization feature in Mobile Safari on the
iPhone. Has no effect on Android.

Figure 4-6. The jqt theme does a nice job styling form elements

Adding the New Entry Panel | 69

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

autocorrect
Allows you to control the spelling correction feature in Mobile Safari on the
iPhone. Has no effect on Android.

autocomplete
Allows you to control the autocomplete feature in Mobile Safari on the iPhone.
Has no effect on Android.

The class attribute of the submit input button needs explanation. The Android
phone will display a keyboard whenever the user’s cursor is in a field. The keyboard
has a Go button in the bottom right-hand corner that submits the form when clicked.
When you are hijacking the submit function as we are doing here, submitting from
the Go button on the keyboard does not remove the cursor from the active field and
therefore, the keyboard does not slide out of view. To remedy this, jQTouch offers
a convenience method that automatically removes the cursor from the active field
when a form is submitted. To take advantage of this feature, add the submit class to
the submit element of the form.

Figure 4-7 shows the New Entry form in action. At this point, we’ve done nothing to
actually save the entry when the user clicks Save Entry. We’ll cover that in Chapter 5.

Adding the Settings Panel
We haven’t yet created a button that will allow users to navigate to a Settings panel, so
let’s add one to the toolbar on the Home panel. All it takes is a single line of HTML,
shown in bold:

</head>
<body>
 <div id="home">
 <div class="toolbar">
 <h1>Kilo</h1>
 Settings
 </div>
 <ul class="edgetoedge">
 <li class="arrow">Dates
 <li class="arrow">About

 </div>
... remaining HTML not shown ...

This is the line of HTML that adds the button (Figure 4-8). Notice that we’ve as-
signed the flip class to the link. The flip class instructs jQTouch to transition from
the Home panel to the Settings panel by rotating the page on its vertical axis. To
give an added dimension to the process, the page actually zooms out a bit during
the animation. Fancy, no?

70 | Chapter 4: Animation

http://freepdf-books.com

Unfortunately, support for 3D animations is spotty across mobile
platforms, including Android. Therefore flip, swap, cube, and any
other 3D animations will failover to 2D animations when 3D is not
supported.

After working on the New Entry panel, the HTML for the Settings panel is going to
look pretty similar (Example 4-6). There is one more text input and some of the
attributes have been omitted or have different values, but conceptually they are
identical. Add this to your HTML document just as you’ve done with the HTML for
the other panels.

Figure 4-7. Keyboard data entry with the New Entry form

Adding the Settings Panel | 71

http://freepdf-books.com

As with the New Entry form, the Settings form does not currently save any of the
information associated with it (see Figure 4-9). Its submission handler will be described
in the next chapter.

Example 4-6. The HTML for the Settings panel

<div id="settings">
 <div class="toolbar">
 <h1>Settings</h1>
 Cancel
 </div>

Figure 4-8. The Settings button added to the toolbar on the Home panel

72 | Chapter 4: Animation

http://freepdf-books.com

 <form method="post">
 <ul class="rounded">
 <input placeholder="Age" type="text" name="age" id="age" />
 <input placeholder="Weight" type="text"
 name="weight" id="weight" />
 <input placeholder="Budget" type="text"
 name="budget" id="budget" />
 <input type="submit" class="submit" name="action"
 value="Save Changes" />

 </form>
</div>

Figure 4-9. The Settings panel

Adding the Settings Panel | 73

http://freepdf-books.com

Putting It All Together
So, there you have it. With fewer than 100 lines of code, we’ve created a native-style
UI for a five-panel application complete with three different page transition animations.
See Example 4-7 for a complete listing of the final HTML. Not too shabby, right?

Example 4-7. The complete HTML listing for the five-panel UI

<html>
 <head>
 <title>Kilo</title>
 <link type="text/css" rel="stylesheet" media="screen"
 href="jqtouch/jqtouch.css">
 <link type="text/css" rel="stylesheet" media="screen"
 href="themes/jqt/theme.css">
 <script type="text/javascript" src="jqtouch/jquery.js"></script>
 <script type="text/javascript" src="jqtouch/jqtouch.js"></script>
 <script type="text/javascript">
 var jQT = $.jQTouch({
 icon: 'kilo.png'
 });
 </script>
 </head>
 <body>
 <div id="home">
 <div class="toolbar">
 <h1>Kilo</h1>
 Settings
 </div>
 <ul class="edgetoedge">
 <li class="arrow">Dates
 <li class="arrow">About

 </div>
 <div id="about">
 <div class="toolbar">
 <h1>About</h1>
 Back
 </div>
 <div>
 <p>Kilo gives you easy access to your food diary.</p>
 </div>
 </div>
 <div id="dates">
 <div class="toolbar">
 <h1>Dates</h1>
 Back
 </div>
 <ul class="edgetoedge">
 <li class="arrow">Today
 <li class="arrow">Yesterday
 <li class="arrow">2 Days Ago
 <li class="arrow">3 Days Ago

74 | Chapter 4: Animation

http://freepdf-books.com

 <li class="arrow">4 Days Ago
 <li class="arrow">5 Days Ago

 </div>
 <div id="date">
 <div class="toolbar">
 <h1>Date</h1>
 Back
 +
 </div>
 <ul class="edgetoedge">
 <li id="entryTemplate" class="entry" style="display:none">
 Label
 000
 Delete

 </div>
 <div id="createEntry">
 <div class="toolbar">
 <h1>New Entry</h1>
 Cancel
 </div>
 <form method="post">
 <ul class="rounded">
 <input type="text" placeholder="Food" name="food" id="food"
 autocapitalize="off" autocorrect="off"
 autocomplete="off" />
 <input type="text" placeholder="Calories" name="calories"
 id="calories" autocapitalize="off" autocorrect="off"
 autocomplete="off" />
 <input type="submit" class="submit" name="action"
 value="Save Entry" />

 </form>
 </div>
 <div id="settings">
 <div class="toolbar">
 <h1>Settings</h1>
 Cancel
 </div>
 <form method="post">
 <ul class="rounded">
 <input placeholder="Age" type="text" name="age" id="age" />
 <input placeholder="Weight" type="text"
 name="weight" id="weight" />
 <input placeholder="Budget" type="text"
 name="budget" id="budget" />
 <input type="submit" class="submit" name="action"
 value="Save Changes" />

 </form>
 </div>
 </body>
</html>

Putting It All Together | 75

http://freepdf-books.com

Customizing jQTouch
You can customize the jQTouch default behavior by sending a variety of property set-
tings into the constructor. You saw this previously with the icon property, but there
are several others that you should be aware of, shown in Table 4-1.

Table 4-1. jQTouch customization options

Property Default Expects Notes

addGlossToIcon true true or false If set to true, gloss will be added to the
home screen icon on iPhone. Has no
effect on Android.

backSelector '.back, .cancel,
.goback'

Any valid CSS selector;
separate multiple values
with a comma

Defines elements that will trigger the
“back” behavior of jQTouch when
tapped. When the back behavior is
invoked, the current panel moves off
screen with a reverse animation and is
removed from history.

cacheGetRequests true true or false If set to true, automatically caches GET
requests, so subsequent clicks reference
the already-loaded data.

cubeSelector '.cube' Any valid CSS selector;
separate multiple values
with a comma

Defines elements that will trigger a cube
animation from the current panel to the
target panel.

dissolveSelector '.dissolve' Any valid CSS selector;
separate multiple values
with a comma

Defines elements that will trigger a dis-
solve animation from the current panel
to the target panel.

fadeSelector '.fade' Any valid CSS selector;
separate multiple values
with a comma

Defines elements that will trigger a fade
animation from the current panel to the
target panel.

fixedViewport true true or false If set to true, prevents users from
being able to zoom in or out of the page.

flipSelector '.flip' Any valid CSS selector;
separate multiple values
with a comma

Defines elements that will trigger a flip
animation from the current panel to the
target panel.

formSelector 'form' Any valid CSS selector;
separate multiple values
with a comma

Defines elements that should receive the
onsubmit handler.

fullScreen true true or false iPhone only; has no effect on Android.
When set to true, your app will open in
full-screen mode when launched from
the user’s home screen. Has no effect on
the display if the app is running in Mobile
Safari.

76 | Chapter 4: Animation

http://freepdf-books.com

Property Default Expects Notes

fullScreenClass 'fullscreen' String iPhone only; has no effect on Android.
Class name that will be applied to the
body when the app is launched in full-
screen mode. Allows you to write
custom CSS that only executes in full-
screen mode.

icon null null or a relative or
absolute path to a .png
image file

The home screen icon for your app. This
is the image that will be displayed when
a user adds a bookmark for your app to
his home screen.

popSelector '.pop' Any valid CSS selector;
separate multiple values
with a comma

Defines elements that will trigger a pop
animation from the current panel to the
target panel.

preloadImages false An array of image paths Defines images that will be loaded be-
fore the page loads. For example:
['images/link_over.png',
'images/link_select.png']

slideInSelector 'ul li a' Any valid CSS selector;
separate multiple values
with a comma

Defines elements that will trigger a slide
left animation from the current panel to
the target panel.

slideupSelector '.slideup' Any valid CSS selector;
separate multiple values
with a comma

Defines elements that will cause the tar-
get panel to slide up into view in front
of the current panel.

startupScreen null null or a relative or ab-
solute path to an image
file

iPhone only; has no effect on Android.
Pass a relative or absolute path to a
320px × 460px startup screen for full-
screen apps. Use a 320px × 480px
image if you set statusBar to
black-translucent.

statusBar 'default' default, black-
translucent, black

iPhone only; has no effect on Android.
Defines the appearance of the 20-pixel
status bar at the top of the window in an
app launched in full-screen mode.

submitSelector '.submit' Any valid CSS selector;
separate multiple values
with a comma

Selector that, when clicked, will submit
its parent form (and close keyboard if
open).

swapSelector '.swap' Any valid CSS selector;
separate multiple values
with a comma

Defines elements that will cause the tar-
get panel to swap into view in front of
the current panel.

useAnimations true true or false Set to false to disable all animations.

Customizing jQTouch | 77

http://freepdf-books.com

What You’ve Learned
In this chapter, you’ve learned how to add native-looking animations to a web app
using jQTouch. In the next chapter, you’ll learn how to use the new local storage and
client-side database features of HTML5 to add persistent data storage to your app.

78 | Chapter 4: Animation

http://freepdf-books.com

CHAPTER 5

Client-Side Data Storage

Most software applications need to store data in some sort of persistent fashion in order
to be useful. When it comes to web apps, this task has traditionally been handled with
either a server-side database or cookies set in the browser. With the advent of HTML5,
web developers now have a couple more options: Web Storage, and Web SQL
Database.

Web Storage
Web Storage comes in two flavors—localStorage and sessionStorage—and are very
similar to cookies in that they allow you to use JavaScript to set name/value pairs that
you can retrieve across multiple page reloads.

Unlike cookies, however, Web Storage data is not sent across the wire with the browser
request—it lives entirely in the client. Therefore, it’s feasible to store much more data
than you can with cookies.

At the time of this writing, browser size limits for Web Storage are still
in flux. However, my most recent tests indicate that the limit is right
around 2.5 MB.

Functionally, localStorage and sessionStorage are the same. They differ only in terms
of persistence and scope:

localStorage
Data is saved even after the window is closed and is available to all windows (or
tabs) that are loaded from the same origin (must be the same domain name, pro-
tocol, and port). This is useful for things like application preferences.

79

http://freepdf-books.com

sessionStorage
Data is stored with the window object. Other windows/tabs are not aware of the
values, and the data is discarded when the window/tab is closed. Useful for
window-specific state like active tab highlight or the sort order of a table.

In any of the following examples, you can substitute sessionStorage
anywhere you see localStorage, but remember that sessionStorage goes
away when you close the window or tab.

Setting a value is as simple as the following:

localStorage.setItem('age', 40);

Accessing a stored value is equally simple:

var age = localStorage.getItem('age');

You can delete a specific key/value pair from storage like so:

localStorage.removeItem('age');

Or, you can delete all key/value pairs like so:

localStorage.clear();

Assuming your keys are valid JavaScript tokens (e.g., no spaces, no punctuation other
than underscores) you can use this alternate syntax:

localStorage.age = 40 // Set the value of age
var age = localStorage.age; // Get the value of age
delete localStorage.age; // Remove age from storage

The localStorage and sessionStorage keys are stored separately. If you
use the same key name for each, they will not conflict with each other.

Saving User Settings to Local Storage
On to a practical example. Let’s update the Settings panel of the example app you
started working on in Chapter 4 so that it stores the form values in localStorage.

We are going to be writing a fair amount of JavaScript in this chapter, and I don’t want
to jam it all in the head section of our HTML document. To keep our code organized,
create a file called kilo.js in the same directory as your HTML document, and update
the head of your HTML document with a reference to kilo.js:

<head>
 <title>Kilo</title>
 <link type="text/css" rel="stylesheet" media="screen"
 href="jqtouch/jqtouch.css">

80 | Chapter 5: Client-Side Data Storage

http://freepdf-books.com

 <link type="text/css" rel="stylesheet" media="screen"
 href="themes/jqt/theme.css">
 <script type="text/javascript" src="jqtouch/jquery.js"></script>
 <script type="text/javascript" src="jqtouch/jqtouch.js"></script>
 <script type="text/javascript" src="kilo.js"></script>
</head>

Alert readers will notice that I’ve also removed the jQTouch constructor from the head
of the HTML document. It’s not gone, though; I just moved it into kilo.js. Be sure you
remove that from your main HTML file and create the kilo.js file in the same directory
with the following contents, then reload the main HTML document in your browser
to make sure it’s still working:

var jQT = $.jQTouch({
 icon: 'kilo.png'
});

With that little bit of code reorganization out of the way, it’s time to add the code
needed to save the settings. You need to override the submit action of the Settings form
and replace it with a custom function called saveSettings(). Thanks to jQuery, you
can accomplish this with a single line of code, which you must place in the document
ready function. Add the following to kilo.js:

$(document).ready(function(){
 $('#settings form').submit(saveSettings);
});

The net result of this is that when the user submits the settings form, the save
Settings() function will run instead of the form actually getting submitted.

When the saveSettings() function is called, it grabs the values from the three form
inputs using jQuery’s val() function and saves each in a localStorage variable of the
same name. Add this function to kilo.js:

function saveSettings() {
 localStorage.age = $('#age').val();
 localStorage.budget = $('#budget').val();
 localStorage.weight = $('#weight').val();
 jQT.goBack();
 return false;
}

Once the values are stored, this function uses the jQuery goBack() function (on the
second-to-last line) to dismiss the panel and return to the previous page. Next, it returns
false to prevent the default action of the submit event that triggers this function. Had
we omitted this line, the current page would reload, which is not what we want.

At this point, a user can launch the app, navigate to the Settings panel, enter her settings,
and submit the form to save the settings to localStorage.

Web Storage | 81

http://freepdf-books.com

Since we are not clearing the fields when the form is submitted, the values that the user
enters will still be there when she navigates back to the Settings panel. However, this
is not because the values have been saved to localStorage; it’s because they are still
sitting there after having been typed in.

Therefore, the next time the user launches that app and navigates to the Settings panel,
the fields will be empty, even though they have been saved.

To remedy this, we need to load the settings using the loadSettings() function, so add
the following function to kilo.js:

function loadSettings() {
 $('#age').val(localStorage.age);
 $('#budget').val(localStorage.budget);
 $('#weight').val(localStorage.weight);
}

The loadSettings() function is the opposite of the saveSettings() function; it uses
jQuery’s val() function to set the three fields of the Settings form to the corresponding
values saved in localStorage.

Now that we have a loadSettings() function, we need to trigger it. The most obvious
time to do this is when the app launches. To make this happen, simply add a line to
the document ready function in kilo.js:

$(document).ready(function(){
 $('#settings form').submit(saveSettings);
 loadSettings();
});

Unfortunately, loading the settings only at startup leaves a loophole that occurs if the
user navigates to the Settings panel, changes some values, and taps the Cancel button
without submitting the form.

In this case, the newly changed values will still be sitting there the next time the user
visits the Settings panel; not because the values were saved (they weren’t), but because
they are still just sitting there. If the user closes and reopens the app, the displayed
values will revert to the saved values because the loadSettings() function will refresh
them at startup.

There are several ways to rectify this situation, but I think the most appropriate is to
refresh the displayed values whenever the Settings panel begins to move, either into or
out of view.

Thanks to jQTouch, this is a simple matter of binding the loadSettings() function to
the pageAnimationStart event of the Settings panel. Replace the line you just added with
the code shown in bold:

$(document).ready(function(){
 $('#settings form').submit(saveSettings);
 $('#settings').bind('pageAnimationStart', loadSettings);
});

82 | Chapter 5: Client-Side Data Storage

http://freepdf-books.com

This leaves one little problem: if the local storage variables have never been defined,
loadSettings() won’t replace the form variables. So you need to add these lines of code
to the top of loadSettings(), which sets the local storage variables to blank values if
they aren’t defined:

if (!localStorage.age) {
 localStorage.age = "";
}
if (!localStorage.budget) {
 localStorage.budget = "";
}
if (!localStorage.weight) {
 localStorage.weight = "";
}

The JavaScript contained in the kilo.js file now provides persistent data support for the
Settings panel. When you view the code we’ve written to make this happen, there’s
really not much to it. Here is everything in kilo.js so far:

var jQT = $.jQTouch({
 icon: 'kilo.png'
});
$(document).ready(function(){
 $('#settings form').submit(saveSettings);
 $('#settings').bind('pageAnimationStart', loadSettings);
});
function saveSettings() {
 localStorage.age = $('#age').val();
 localStorage.budget = $('#budget').val();
 localStorage.weight = $('#weight').val();
 jQT.goBack();
 return false;
}
function loadSettings() {
 if (!localStorage.age) {
 localStorage.age = "";
 }
 if (!localStorage.budget) {
 localStorage.budget = "";
 }
 if (!localStorage.weight) {
 localStorage.weight = "";
 }
 $('#age').val(localStorage.age);
 $('#budget').val(localStorage.budget);
 $('#weight').val(localStorage.weight);
}

Web Storage | 83

http://freepdf-books.com

Saving the Selected Date to Session Storage
Ultimately, what we want to do is set up the Date panel so that when it’s displayed, it
will check the database for any records entered for that date and display them as an
edge-to-edge list. This requires that the Date panel know which date the user tapped
on the Dates panel.

We also want to allow the user to add and delete entries from the database, so we’ll
have to add support for the + button that already exists on the Date panel, and for the
Delete button in the Date panel entry template (more on this later).

The first step is to let the Date panel know which item the user clicked when she na-
vigated to it from the Dates panel. With this piece of information, you can calculate
the appropriate date context. To do so, you need to add some lines to the document
ready function in kilo.js:

$(document).ready(function(){
 $('#settings form').submit(saveSettings);
 $('#settings').bind('pageAnimationStart', loadSettings);
 $('#dates li a').bind('click touchend', function(){
 var dayOffset = this.id;
 var date = new Date();
 date.setDate(date.getDate() - dayOffset);
 sessionStorage.currentDate = date.getMonth() + 1 + '/' +
 date.getDate() + '/' +
 date.getFullYear();
 refreshEntries();
 });
});

On this line, jQuery's bind() function attaches the JavaScript code that follows to
the click and touchend events of the links on the Dates panel. We are binding to the
touchend event to achieve the optimal experience on the phone, and binding to the
click event so we can continue testing in a desktop browser (which doesn't support
the touchend event).

This line of code grabs the ID of the clicked object and stores it in the dayOffset
variable. As you may recall, the links on the Dates panel have IDs ranging from 0 to
5, so the ID of the clicked link will correspond to the number of days needed to
calculate the clicked date (i.e., 0 days in the past equals today, 1 day in the past
equals yesterday, 2 days in the past equals the day before yesterday).

In this context, the this keyword will contain a reference to the ob-
ject that was the target of the click event.

84 | Chapter 5: Client-Side Data Storage

http://freepdf-books.com

This line creates a new JavaScript Date object and stores it in a variable named
date. Initially, this date will be set to the particular moment in time that it was
created, so on the next line, we subtract the dayOffset from the result of the
getDate() function and use setDate() to change the date to the selected date (a
dayOffset of 0 would be today, 1 would be yesterday, and so on).

This code builds a MM/DD/YYYY–formatted date string and saves it to session
Storage as currentDate.

The getMonth() method of the Date object returns values from 0–11,
January being 0. Therefore, we have to add 1 to generate the correct
value for the formatted string.

Finally, we call the refreshEntries() function. The job of the refreshEntries()
function is to update the incoming Date panel appropriately based on the date the
user tapped on the Dates panel. For now, we’ll just set it to update the toolbar title
of the Dates panel with the selected date so you can see it’s working. Without it,
you’d just see the word “Date,” as shown in Figure 5-1. Figure 5-2 shows the
refreshEntries() function in action. Add the following function to kilo.js:

function refreshEntries() {
 var currentDate = sessionStorage.currentDate;
 $('#date h1').text(currentDate);
}

Next, we’ll move on to a more powerful and complex client-side data storage method
that we’ll use to store the user’s food entries on the Date panel.

Web SQL Database
Of all the exciting features of HTML5, the one that rocks my world the most is the Web
SQL Database. The Web SQL Database spec gives developers a simple but powerful
JavaScript database API to store persistent data in a local SQLite database.

Technically, the Web SQL Database spec is not part of HTML5. It was
broken out of the original HTML5 spec into its own spec, but in casual
conversation, it’s often still referred to as an “HTML5 feature.”

Developers can use standard SQL statements to create tables and to insert, update,
select, and delete rows. The JavaScript database API even supports transactions. We’re
talking about SQL here, so there is an inherent complexity. Regardless, this is a game-
changing feature, so you will be well rewarded if you spend time getting your head
around it.

Web SQL Database | 85

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

Creating a Database
Now that our Date panel knows which date the user has selected, we have all the
information we need to allow the user to create entries. Before we can write the
createEntry() function, we need to set up a database table to store the submitted data
(this is a one-time operation). We’ll add some lines to kilo.js to do so:

var db;
$(document).ready(function(){
 $('#settings form').submit(saveSettings);
 $('#settings').bind('pageAnimationStart', loadSettings);

Figure 5-1. Before the refreshEntries() function, the title just says “Date”…

86 | Chapter 5: Client-Side Data Storage

http://freepdf-books.com

 $('#dates li a').bind('click touchend', function(){
 var dayOffset = this.id;
 var date = new Date();
 date.setDate(date.getDate() - dayOffset);
 sessionStorage.currentDate = date.getMonth() + 1 + '/' +
 date.getDate() + '/' +
 date.getFullYear();
 refreshEntries();
 });

Figure 5-2. …and after the refreshEntries() function, the title reflects the selected date

Web SQL Database | 87

http://freepdf-books.com

 var shortName = 'Kilo';
 var version = '1.0';
 var displayName = 'Kilo';
 var maxSize = 65536;
 db = openDatabase(shortName, version, displayName, maxSize);
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'CREATE TABLE IF NOT EXISTS entries ' +
 ' (id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, ' +
 ' date DATE NOT NULL, food TEXT NOT NULL, ' +
 ' calories INTEGER NOT NULL);'
);
 }
);
});

The first thing to note is there is a variable named db in the global scope of the
application. This variable is to hold a reference to the database connection once
we’ve established it. It is defined in the global scope because we’re going to have to
refer to it all over the place.

These four lines define some vars for the openDatabase call:

shortName
A string that will refer to the database file on disk.

version
A number for managing upgrades and backward compatibility when you need
to change your database schema (i.e., check the database version on app
launch—if it’s old, create the new database and migrate the data from one to
the other, as shown in “Geolocation” on page 133).

displayName
A string that will be presented in the interface to the user. For example, the
display name appears in the Storage tab of the Developer Tools in Chrome
desktop (Click the wrench icon, then choose Tools→Developer Tools).

maxSize
The maximum number of kilobytes to which you will allow your database to
grow.

Database size limits are still being implemented by browser vendors
at this time, but the W3C recommends an arbitrary 5 MB limit per
origin. If your database grows beyond the limit, the user will auto-
matically be asked to allow or deny the size increase. If he allows the
increase, the database size limit will be upped to 10 MB. If he denies
the increase, a QUOTA_ERR error will be returned. See Table 5-1 for a
list of database error codes.

88 | Chapter 5: Client-Side Data Storage

http://freepdf-books.com

With the parameters set, this line calls openDatabase and stores the connection in
the db variable. If the database doesn’t already exist, it will be created.

All database queries must take place in the context of a transaction, so we begin one
here by calling the transaction method of the db object. The remaining lines make
up a function that is sent to the transaction as the sole parameter.

This line begins an anonymous function and passes the transaction object into it.
To be perfectly honest, I think passing the transaction object into its own callback
function is weird (why not just use this?), but that’s what you have to do.

Once inside the function, we call the executeSql method of the transaction object
to execute a standard CREATE TABLE query. The IF NOT EXISTS clause prevents the
table from being created if it already exists.

If you were to launch the app as is, it would create a database named Kilo on the Android
phone.

In the desktop version of Chrome, you can actually view and interact with your client-
side databases by clicking the wrench icon then choosing Tools→Developer Tools, and
clicking the Resources tab and looking for Databases, Local Storage, and Session Stor-
age on the left side of the screen.

The Developer Tools included in desktop Chrome are extremely helpful when debug-
ging. By default, it appears as a pane of your current browser window. If you click the
undock icon (hover over the icons at the bottom left to see what they do), it will appear
in a separate window, as shown in Figure 5-3. The interface even allows you to send
arbitrary SQL queries to the database by clicking on the database name (see Figure 5-4).

Figure 5-3. The Storage tab in Chrome’s Developer Tools with some test records displayed

Web SQL Database | 89

http://freepdf-books.com

Figure 5-4. The Storage tab in Chrome’s Developer Tools allows you to execute arbitrary SQL
statements against your database

Inserting Rows
Now that we have a database set up to receive some entries, we can set about building
the createEntry() function. First, you have to override the submit event of the
#createEntry form. You can do so by binding the createEntry() function to the submit
event in the document ready function in kilo.js (here I just show the first few lines with
the added line of code in bold):

$(document).ready(function(){
 $('#createEntry form').submit(createEntry);
 $('#settings form').submit(saveSettings);
 $('#settings').bind('pageAnimationStart', loadSettings);
 ...

Now when a user submits the #createEntry form, the createEntry() function is called.
Next, add the following to kilo.js to create the record in the database:

function createEntry() {
 var date = sessionStorage.currentDate;
 var calories = $('#calories').val();
 var food = $('#food').val();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'INSERT INTO entries (date, calories, food) VALUES (?, ?, ?);',
 [date, calories, food],
 function(){
 refreshEntries();
 jQT.goBack();

90 | Chapter 5: Client-Side Data Storage

http://freepdf-books.com

 },
 errorHandler
);
 }
);
 return false;
}

This section contains some variables that we’re going to use in the SQL query. As
you may recall (from “Saving the Selected Date to Session Storage” on page 84),
the date the user taps on the Dates panel is stored in sessionStorage.currentDate.
The other two values (calories and food) are pulled out of the data entry form using
the same approach that we used earlier with the Settings form.

This code opens a database transaction and runs an executeSql() call. Here we are
passing four parameters to the executeSql() method:

'INSERT INTO entries (date, calories, food) VALUES (?, ?, ?);'
This is the statement that will be executed. The question marks are data
placeholders.

[date, calories, food]
This is an array of the values being sent to the database. They correspond by
position with the data placeholder question marks in the SQL statement.

function(){refreshEntries();jQT.goBack();}
This anonymous function will execute if the SQL query is successful.

errorHandler
This is the name of the function that will execute if the SQL query fails.

Quotes (' or ") around the ? placeholders are not necessary—escaping
and quoting of data is handled automatically.

Error handling

Assuming the insert is successful, the anonymous function passed as the third param-
eter will be executed. It calls the refreshEntries() function (at the moment, this func-
tion only updates the title of the Date panel, but soon it will make entries you create
appear in the list there) and it simulates a tap on the Cancel button to dismiss the New
Entry panel and return to the Date panel. As we saw earlier with the Settings panel, the
Cancel button does not cancel the submit action—it’s really just a Back button labeled
“Cancel” that isn’t shaped like a left arrow.

Web SQL Database | 91

http://freepdf-books.com

If the insert is not successful, the errorHandler() function will run. Add the following
to the kilo.js file:

function errorHandler(transaction, error) {
 alert('Oops. Error was '+error.message+' (Code '+error.code+')');
 return true;
}

The error handler is passed two parameters: the transaction object and the error object.
Here, we’re using the error object to alert the user to the message and error code that
were thrown.

Error handlers must return true or false. When an error handler returns true (i.e., “Yes,
this is a fatal error”), execution is halted and the entire transaction is rolled back. When
an error handler returns false (i.e., “No, this is not a fatal error”), execution will
continue.

In some cases, you might want to branch based on the type of error to decide whether
you should return true or false. Table 5-1, at the end of this chapter, shows the (current)
possible error codes according to the W3C Web SQL Database working draft
specification.

Executing SQL Inside the Error Handler
You may have noticed that the error handler function accepts a transaction object in
addition to the error object. It’s conceivable that in some cases you might want to
execute a SQL statement inside the error handler, perhaps to log the error or record
some metadata for debugging or crash-reporting purposes. The transaction object
parameter allows you to make more executeSql() calls from inside the error handler,
like so (this is just an example; it will not run unless you’ve created the errors table
that it refers to):

function errorHandler(transaction, error) {
 alert('Oops. Error was '+error.message+' (Code '+error.code+')');
 transaction.executeSql('INSERT INTO errors (code, message) VALUES (?, ?);',
 [error.code, error.message]);
 return false;
}

Please take special note of the fact that we have to return false from the error handler
if we want the executeSql() statement to run. If we return true (or nothing at all), the
entire transaction—including this SQL statement—will be rolled back, thereby pre-
venting the desired result.

92 | Chapter 5: Client-Side Data Storage

http://freepdf-books.com

Although I won’t be doing so in my examples, you should know that
you can also specify success and error handlers on the transaction
method itself. This gives you a convenient location to execute code after
a long series of executeSql() statements have completed.

Oddly, the parameter order for the transaction method’s callbacks
is defined to be error, then success (the reverse of the order for
executeSql()). Here’s a version of the createEntry() function with
transaction callbacks added toward the end (don’t add these to kilo.js,
because we haven’t defined either of these methods):

function createEntry() {
 var date = sessionStorage.currentDate;
 var calories = $('#calories').val();
 var food = $('#food').val();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'INSERT INTO entries (date, calories, food) VALUES (?, ?, ?);',
 [date, calories, food],
 function(){
 refreshEntries();
 jQT.goBack();
 },
 errorHandler
);
 },
 transactionErrorHandler,
 transactionSuccessHandler
);
 return false;
}

Selecting Rows and Handling Result Sets
The next step is to expand the refreshEntries() function to do more than just set
the title bar to the selected date. Specifically, we’ll query the database for entries on the
selected date and append them to the #date ul element using the hidden
entryTemplate HTML for structure. It’s been a while since we looked at that code, so
here’s the Date panel again (it’s already in index.html, so you don’t need to add it again):

<div id="date">
 <div class="toolbar">
 <h1>Date</h1>
 Back
 +
 </div>
 <ul class="edgetoedge">
 <li id="entryTemplate" class="entry" style="display:none">
 Label
 000
 Delete

</div>

Web SQL Database | 93

http://freepdf-books.com

Recall that we had set the style attribute of the li to display: none, which makes it
not show up on the page. We did this so we could use that HTML snippet as a
template for the database rows.

Here’s the complete refreshEntries() function; you must replace the existing
refreshEntries() function in kilo.js with this:

function refreshEntries() {
 var currentDate = sessionStorage.currentDate;
 $('#date h1').text(currentDate);
 $('#date ul li:gt(0)').remove();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'SELECT * FROM entries WHERE date = ? ORDER BY food;',
 [currentDate],
 function (transaction, result) {
 for (var i=0; i < result.rows.length; i++) {
 var row = result.rows.item(i);
 var newEntryRow = $('#entryTemplate').clone();
 newEntryRow.removeAttr('id');
 newEntryRow.removeAttr('style');
 newEntryRow.data('entryId', row.id);
 newEntryRow.appendTo('#date ul');
 newEntryRow.find('.label').text(row.food);
 newEntryRow.find('.calories').text(row.calories);
 }
 },
 errorHandler
);
 }
);
}

These two lines set the toolbar title of the Date panel to the contents of the current
Date value saved in sessionStorage.

This line uses jQuery’s gt() function (gt stands for “greater than”) to select and
remove any li elements with an index greater than 0. The first time through, this
will do nothing because the only li will be the one with the ID of entryTemplate,
which has an index of 0 and is hidden anyhow. However, on subsequent visits to
the page, we need to remove any other lis before appending rows from the database
again. Otherwise, items would end up appearing multiple times in the list because
we’d be adding the same items over and over again.

These three lines set up a database transaction and the executeSql statement.

This line contains the first parameter for the executeSql statement. It’s a simple
SELECT statement with a question mark acting as a data placeholder.

This is a single-element array that contains the currently selected date. This will
replace the question mark in the SQL query.

94 | Chapter 5: Client-Side Data Storage

http://freepdf-books.com

This anonymous function will be called in the event of a successful query. It accepts
two parameters: transaction and result.

The transaction object can be used within the success handler to send new queries
to the database, as we saw with the error handler previously. However, there is no
need to do that in this case, so we won’t be using it.

The result object is what we are most interested in here. It has three read-only
properties: rowsAffected, which you can use to determine the number of rows
affected by an insert, update, or delete query; insertId, which returns the primary
key of the last row created in an insert operation; and rows, which has the records
that were found.

The rows object will contain 0 or more row objects and has a length property that
appears in the for loop on the next line.

This line uses the item() method of the rows object to set the row variable to the
contents of the current row.

On this line, we clone() the template li and remove its id and style attributes on
the next two lines. Removing the style will make the row visible, and removing the
id is important because otherwise we would end up with multiple items on the page
with the same id.

This line stores the value of the row’s id property as data on the li itself (we’ll need
that later in case the user decides to delete the entry).

This code appends the li element to the parent ul. The next two lines update the
label and calories span child elements of the li with the corresponding data from
the row object.

With all this out of the way, our Date panel will display an li for each row in the
database that corresponds to the selected date. Each row will have a label, calories, and
a Delete button. Once we create a few rows, you can see that we need to add a bit of
CSS to style things up nicely (Figure 5-5).

Save the following CSS into a file named kilo.css (save this in the same directory as the
HTML file):

#date ul li {
 position: relative;
}
#date ul li span {
 color: #FFFFFF;
 text-shadow: 0 1px 2px rgba(0,0,0,.7);
}
#date ul li .delete {
 position: absolute;
 top: 5px;
 right: 6px;
 font-size: 12px;
 line-height: 30px;

Web SQL Database | 95

http://freepdf-books.com

 padding: 0 3px;
 border-width: 0 5px;
 -webkit-border-image: url(themes/jqt/img/button.png) 0 5 0 5;
}

Now, link to kilo.css by adding the following line to the head section of index.html:

<link type="text/css" rel="stylesheet" media="screen" href="kilo.css">

Although the Delete buttons now look like buttons (see Figure 5-6), they won’t do
anything when tapped at this point. This is because we set them up using the span tag,
which is not an interactive element in an HTML page.

Figure 5-5. The entries are showing up now, but they still need to be fancied up with some CSS

96 | Chapter 5: Client-Side Data Storage

http://freepdf-books.com

Deleting Rows
To make our Delete buttons do something when clicked, we need to bind a click event
handler to them with jQuery.

Unfortunately, that approach won’t work in this case. Unlike the items on the Dates
panel, the entries on the Date panel are not static. This means they are added and
removed throughout the course of the user’s session. In fact, when the application

Figure 5-6. The entries with CSS applied

Web SQL Database | 97

http://freepdf-books.com

launches, there are no entries visible on the Date panel at all. Therefore, we have nothing
to bind the click to at launch.

The solution is to bind click events to the delete buttons as they are created by the
refreshEntries() function. To do so, add the lines shown in bold to the end of the
for loop:

 ...
 newEntryRow.find('.calories').text(row.calories);
 newEntryRow.find('.delete').click(function(){
 var clickedEntry = $(this).parent();
 var clickedEntryId = clickedEntry.data('entryId');
 deleteEntryById(clickedEntryId);
 clickedEntry.slideUp();
 });
}

The function begins by specifying that we are looking for any elements that have a
class of delete inside of an element that has an ID of date, and calls the click()
method on those elements. The click() method accepts the anonymous function
that will handle the event as its only parameter.

When the click handler is triggered, the parent of the Delete button (i.e., the li) is
located and stored in the clickedEntry variable.

This line sets the clickedEntryId variable to the value of the entryId we stored on
the li element when the refreshEntries() function created it.

This line passes the clicked ID into the deleteEntryById() function, and on the next
line, jQuery’s slideUp() method gracefully removes the li from the page.

Add the following deleteEntryById() function to kilo.js to remove the entry from the
database:

function deleteEntryById(id) {
 db.transaction(
 function(transaction) {
 transaction.executeSql('DELETE FROM entries WHERE id=?;',
 [id], null, errorHandler);
 }
);
}

As we’ve done in previous examples, we open a transaction, pass it a callback function
with the transaction object as the parameter, and call the executeSql() method. We’re
passing in the SQL query and the ID of the clicked record as the first two arguments.
The third argument is where the success handler would go, but we don’t need one, so
we just specify null. As the fourth argument, we specify the same error handler that
we’ve been using all along.

And there you have it. It may have taken a lot of description to get to this point, but in
reality we haven’t had to write all that much code. In fact, kilo.js only contains about
100 lines of JavaScript (Example 5-1).

98 | Chapter 5: Client-Side Data Storage

http://freepdf-books.com

Example 5-1. The complete JavaScript listing for Kilo database interaction

var db;
var jQT = $.jQTouch({
 icon: 'kilo.png'
});
$(document).ready(function(){
 $('#createEntry form').submit(createEntry);
 $('#settings form').submit(saveSettings);
 $('#settings').bind('pageAnimationStart', loadSettings);
 $('#dates li a').bind('click touchend', function(){
 var dayOffset = this.id;
 var date = new Date();
 date.setDate(date.getDate() - dayOffset);
 sessionStorage.currentDate = date.getMonth() + 1 + '/' +
 date.getDate() + '/' +
 date.getFullYear();
 refreshEntries();
 });
 var shortName = 'Kilo';
 var version = '1.0';
 var displayName = 'Kilo';
 var maxSize = 65536;
 db = openDatabase(shortName, version, displayName, maxSize);
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'CREATE TABLE IF NOT EXISTS entries ' +
 ' (id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, ' +
 ' date DATE NOT NULL, food TEXT NOT NULL, ' +
 ' calories INTEGER NOT NULL);'
);
 }
);
});
function saveSettings() {
 localStorage.age = $('#age').val();
 localStorage.budget = $('#budget').val();
 localStorage.weight = $('#weight').val();
 jQT.goBack();
 return false;
}
function loadSettings() {
 if (!localStorage.age) {
 localStorage.age = "";
 }
 if (!localStorage.budget) {
 localStorage.budget = "";
 }
 if (!localStorage.weight) {
 localStorage.weight = "";
 }
 $('#age').val(localStorage.age);
 $('#budget').val(localStorage.budget);
 $('#weight').val(localStorage.weight);
}

Web SQL Database | 99

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

function refreshEntries() {
 var currentDate = sessionStorage.currentDate;
 $('#date h1').text(currentDate);
 $('#date ul li:gt(0)').remove();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'SELECT * FROM entries WHERE date = ? ORDER BY food;',
 [currentDate],
 function (transaction, result) {
 for (var i=0; i < result.rows.length; i++) {
 var row = result.rows.item(i);
 var newEntryRow = $('#entryTemplate').clone();
 newEntryRow.removeAttr('id');
 newEntryRow.removeAttr('style');
 newEntryRow.data('entryId', row.id);
 newEntryRow.appendTo('#date ul');
 newEntryRow.find('.label').text(row.food);
 newEntryRow.find('.calories').text(row.calories);
 newEntryRow.find('.delete').click(function(){
 var clickedEntry = $(this).parent();
 var clickedEntryId = clickedEntry.data('entryId');
 deleteEntryById(clickedEntryId);
 clickedEntry.slideUp();
 });
 }
 },
 errorHandler
);
 }
);
}
function createEntry() {
 var date = sessionStorage.currentDate;
 var calories = $('#calories').val();
 var food = $('#food').val();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'INSERT INTO entries (date, calories, food) VALUES (?, ?, ?);',
 [date, calories, food],
 function(){
 refreshEntries();
 jQT.goBack();
 },
 errorHandler
);
 }
);
 return false;
}

100 | Chapter 5: Client-Side Data Storage

http://freepdf-books.com

function errorHandler(transaction, error) {
 alert('Oops. Error was '+error.message+' (Code '+error.code+')');
 return true;
}
function deleteEntryById(id) {
 db.transaction(
 function(transaction) {
 transaction.executeSql('DELETE FROM entries WHERE id=?;',
 [id], null, errorHandler);
 }
);
}

Web Database Error Code Reference
An error in the SQL database API will be reported with a callback containing one of
the codes shown in Table 5-1.

Table 5-1. Web database error codes

Constant Code Situation

UNKNOWN_ERR 0 The transaction failed for reasons unrelated to the database itself and is not covered by any other
error code.

DATABASE_ERR 1 The statement failed for database reasons not covered by any other error code.

VERSION_ERR 2 The operation failed because the actual database version was not what it should be. For example,
a statement found that the actual database version no longer matches the expected version of
the Database or DatabaseSync object, or the Database.changeVersion() or
DatabaseSync.changeVersion() methods were passed a version that doesn’t match
the actual database version.

TOO_LARGE_ERR 3 The statement failed because the data returned from the database was too large. The SQL
LIMIT modifier might be useful to reduce the size of the result set.

QUOTA_ERR 4 The statement failed because there was not enough remaining storage space, or the storage
quota was reached and the user declined to give more space to the database.

SYNTAX_ERR 5 The statement failed because of a syntax error, the number of arguments did not match the
number of ? placeholders in the statement, the statement tried to use a statement that is not
allowed, such as BEGIN, COMMIT, or ROLLBACK, or the statement tried to use a verb that could
modify the database when the transaction was read-only.

CONSTRAINT_ERR 6 An INSERT, UPDATE, or REPLACE statement failed due to a constraint failure. For example,
because a row was being inserted and the value given for the primary key column duplicated
the value of an existing row.

TIMEOUT_ERR 7 A lock for the transaction could not be obtained in a reasonable time.

Web Database Error Code Reference | 101

http://freepdf-books.com

What You’ve Learned
In this chapter, you learned two ways to store user data on the client: Web Storage and
Web SQL Database. The Web SQL Database in particular opens up a world of possi-
bilities for web-based application developers.

The only thing stopping us from running this example application in offline mode is
that we have to initially connect to the web server each time the app is launched to
download the HTML and related resources. Wouldn’t it be schweet if we could just
cache all that stuff locally on the device? Yeah, it would.

102 | Chapter 5: Client-Side Data Storage

http://freepdf-books.com

CHAPTER 6

Going Offline

There’s a feature of HTML5 called the offline application cache that allows users to run
web apps even when they are not connected to the Internet. It works like this: when a
user navigates to your web app, the browser downloads and stores all the files it needs
to display the page (HTML, CSS, JavaScript, images, etc.). The next time the user
navigates to your web app, the browser will recognize the URL and serve the files out
of the local application cache instead of pulling them across the network.

The Basics of the Offline Application Cache
The main component of the offline application cache is a cache manifest file that you
host on your web server. I’m going to use a simple example to explain the concepts
involved, then I’ll show you how to apply what you’ve learned to the Kilo example
we’ve been working on.

A manifest file is just a simple text document that lives on your web server and is sent
to the user’s device with a content type of cache-manifest. The manifest contains a list
of files a user’s device must download and save in order to function. Consider a web
directory containing the following files:

index.html
logo.jpg
scripts/demo.js
styles/screen.css

In this case, index.html is the page users will load in their browsers when they visit the
application. The other files are referenced from within index.html. To make everything
available offline, you’d create a file named demo.manifest in the directory with
index.html (don’t bother creating this just yet; you’ll see how to apply this to your app
shortly). Here’s a directory listing showing the added file:

103

http://freepdf-books.com

demo.manifest
index.html
logo.jpg
scripts/demo.js
styles/screen.css

Next, you’d add the following lines to demo.manifest:

CACHE MANIFEST
index.html
logo.jpg
scripts/demo.js
styles/screen.css

The paths in the manifest are relative to the location of the manifest file.
You can also use absolute URLs like so:

CACHE MANIFEST
http://www.example.com/index.html
http://www.example.com/logo.jpg
http://www.example.com/scripts/demo.js
http://www.example.com/styles/screen.css

Now that the manifest file is created, you’d need to link to it by adding a manifest
attribute to the HTML tag inside index.html:

<html manifest="demo.manifest">

We’ll be using a PHP script to generate a dynamic manifest file for the
Kilo app later in this chapter. The nice thing about PHP scripts is that
they can specify their content type. So, unless you want to experiment
with manifest files on your server, you can skip the following configu-
ration step.

You must serve the manifest file with the text/cache-manifest content type or the
browser will not recognize it:

Apache
If you are using the Apache web server, you can accomplish this by adding
an .htaccess file to your web directory with the following line:

AddType text/cache-manifest .manifest

If you’re on a Mac, see “Mac OS X and the .htaccess File” on page 106 for special
instructions on enabling the use of the AddType directive in this file.

IIS (Windows)
If you are using the IIS browser on Windows, run the Internet Information Services
(IIS) Manager, locate your web site under Connections (on the left), and click it.
Next, double-click MIME Types, and use the Add action to associate the mani-
fest file extension with it. If IIS tells you that a MIME type for that extension already

104 | Chapter 6: Going Offline

http://freepdf-books.com

exists, you can either use a different file extension for your web app manifests
(maybe webmanifest as shown in Figure 6-1) or double-click the existing entry for
manifest and change it to the text/cache-manifest MIME type.

Web Hosting Provider
If your website is hosted by a web hosting provider, your provider may have a
control panel for your website where you can add the appropriate MIME type.

Other
If the .htaccess file doesn’t work for you, please refer to the portion of your web
server documentation that pertains to MIME types. You must associate the file
extension .manifest with the MIME type of text/cache-manifest.

Figure 6-1. Configuring MIME types on IIS

Our offline application cache is now in working order. The next time a user browses
to http://example.com/index.html, the page and its resources will load normally over the
network (replace example.com/index.html with the URL of your web app). In the back-
ground, all the files listed in the manifest will be downloaded locally. Once the down-
load completes and the user refreshes the page, he’ll be accessing the local files only.
He can now disconnect from the Internet and continue to access the web app.

The Basics of the Offline Application Cache | 105

http://freepdf-books.com

Mac OS X and the .htaccess File
If you are serving up web pages on your local network using the Apache web server
that’s included with Mac OS X, it will ignore certain directives in the .htaccess file in
your personal web folder (the Sites folder that’s in your home directory). However, you
can enable support for the AddType directive by following these steps:

1. Open Applications→Utilities→Terminal and typing these commands (you’ll need
to type your password when prompted):

cd /etc/apache2/users
sudo pico $USER.conf

This loads your personal Apache configuration file into the pico editor (you can
see a list of editor commands at the bottom of the screen—the ^ symbol indicates
the Control key).

2. Use the arrow keys to move down to the line AllowOverride None, delete the word
None, and replace it with FileInfo.

3. Press Control-X to exit, answer Y to save changes, and press Return to save the file.

4. Start System Preferences, go to Sharing, and, if needed, click the lock icon labeled
“Click the lock to make changes.” Type your password when prompted.

5. Clear the checkbox next to Web Sharing and then check it again (this restarts Web
Sharing). The web server on your Mac should now respect the AddType directives
in .htaccess files you put in your Sites directory or its subdirectories.

Now that the user is accessing our files locally on his device, we have a new problem:
how does he get updates when we make changes to the website?

When the user does have access to the Internet and navigates to the URL of your web
app, his browser checks the manifest file on the site to see if it still matches the local
copy. If the remote manifest has changed, the browser downloads all the files listed in
it. It downloads these in the background to a temporary cache.

The comparison between the local manifest and the remote manifest is
a byte-by-byte comparison of the file contents (including comments and
blank lines). The file modification timestamp or changes to any of the
resources themselves are irrelevant when determining whether or not
changes have been made.

If something goes wrong during the download (e.g., the user loses his Internet con-
nection), the partially downloaded temporary cache is automatically discarded and the
previous one remains in effect. If the download is successful, the new local files will be
used the next time the user launches the app.

106 | Chapter 6: Going Offline

http://freepdf-books.com

Remember that when a manifest is updated, the download of the new
files takes place in the background after the initial launch of the app.
This means that even after the download completes, the user will still
be working with the old files. In other words, the currently loaded page
and all of its related files don’t automatically reload when the download
completes. The new files that were downloaded in the background will
not become visible until the user relaunches the app.

This is very similar to standard desktop app update behavior. You
launch an app, it tells you that updates are available, you click Down-
load Updates, the download completes, and you are prompted to re-
launch the app for the updates to take effect.

If you want to implement this sort of behavior in your app, you can listen
for the updateready event of the window.applicationCache object, as de-
scribed in “The JavaScript Console” on page 118, and notify the user
however you like.

Online Whitelist and Fallback Options
It is possible to force the browser to always access certain resources over the network
(this process is known as whitelisting). This means the browser will not cache them
locally and they will not be available when the user is offline. To specify a resource as
online only, use the NETWORK: keyword (the trailing : is essential) in the manifest file
like so:

CACHE MANIFEST
index.html
scripts/demo.js
styles/screen.css

NETWORK:
logo.jpg

This whitelists logo.jpg by moving it into the NETWORK section of the manifest file. When
the user is offline, the image will show up as a broken image link (Figure 6-2). When
he is online, it will appear normally (Figure 6-3).

If you don’t want offline users to see the broken image, use the FALLBACK keyword to
specify a fallback resource like so:

CACHE MANIFEST
index.html
scripts/demo.js
styles/screen.css

FALLBACK:
logo.jpg offline.jpg

Now, when the user is offline, he’ll see offline.jpg (Figure 6-4), and when he’s online,
he’ll see logo.jpg (Figure 6-5).

Online Whitelist and Fallback Options | 107

http://freepdf-books.com

Figure 6-2. Whitelisted images will show up as broken links when the user is offline

Figure 6-3. Whitelisted images will show up normally when the user is online

108 | Chapter 6: Going Offline

http://freepdf-books.com

Figure 6-4. Fallback images will show up when the user is offline

Figure 6-5. Hosted images will show up normally when the user is online

Online Whitelist and Fallback Options | 109

http://freepdf-books.com

It’s worth noting that you don’t have to additionally list offline.jpg to
the CACHE MANIFEST section. It will automatically be stored locally by
virtue of being listed in the FALLBACK section of the manifest.

This becomes even more useful when you consider that you can specify a single fallback
for multiple resources by using a partial path. Let’s say I add an images directory to my
website and put some files in it:

/demo.manifest
/index.html
/images/logo.jpg
/images/logo2.jpg
/images/offline.jpg
/scripts/demo.js
/styles/screen.css

I can now tell the browser to fall back to offline.jpg for anything contained in the
images directory like so:

CACHE MANIFEST
index.html
scripts/demo.js
styles/screen.css

FALLBACK:
images/ images/offline.jpg

Now, when the user is offline, he’ll see offline.jpg (Figure 6-6), and when he’s online,
he’ll see logo.jpg and logo2.jpg (Figure 6-7).

Whether you should add resources to the NETWORK or FALLBACK sections of the manifest
file depends on the nature of your application. Keep in mind that the offline application
cache is primarily intended to store apps locally on a device. It’s not really meant to be
used to decrease server load, increase performance, etc.

In most cases you should be listing all of the files required to run your app in the manifest
file. If you have a lot of dynamic content and you are not sure how to reference it in the
manifest, your app is probably not a good fit for the offline application cache and you
might want to consider a different approach (e.g., a client-side database, perhaps).

In the next section, you’ll create a dynamic manifest file using a scripting language
called PHP. If your web server doesn’t have PHP installed, see “Running PHP Scripts
on Your Web Server” on page 112.

110 | Chapter 6: Going Offline

http://freepdf-books.com

Figure 6-6. A single fallback image will show up in place of multiple images when the user is offline

Figure 6-7. Hosted images will show up normally when the user is online

Online Whitelist and Fallback Options | 111

http://freepdf-books.com

Running PHP Scripts on Your Web Server
PHP is a versatile web-scripting language, and is supported by most web hosting pro-
viders. So, on most web servers, you can create a file whose name ends with the ex-
tension .php, add some PHP code to it, visit it in your web browser, and it will just
work. If you’ve been using a web server on your personal computer to serve up pages
to your Android phone, you’ll need to get set up to run PHP scripts:

Windows
If you’re running Microsoft’s IIS web server, you must enable CGI services as de-
scribed in “Running a Web Server Locally” on page 14. Next, go to http://php.iis
.net/ and click Install PHP to use the Microsoft Web Platform Installer to install
PHP. If you’re on Windows but not using IIS, see http://php.net/manual/en/install
.windows.php.

Linux
PHP is easy to install on Linux. For example, Ubuntu users can type sudo apt-get
install apache2 php5 at a shell prompt. To enable PHP in a user’s personal
public_html directory, edit the file /etc/apache2/mods-available/php5.conf as root
and follow the instructions inside it to enable PHP in user directories.

Mac OS X
Macs come with PHP installed, but you need to enable it:

1. Open Applications→ Utilities→Terminal and type these commands (you’ll
need to type your password when prompted):

cd /etc/apache2
 sudo pico httpd.conf

2. Press Control-W. This brings up the option to search the file. Type php5 and
press Return. This brings you to a line that should look like this:

#LoadModule php5_module libexec/apache2/libphp5.so

3. Using the arrow keys, move to the beginning of the line and delete the # com-
ment character, which is preventing this line from having any effect.

4. Press Control-X to exit, answer Y to save changes, and press Return to save
the file.

5. Next, start System Preferences, go to Sharing and, if needed, click the lock
icon labeled “Click the lock to make changes” and type your password when
prompted.

6. Clear the checkbox next to Web Sharing and then check it again. Now PHP
should be enabled on your Mac’s web server.

Now you’re ready to test out PHP. Create a file in your web server’s document directory
(see “Running a Web Server Locally” on page 14) named test.php with these contents:

<?php
 phpinfo();
 ?>

112 | Chapter 6: Going Offline

http://freepdf-books.com

http://php.iis.net/
http://php.iis.net/
http://php.net/manual/en/install.windows.php
http://php.net/manual/en/install.windows.php

Finally, visit one of the following URLs in your browser: if you’re using the web server’s
document root, go to http://localhost/test.php; if you’re using your user directory, go to
http://localhost/~YOURUSERNAME/test.php (replace YOURUSERNAME with your username, but
don’t delete the ~; you can discover your username at the Terminal by typing echo
$USER and pressing Return). If PHP is working, you’ll see a table displaying your PHP
version number and a lot of other information about your PHP installation. If it is not
working, you’ll see nothing but a blank page. Visit http://www.php.net/support.php for
links to documentation and help with using PHP.

Creating a Dynamic Manifest File
Now that you’re comfortable with how the offline app cache works, let’s apply it to
the Kilo example we’ve been working on. Kilo consists of quite a few files and manually
listing them all in a manifest file would be a pain. Plus, a single typo would invalidate
the entire manifest file and prevent the application from working offline.

To address this issue, we’re going to write a little PHP file that reads the contents of
the application directory (and subdirectories) and creates the file list for us. Create a
new file in your Kilo directory named manifest.php and add the following code:

<?php
 header('Content-Type: text/cache-manifest');
 echo "CACHE MANIFEST\n";

 $dir = new RecursiveDirectoryIterator(".");
 foreach(new RecursiveIteratorIterator($dir) as $file) {
 if ($file->IsFile() &&
 $file->getFilename() != "manifest.php" &&
 substr($file->getFilename(), 0, 1) != "." &&
 !strpos($file, DIRECTORY_SEPARATOR . '.'))
 {
 $file_name = $file->getPathName();
 if (DIRECTORY_SEPARATOR == "\\") {
 $file_name = strtr($file_name, '\\', '/');
 }
 echo $file_name . "\n";
 }
 }
?>

The PHP header function outputs this file with the cache-manifest content type.
Doing this is an alternative to using an .htaccess file to specify the content type for
the manifest file. In fact, if you created an .htaccess file in “The Basics of the Offline
Application Cache” on page 104, you can remove it if you are not using it for any
other purpose.

Creating a Dynamic Manifest File | 113

http://freepdf-books.com

http://www.php.net/support.php

As I mentioned earlier in this chapter, the first line of a cache manifest file must be
CACHE MANIFEST. As far as the browser is concerned, this is the first line of the docu-
ment; the PHP file runs on the web server and the browser only sees the output of
commands that emit text, such as echo.

This line creates an object called $dir, which enumerates all the files in the current
directory. It does so recursively, which means that if you have any files in subdirec-
tories, it will find them, too.

Each time the program passes through this loop, it sets the variable $file to an object
that represents one of the files in the current directory. In English, this line would
be, “Each time through, set the file variable to the next file found in the current
directory or its subdirectories.”

The if statement here makes sure the file is actually a file (and not a directory or
symbolic link) and ignores files named manifest.php or any file that starts with a .
(such as .htaccess) or is contained in a directory that begins with a . (such as .svn).

The leading ./ (.\ on Windows) is part of the file’s full path; the .
refers to the current directory and the / (\ on Windows) separates
elements of the file’s path. So there’s always a ./ that appears before
the filename in the output. However, when you check for a lead-
ing . in the filename, use the getFilename function, which returns
the filename without the leading path. This way, you can detect files
beginning with a . even if they are buried in a subdirectory.

This part of the if statement needs a bit more explanation. It searches the file
for any occurrence of /. (Linux or Mac) or \. (Windows). The PHP constant
DIRECTORY_SEPARATOR is set to whatever (/ or \) directory separator is used on your
operating system. Here’s what is special about a directory separator followed by a
dot: this indicates any filename in any subdirectory that begins with a dot, including
something like themes/.hidden/secret.

Although Windows is just fine using \ as a directory separator, web browsers use
a / to separate directories. This uses the string translate function to replace the \
character with /. The reason that \ is doubled up here is that this character is also
used as an escape character to impart special meaning (such as \n for a newline) to
the character that follows. By doubling it up, you tell PHP to treat it as a real \.

This section displays each file’s name.

To the browser, manifest.php will look like this:

CACHE MANIFEST
./index.html
./jqtouch/jqtouch.css
./jqtouch/jqtouch.js
./jqtouch/jquery-1.4.2.js
./jqtouch/jquery.js
./kilo.css

114 | Chapter 6: Going Offline

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

./kilo.js

./themes/apple/img/activeButton.png

./themes/apple/img/backButton.png

./themes/apple/img/cancel.png

./themes/apple/img/chevron.png

./themes/apple/img/grayButton.png

./themes/apple/img/greenButton.png

./themes/apple/img/listArrowSel.png

./themes/apple/img/listGroup.png

./themes/apple/img/loading.gif

./themes/apple/img/on_off.png

./themes/apple/img/pinstripes.png

./themes/apple/img/redButton.png

./themes/apple/img/selection.png

./themes/apple/img/thumb.png

./themes/apple/img/toggle.png

./themes/apple/img/toggleOn.png

./themes/apple/img/toolbar.png

./themes/apple/img/toolButton.png

./themes/apple/img/whiteButton.png

./themes/apple/theme.css

./themes/default/img/backButton.png

./themes/default/img/backButtonActive.png

./themes/default/img/bigButton.png

./themes/default/img/bigButtonActive.png

./themes/default/img/button.png

./themes/default/img/buttonActive.png

./themes/default/img/chevron.png

./themes/default/img/chevronActive.png

./themes/default/img/chevronCircle.png

./themes/default/img/chevronCircleActive.png

./themes/default/img/loading.gif

./themes/default/img/toggleSwitch.png

./themes/default/img/toolbarBackground.png

./themes/default/theme.css

./themes/jqt/img/activeButton.png

./themes/jqt/img/back_button.png

./themes/jqt/img/back_button_clicked.png

./themes/jqt/img/blueButton.png

./themes/jqt/img/button.png

./themes/jqt/img/button_clicked.png

./themes/jqt/img/chevron.png

./themes/jqt/img/chevron_circle.png

./themes/jqt/img/grayButton.png

./themes/jqt/img/greenButton.png

./themes/jqt/img/loading.gif

./themes/jqt/img/on_off.png

./themes/jqt/img/redButton.png

./themes/jqt/img/rowhead.png

./themes/jqt/img/toggle.png

./themes/jqt/img/toggleOn.png

./themes/jqt/img/toolbar.png

./themes/jqt/img/whiteButton.png

./themes/jqt/theme.css

Creating a Dynamic Manifest File | 115

http://freepdf-books.com

Try loading the page yourself in a browser (be sure to load it with an HTTP URL such
as http://localhost/~YOURUSERNAME/manifest.php). If your browser tries to download it as
a file, you can either try another browser (such as Chrome) or temporarily change
header('Content-Type: text/cache-manifest'); to header('Content-Type: text/
plain'); and then change it back when you’re done looking at the results.

If you see a lot more files in your listing, you may have some extraneous
files from the jQTouch distribution. The files LICENSE.txt,
README.txt, and sample.htaccess are safe to delete, as are the directo-
ries demos and extensions. If you see a number of directories
named .svn, you may also safely delete them (unless you have put your
working directory under the SVN version control system, in which case
these files are important). Files beginning with a . will not be visible in
the Mac OS X Finder or Linux File Manager (but you can work with
them at the command line).

Now open index.html and add a reference to manifest.php in the head element like so:

<html manifest="manifest.php">

Now that the manifest is generated dynamically, let’s modify it so its contents change
when any of the files in the directory change (remember that the client will only re-
download the application if the manifest’s contents have changed). Here is the modified
manifest.php:

<?php
 header('Content-Type: text/cache-manifest');
 echo "CACHE MANIFEST\n";

 $hashes = "";

 $dir = new RecursiveDirectoryIterator(".");
 foreach(new RecursiveIteratorIterator($dir) as $file) {
 if ($file->IsFile() &&
 $file->getFilename() != "manifest.php" &&
 substr($file->getFilename(), 0, 1) != "." &&
 !strpos($file, DIRECTORY_SEPARATOR . '.'))
 {
 $file_name = $file->getPathName();
 if (DIRECTORY_SEPARATOR == "\\") {
 $file_name = strtr($file_name, '\\', '/');
 }
 echo $file_name . "\n";
 $hashes .= md5_file($file);
 }
 }
 echo "# Hash: " . md5($hashes) . "\n";
?>

116 | Chapter 6: Going Offline

http://freepdf-books.com

This line initializes a string that will hold the hashed values of the files.

This line computes the hash of each file using PHP’s md5_file function (Message-
Digest algorithm 5) and appends it to the end of the $hashes string. Any change to
the file, however small, will also change the results of the md5_file function. The
hash is a 32-character string, such as 4ac3c9c004cac7785fa6b132b4f18efc.

This code takes the big string of hashes (all of the 32-character strings for each file
concatenated together) and computes an MD5 hash of the string itself. This gives
us a short (32-character instead of 32 multiplied by the number of files) string that’s
printed out as a comment (beginning with the comment symbol, #).

From the viewpoint of the client browser, there’s nothing special about this line. It’s
a comment and the client browser ignores it. However, if one of the files is modified,
this line will change, which means the manifest has changed.

Here’s an example of what the manifest looks like with this change (some of the lines
have been truncated for brevity):

CACHE MANIFEST
./index.html
./jqtouch/jqtouch.css
./jqtouch/jqtouch.js
...
./themes/jqt/img/toolbar.png
./themes/jqt/img/whiteButton.png
./themes/jqt/theme.css
Hash: 0943176a145ca0a8067b58566e802499

The net result of all of this business is that changing a single character inside any file
in the entire directory tree will insert a new hash string into the manifest. This means
that any edits we make to any Kilo files will essentially modify the manifest file, which
in turn will trigger a download the next time a user launches the app. Pretty nifty, eh?

Debugging
It can be tough to debug apps that use the offline application cache, because there’s
very little visibility into what is going on. You may find yourself constantly wondering
if your files have downloaded or if you are viewing remote or local resources. Plus,
switching your device between online and offline modes is not the snappiest procedure
and can really slow down the develop-test-debug cycle.

One thing you can do to help determine what’s going on when things aren’t playing
nice is to set up some console logging in JavaScript.

Debugging | 117

http://freepdf-books.com

If you want to see what’s happening from the web server’s perspective,
you can monitor its log files. For example, if you are running a web
server on a Mac or Linux computer, you can open the command line
and run these commands (the $ is the shell prompt, which you should
not type):

$ cd /var/log/apache2/
$ tail -f access?log

This will display the web server’s log entries, showing information such
as the date and time a document was accessed, as well as the name of
the document. When you are done, press Control-C to stop following
the log.

The ? on the second line will match any character; on Ubuntu Linux,
the filename is access.log and on the Mac it is access_log. If you are using
another version of Linux, the name of the file and its location may be
different.

On Windows, you can find IIS7’s log files in C:\inetpub\logs, but you
will need to authenticate as an administrative user to access the files (if
you navigate to that folder in Windows Explorer, it will prompt you for
administrative credentials).

The JavaScript Console
Adding the following JavaScript to your web apps during development will make your
life a lot easier, and can actually help you internalize the process of what is going on.
The following script will send feedback to the console (in Chrome, click the wrench
icon and choose Tools→JavaScript Console) and free you from having to constantly
refresh the browser window:

// Convenience array of status values
var cacheStatusValues = [];
cacheStatusValues[0] = 'uncached';
cacheStatusValues[1] = 'idle';
cacheStatusValues[2] = 'checking';
cacheStatusValues[3] = 'downloading';
cacheStatusValues[4] = 'updateready';
cacheStatusValues[5] = 'obsolete';

// Listeners for all possible events
var cache = window.applicationCache;
cache.addEventListener('cached', logEvent, false);
cache.addEventListener('checking', logEvent, false);
cache.addEventListener('downloading', logEvent, false);
cache.addEventListener('error', logEvent, false);
cache.addEventListener('noupdate', logEvent, false);
cache.addEventListener('obsolete', logEvent, false);
cache.addEventListener('progress', logEvent, false);
cache.addEventListener('updateready', logEvent, false);

118 | Chapter 6: Going Offline

http://freepdf-books.com

// Log every event to the console
function logEvent(e) {
 var online, status, type, message;
 online = (navigator.onLine) ? 'yes' : 'no';
 status = cacheStatusValues[cache.status];
 type = e.type;
 message = 'online: ' + online;
 message+= ', event: ' + type;
 message+= ', status: ' + status;
 if (type == 'error' && navigator.onLine) {
 message+= ' (prolly a syntax error in manifest)';
 }
 console.log(message);
}

// Swap in newly downloaded files when update is ready
window.applicationCache.addEventListener(
 'updateready',
 function(){
 window.applicationCache.swapCache();
 console.log('swap cache has been called');
 },
 false
);

// Check for manifest changes every 10 seconds
setInterval(function(){cache.update()}, 10000);

You can store this in a .js file such as debug.js and refer to it in your
HTML document via the script element’s src attribute, as in <script
type="text/javascript" src="debug.js"></script>.

This might look like a lot of code, but there really isn’t that much going on here:

The first seven lines set up an array of status values for the application cache object.
There are six possible values defined by the HTML5 spec, and this code maps their
integer values to a short description (i.e., status 3 means “downloading”). We in-
clude them to make the logging more descriptive down in the logEvent function.

The next chunk of code sets up an event listener for every possible event defined by
the spec. Each one calls the logEvent function.

The logEvent function takes the event as input and makes a few simple calculations
in order to compose a descriptive log message. If the event type is error and the user
is online, there is probably a syntax error in the remote manifest. Syntax errors are
extremely easy to make in the manifest, because all of the paths have to be valid. If
you rename or move a file but forget to update the manifest, future updates will fail.

Debugging | 119

http://freepdf-books.com

Using a dynamic manifest file helps avoid syntax errors. However,
you have to watch that you don’t include files (such as in a .svn sub-
directory) that the server can’t serve up due to permissions. This will
make even a dynamic manifest fail, since the file ends up being
unreadable.

This line sends the composed message to the console.

If you load the web page in your browser and open the console, you’ll see new messages
appear every 10 seconds (Figure 6-8). If you don’t see anything, change the contents of
one of the files (or the name of a file) and reload the page in your browser twice. I
strongly encourage you to play around with this until you have a feel for what’s going
on. You can tinker around with the manifest (e.g., change the contents and save it,
rename it, move it to another directory) and watch the results of your actions pop into
the console like magic.

Figure 6-8. Use the console.log() function to send debugging messages to the JavaScript console

What You’ve Learned
In this chapter, you’ve learned how to give users access to a web app, even when they
have no connection to the Internet. With this new addition to our programming tool-
box, we now have the ability to create an offline app that is virtually indistinguishable
from a native application downloaded from the Android Market.

Of course, a pure web app such as this is still limited by the security constraints that
exist for all web apps. For example, a web app can’t access the Address Book, the
camera, vibration, or the accelerometer on the phone. In the next chapter, I’ll address
these issues and more with the assistance of an open source project called PhoneGap.

120 | Chapter 6: Going Offline

http://freepdf-books.com

CHAPTER 7

Going Native

Our web app can now do many things that a native app can do: launch from the home
screen, store data locally on the phone, and operate in offline mode. We’ve formatted
it nicely for the device and set up native-looking animations to provide feedback and
context to the user.

However, there are still two things that it cannot do: it can’t access the device features
and hardware (e.g., geolocation, accelerometer, sound, and vibration) and it can’t be
submitted to the Android Market. In this chapter, you will learn how to extend the
reach of your web app beyond the normal confines of the browser using an open source
project called PhoneGap.

Introduction to PhoneGap
The mobile landscape is littered with devices, platforms, and operating systems. If you
are a web developer, you might be familiar with the agony of testing 10 or so browser
versions across 10 or so operating system versions. Multiply that by 100 and you have
mobile. There is simply no cost-effective way to develop and test across all of the pos-
sible combinations.

Enter PhoneGap. PhoneGap is an open source development tool created by Nitobi
(http://www.nitobi.com/; now part of Adobe) that acts as a unified bridge between web
apps and mobile device APIs. It consists of a native app project template for each of
the major platforms, where each project is just a bare-bones web browser with height-
ened permissions. What this means in concrete terms is that PhoneGap makes it
possible to access the accelerometer, camera, microphone, speakers, and more using
simple JavaScript calls.

Furthermore, the resulting app—although written by you with HTML, CSS, and Java-
Script—is encased in a native app and you can submit it to the respective app store for
the platforms in question. Currently, iPhone, Android, Windows Phone, BlackBerry,
webOS, bada, and Symbian are supported, and Qt is in development.

121

http://freepdf-books.com

http://www.nitobi.com/

Of course, different devices have different features. Maybe a particular device doesn’t
have a camera or doesn’t have an accelerometer. Even when devices do have the same
features, they each have their own ways of exposing these features to the developer.
PhoneGap abstracts the APIs for the most widely available mobile phone features so
mobile application developers can use the same code everywhere.

There are other tools available that are often compared to PhoneGap,
such as RhoMobile and Titanium Mobile. While these tools all promote
cross-platform mobile development and are marketed at web designers
and developers, there are fundamental difference between them. Pho-
neGap is the only tool that allows you to write a standard web app and
drop it into a native code environment virtually unchanged.

Every other product that I’ve looked at requires you to write code based
on a proprietary framework that outputs native code (i.e., you aren’t
writing HTML, CSS, and JavaScript that would run in a browser). It’s
beyond the scope of this book to do an in-depth comparison, but I did
write a post on this topic. You might want to check it out in case another
tool suits your needs better than PhoneGap.

Since this is an Android book, we’ll focus on the Android branch of PhoneGap. Just
be aware that you could potentially deploy your app to iOS, Windows Phone,
BlackBerry, and other popular devices with little or no modification.

There are two ways to use PhoneGap. You can either set up a local development envi-
ronment or use the PhoneGap Build service to compile in the cloud. Developing locally
gives you more control and is completely free, but requires some initial setup. Compil-
ing with PhoneGap Build is zero install and very easy to use, but prolongs the code/
compile/install/test cycle. And although Build is very inexpensive, it’s not free. In this
chapter, I’ll cover how to build your apps with a local development environment. For
more information about PhoneGap Build, see https://build.phonegap.com.

Building Your App Locally with Eclipse and the Android SDK

Download and Install Eclipse Classic
Eclipse is an open source integrated development environment (IDE). It’s used by soft-
ware developers to write, compile, and debug all sorts of projects. There is nothing
about it that is specific to Android; once we get Eclipse installed, we’ll configure it to
use Android SDK tools. But first things first…here’s how you get Eclipse:

1. Navigate to http://www.eclipse.org/downloads/ in your web browser.

2. Select your platform (Mac, Windows, or Linux) from the popup list.

122 | Chapter 7: Going Native

http://freepdf-books.com

http://rhomobile.com/
http://www.appcelerator.com/
https://build.phonegap.com
http://www.eclipse.org/downloads/

3. Locate Eclipse Classic in the list of packages and the download version appro-
priate for your machine (32 bit or 64 bit).

4. When the download completes, extract the archive to a convenient location on
your hard drive. I’ve placed mine in the /Applications directory on my Mac, but
you can put it anywhere you like.

5. Navigate into the eclipse directory.

6. Double-click the Eclipse icon to launch Eclipse.

7. You’ll be prompted to specify a workspace directory where Eclipse will store your
projects. I’ve specified the /Users/jstark/Documents/workspace directory on my
Mac, but you can pick any directory you like. This setting can be modified later in
Eclipse preferences under General→Startup and Shutdown→Workspaces.

We’ll be modifying our Eclipse configuration in a bit but we have to download a few
more things before continuing.

Download and Install the Android SDK
Now the we have Eclipse installed, we need the Android SDK.

1. Download the Android SDK appropriate for your system (Mac, Windows, Linux)
from http://developer.android.com/sdk/index.html.

2. When the download completes, extract the archive to a convenient location on
your hard drive. I’ve placed mine in the /Users/jstark directory on my Mac, but you
can put it anywhere you like. If you’re running Windows, you can use the exe-
cutable installer, which will install everything for you (when you reach the instal-
ler’s final page, deselect Start SDK Manager before clicking Finish).

3. By default, the Android SDK directory is named in a platform specific fashion (e.g.,
android-sdk-macosx). For simplicity, I’ve renamed mine android-sdk.

Install the ADT Plug-In in Eclipse
Now we need to customize Eclipse for Android development. To do this, we need the
Android Developer Tools (ADT) plug-in for Eclipse. Installation is done from within
Eclipse itself:

1. Launch Eclipse if it’s not already running.

2. Select Install New Software from the Help menu.

3. In the Install window that appears, click the Add button near the top right corner.

4. In the Add Repository window that appears, enter “ADT Plugin” in the name field
and https://dl-ssl.google.com/android/eclipse/ in the location field.

Building Your App Locally with Eclipse and the Android SDK | 123

http://freepdf-books.com

http://developer.android.com/sdk/index.html
https://dl-ssl.google.com/android/eclipse/

5. Click OK. After a few seconds, a Developer Tools entry should appear in the central
area of the Install window. If it doesn’t appear, try changing https to http in the
location field.

6. Select the checkbox next to Developer Tools and click Next.

7. A list of tools to be downloaded should appear. Click Next.

8. Read and accept the license agreements, then click the Finish button.

9. When your download completes, restart Eclipse.

You must then configure the ADT plug-in like so:

1. Launch Eclipse if it’s not already running.

2. Open the Eclipse Preferences dialog window by choosing Window→Preferences
(on Mac, choose Eclipse→Preferences).

3. Select Android from the panel on the left.

4. Browse the location of your Android SDK. In my case, the resulting path is /Users/
jstark/android-sdk/. If you used the Windows installer, the default is C:\Program
Files\Android\android-sdk.

5. Click the Apply button.

6. Click the OK button.

Add Android Platforms and Other Components
We’re nearly done getting the development environment set up. Our next task is to
download the tools, platforms, and extras for the Android platforms we want to target:

1. Launch Eclipse if it’s not already running.

2. Select Android SDK Manager from the Window menu.

3. In the Android SDK window that appears, select Android SDK Platform-tools,
Android 2.1 (you can choose an older version, but 2.1 is likely to guarantee com-
patibility with a large number of devices), and if available, the Google USB Driver
Package under Extras.

4. Click the Install X Packages button. You should be presented with the Choose
Packages to Install window.

5. After reading the license agreements click the “Accept All” radio button, then click
the Install button.

6. If you are prompted to restart ADB, click Yes.

7. If you are alerted that updates are available, follow the instructions given.

124 | Chapter 7: Going Native

http://freepdf-books.com

You may see “Access is denied” error messages on Windows. If this
happens, locate the C:\Program Files\Android folder in Windows Ex-
plorer, and right-click on the folder, choose Properties→Security, and
then click Edit→Add, type your username, click OK, then allow Full
Control and click OK. Try installing the packages again.

Download the Latest Copy of PhoneGap
We now have a stock Android development environment set up. Our next task is to
download the PhoneGap project files:

1. Download the latest copy of PhoneGap from http://www.phonegap.com/download.

2. When the download completes, extract the archive to a convenient location on
your hard drive. I’ve placed mine in the /Users/jstark/Desktop directory on my Mac,
but you can put it anywhere you like.

3. By default, the PhoneGap directory includes a version number in the name (e.g.,
callback-phonegap-c81c02b). For convenience and clarity, I’ve renamed mine
PhoneGap.

4. Open the PhoneGap directory. There is a bunch of cool stuff in there but we only
need to worry about the Android directory. It contains the Android branch of the
PhoneGap project and has a couple of files we’ll need to add to our project in
Eclipse.

Note that PhoneGap for Android is not an Eclipse plug-in or anything fancy like that.
It’s basically an empty Android project template from which we’ll cherry-pick some
code for use in our project.

Set Up a New Android Project
We’re finally ready to create our first project!

1. Launch Eclipse, then select New→Android Project from the File Menu. If Android
Project is not an option, select New→Project from the File menu to call up the New
Project window and select Android Project from the Android folder.

2. Specify a name for the project in the Project Name field. This is the name that will
be used to save your project locally in your workspace and is not the app name that
your users will see. I’ve entered KiloForAndroid as my project name.

3. Make sure the “Create new project in workspace” radio button is checked. You
can leave the other settings alone and click the Next button.

4. You will be presented with the Select build target window. Make sure Android 2.1
is checked and click the Next button. (You can choose an older or newer SDK, but
2.1 is likely to guarantee compatibility with a large number of devices.)

5. You will be presented with the Application Info window. Specify a name for your
app (this is the name your users will see). I’ve entered Kilo.

Building Your App Locally with Eclipse and the Android SDK | 125

http://freepdf-books.com

http://www.phonegap.com/download

6. Specify a package name for your app using reverse domain name syntax. I’ve en-
tered com.jonathanstark.kilo but you should use your own reverse domain name
(i.e., don’t use jonathanstark in yours).

7. Make sure Create Activity is checked and type App in the field provided. This is the
name that will be given to the initial class for your application.

8. You can leave the rest of the settings in this window alone and click the Finish
button.

Once the create process completes, you should see the KiloForAndroid project appear
in Package Explorer panel in Eclipse. At this point, it’s just a standard Android project.
Now we need to add PhoneGap to the mix by grabbing some code from the PhoneGap
files we downloaded and adding it to our project:

1. In the root level of the project, create a new folder called /libs. You can do this by
right clicking on the KiloForAndroid folder in the Package Explorer panel and se-
lecting New→Folder in the contextual menu that appears.

2. In the /assets folder of the project, create a new folder called www.

3. Copy phonegap-x.x.x.jar from your PhoneGap/Android directory to /libs (you can
just drag the file into the /libs directory in Package Explorer).

4. Find phonegap-x.x.x.js in your PhoneGap/Android directory, rename it to phone-
gap.js, and copy it to /assets/www.

5. Copy xml from your PhoneGap/Android directory to /res.

6. Right click on the /libs folder and go to Build Path→Configure Build Path.

7. You will be presented with the Properties window. Click on the Libraries tab.

8. Click on the Add JARs button.

9. In the JAR Selection window that appears, select /KiloForAndroid/libs/phonegap-
x.x.x.jar and click the OK button, then click OK again to close the Properties win-
dow.

10. Locate /src/YOUR_PACKAGE_NAME/App.java in the Package Explorer and dou-
ble click it to open in the central Code Editor panel.

11. Add the following line after import android.os.Bundle;:

import com.phonegap.*;

12. Change the class’s extend from Activity to DroidGap.

13. Delete the following line:

import android.app.Activity;

14. Replace the setContentView(R.layout.main); line with the following:

super.loadUrl("file:///android_asset/www/index.html");

15. Select Save from the File menu to save your changes.

126 | Chapter 7: Going Native

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

Running Kilo as an Android App
Now you’re almost ready to try running Kilo as an app. First, drag all the files that make
up your Kilo app (index.html, kilo.css, kilo.js, as well as the jqtouch and themes folders)
to the assets/www directory in Eclipse’s package manager. Once you’ve done this, you
can edit any of those files in Eclipse by double-clicking them, or if needed, right-clicking
them and choosing Open With→Text Editor. Note that from here on out, you’ll be
working with the copies of these files that are stored in the Eclipse project, not the
originals from earlier chapters. Next, you’ll need to make a few changes to some files:

index.html
Open index.html for editing: locate it in Eclipse’s Package Explorer under assets/
www. Right-click index.html, then choose Open With→Text Editor so you don’t
open it in a web browser (the next time you need to open it, you can just double-
click it, since Eclipse will remember your preference):

1. Remove the reference to manifest.php from the head element in index.html
(change it from <html manifest="manifest.php"> to <html>).

2. Add a line to pull in phonegap.js just before you pull in kilo.js:

<script type="text/javascript" src="phonegap.js"></script>
<script type="text/javascript" src="kilo.js"></script>

3. If you enabled debug.js in “The JavaScript Console” on page 118, edit in-
dex.html and remove the script tag that loads it.

AndroidManifest.xml
On Android, PhoneGap uses a WebView object to host your application. By
default, the WebView resets its state when you rotate the device. You can add
an option to the AndroidManifest to handle rotation gracefully. Locate Android-
Manifest.xml in the Package Explorer and double-click it. Next, click the
AndroidManifest.xml tab at the bottom of the Android Manifest page to edit its
raw XML. Finally, add the android:configChanges="keyboardHidden|orientation"
attribute to the activity tag like so:

<activity
 android:configChanges="keyboardHidden|orientation"
 android:label="@string/app_name"
 android:name=".App">

Before you try to run the app, make sure your Android device is set up for debugging
(go into Settings, choose Applications→Development, and enable USB Debugging).

Next, plug your Android device into your computer with a USB connection. If you’re
on Windows, you’ll probably need to configure the USB driver. See http://developer
.android.com/sdk/win-usb.html for details and downloads. Then, choose Run→Run in
Eclipse. Kilo should appear on your screen, but as a standalone app rather than in a
web page (see Figure 7-1).

Building Your App Locally with Eclipse and the Android SDK | 127

http://freepdf-books.com

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/sdk/win-usb.html

If you have any trouble getting PhoneGap to run properly, check out
the resources available at the PhoneGap project. The Community Page
(http://phonegap.com/community) links to the wiki, Google Group, IRC
channel, and more where you can find help from the community.
PhoneGap also has support packages available (http://phonegap.com/
support).

Figure 7-1. Kilo running as an app

128 | Chapter 7: Going Native

http://freepdf-books.com

http://phonegap.com/community
http://phonegap.com/support
http://phonegap.com/support

Controlling the Phone with JavaScript
The stage is now set for us to start enhancing our application with calls to the native
device features. Thanks to phonegap.js, all you have to do to make the phone vibrate
for 200 milliseconds, for example, is to add a bit of JavaScript to your code:

navigator.notification.vibrate(200);

Pretty simple, right?

Beep, Vibrate, and Alert
PhoneGap makes beep, vibrate, and alert functions so simple that I’m going to lump
them together into one example. Specifically, we’ll set up the app to beep, vibrate, and
display a custom alert when the user creates an entry that puts him over his daily calorie
budget. To do so, add the following function to the end of the kilo.js (remember to edit
the copy in Eclipse, not the original copy from the previous chapters):

function checkBudget() {
 var currentDate = sessionStorage.currentDate;
 var dailyBudget = localStorage.budget;
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'SELECT SUM(calories) AS currentTotal FROM entries WHERE date = ?;',
 [currentDate],
 function (transaction, result) {
 var currentTotal = result.rows.item(0).currentTotal;
 if (currentTotal > dailyBudget) {
 var overage = currentTotal - dailyBudget;
 var message = 'You are '+overage+' calories over your '
 + 'daily budget. Better start jogging!';
 try {
 navigator.notification.beep(1);
 navigator.notification.vibrate(200);
 } catch(e){
 // No equivalent in web app
 }
 try {
 navigator.notification.alert(message,
 null, 'Over Budget', 'Dang!');
 } catch(e) {
 alert(message);
 }
 }
 },
 errorHandler
);
 }
);
}

Controlling the Phone with JavaScript | 129

http://freepdf-books.com

Here’s the blow-by-blow description:

This is the beginning of the checkBudget() function. It initializes the currentDate
variable to the value stored in sessionStorage (i.e., the value entered by the user
in the Settings panel) and sets the dailyBudget variable to the value stored in
localStorage (i.e., the date the user taps on the Dates panel).

Start a database transaction in preparation for calculating the total calories for the
current date.

Run the executeSql() method of the transaction object.

Let’s examine the four parameters of the executeSql() method:

The first parameter is a prepared SQL statement that uses the SUM function to add
up all the values in the calories column for the entries that match the current date.

The second parameter is a single-value array that will replace the question mark in
the prepared statement on the previous line.

The third parameter is an anonymous function that will be called if the SQL query
completes successfully (we’ll look at this in detail momentarily).

Here’s what’s going on in the anonymous function that was passed in as the third
parameter:

This line grabs the current total from the first row of the result. Since we are just
asking for the sum of a column, the database is only going to return one row (i.e.,
this query will always return one row). Remember that the records of the result set
are accessed with the item() method of the rows property of the result object, and
that the rows are zero-based (meaning that the first row is 0).

Check to see if the current calorie total for the day is greater than the daily budget
specified on the Settings panel. If so, the block that follows will be executed.

Calculate how far the user is over his calorie budget.

Compose a message to display to the user.

This is a try/catch block that attempts to call the beep() and vibrate() methods of
the navigator notification object. These methods only exist in PhoneGap, so if the
user is running the app in a browser, these methods will fail and execution will jump
to the catch block. Since there is no browser-based equivalent to beep or vibrate, the
catch block has been left empty.

This is a try/catch block that attempts to call the alert() method of the navigator
notification object. This method only exists in PhoneGap, so if the user is running
the app in a browser, it will fail and execution will jump to the catch block. The
browser-based equivalent to alert is a standard JavaScript alert, which is called as a
fallback.

130 | Chapter 7: Going Native

http://freepdf-books.com

There are a couple of differences between the PhoneGap alert and the native Java-
Script alert. For example, the PhoneGap alert allows you to specify a callback method
(null, since we don’t need it here), as well as the title and the button name (Fig-
ure 7-2); the JavaScript alert does not (Figure 7-3).

There is also a more subtle difference between the two alerts: the native JavaScript
alert is modal and the PhoneGap alert is not. In other words, script execution will
pause at the point when you call a native alert, whereas execution will continue with
the PhoneGap version. This may or may not be a big deal depending on the nature
of your application, so keep this distinction in mind.

The fourth parameter is the name of the generic SQL error handler that will be called
in the event of a SQL error.

Figure 7-2. The PhoneGap alert allows you to specify the title and button label

Controlling the Phone with JavaScript | 131

http://freepdf-books.com

Figure 7-3. A native JavaScript alert does not allow you to specify the title and button label

With our checkBudget() function complete, we can now call it by adding a single line
to the success callback of our createEntry() function:

function createEntry() {
 var date = sessionStorage.currentDate;
 var calories = $('#calories').val();
 var food = $('#food').val();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'INSERT INTO entries (date, calories, food) VALUES (?, ?, ?);',
 [date, calories, food],
 function(){
 refreshEntries();

132 | Chapter 7: Going Native

http://freepdf-books.com

 checkBudget();
 jQT.goBack();
 },
 errorHandler
);
 }
);
 return false;
}

After you’ve made these changes, save the kilo.js file, and then locate Android
Manifest.xml in the Package Explorer and double-click it. Next, click the Android-
Manifest.xml tab at the bottom of the Android Manifest page to edit its raw XML.
Then, add the line shown in bold just below the uses-sdk:

<uses-sdk android:minSdkVersion="7" />
<uses-permission android:name="android.permission.VIBRATE"/>

That line gives your app permission to use the vibration function of the phone. Next,
choose Run→Run in Eclipse to run the app. Try adding an entry that causes you to
exceed your calorie budget to see what happens.

Geolocation
Let’s update Kilo to save the location when entries are created. Once we have that
information, we’ll add a Map Location button that will open the built-in Maps appli-
cation and drop a pin at the point where the entry was created.

The first step is to add latitude and longitude columns to the table to store the infor-
mation. This is a great opportunity to show you how to upgrade your database on the
fly. Remember the version number (1.0) we specified for the database in the document
ready function? Now we can use that number to check whether the database is out of
date, and if so, we’ll upgrade it with a couple of ALTER TABLE statements. Each one of
these statements adds a new column to the table: first longitude, then latitude. Make
the following changes (shown in bold) to the part of the document ready function in
kilo.js that opens the database:

var shortName = 'Kilo';
var version = '1.1';
var displayName = 'Kilo';
var maxSize = 65536;
db = openDatabase(shortName, '', displayName, maxSize);
if (db.version == '1.0') {
 db.changeVersion('1.0', version,
 function(transaction) {
 transaction.executeSql(
 'ALTER TABLE entries ' +
 ' ADD COLUMN longitude TEXT');
 transaction.executeSql(
 'ALTER TABLE entries ' +
 ' ADD COLUMN latitude TEXT');
 },

Controlling the Phone with JavaScript | 133

http://freepdf-books.com

 function(e) {
 alert('DB upgrade error: ' + e.message);
 }
);
} else if (db.version == '') {
 db.changeVersion('', version);
}

db.transaction(
 function(transaction) {
 transaction.executeSql(
 'CREATE TABLE IF NOT EXISTS entries ' +
 ' (id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, ' +
 ' date DATE NOT NULL, food TEXT NOT NULL, ' +
 ' calories INTEGER NOT NULL, ' +
 ' longitude TEXT, latitude TEXT);'
);
 }
);

This line increments the database version to 1.1 since you’re about to add a couple
of columns to the entries table.

Instead of specifying a revision when you open the database, leave the revision pa-
rameter blank. That will open any version of the database.

This line checks to see if it’s version 1.0 of the database.

If it’s version 1.0, you’ll call the changeVersion function with four arguments. The
first one is the version you’re upgrading from, and the second is the new version
number. Next comes a function that executes two ALTER TABLE statements: one to
add the longitude column, the other to add the latitude column.

Pass a callback function into the transaction, with the transaction object as its sole
parameter.

Call the executeSql() method of the transaction object.

The last argument to changeVersion is a function to handle any errors (it pops up an
alert message).

If the database didn’t exist already, then there’s no old version of the database to
upgrade. But because you opened the database without specifying a version, the
version will be blank. The next line changes that blank version number to version
“1.1”.

The CREATE TABLE won’t run if the entries table already exists. But if it doesn’t exist,
you still need to create it. And you still need the latitude and longitude columns
when you create the table, and this updated CREATE TABLE statement takes care of
that.

134 | Chapter 7: Going Native

http://freepdf-books.com

Next, we’ll rewrite the createEntry() function that we first saw in Chapter 5 to use the
geolocation feature of the phone to determine the current latitude and longitude. Re-
place the existing createEntry() function in kilo.js with this:

function createEntry() {
 navigator.geolocation.getCurrentPosition(
 function(position){
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 insertEntry(latitude, longitude);
 },
 function(){
 insertEntry();
 }
);
 return false;
}

Begin the createEntry() function.

Call the getCurrentPosition() function of the geolocation object and pass it two
callback functions: one for success and one for errors.

This is the beginning of the success callback. Notice that it accepts a single parameter
(i.e., position).

These two lines grab the latitude and longitude coordinates out of the position
object.

Pass the latitude and longitude coordinates into a function called insertEntry(),
which we’ll look at momentarily.

This is the beginning of the error callback.

Because we’re in the error callback, this will only be called if geolocation fails (for
example, if the application can’t determine the location), so call the insertEntry()
function without parameters.

Return false to prevent the default navigation behavior of clicking the form’s Submit
button.

Wondering where the SQL INSERT statement got to? Let’s take a look at the
insertEntry() function. This new function creates the entry in the database. Add the
following to kilo.js:

function insertEntry(latitude, longitude) {
 var date = sessionStorage.currentDate;
 var calories = $('#calories').val();
 var food = $('#food').val();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'INSERT INTO entries (date, calories, food, latitude, longitude) ' +
 'VALUES (?, ?, ?, ?, ?);',

Controlling the Phone with JavaScript | 135

http://freepdf-books.com

 [date, calories, food, latitude, longitude],
 function(){
 refreshEntries();
 checkBudget();
 jQT.goBack();
 },
 errorHandler
);
 }
);
}

The beginning of the insertEntry() function, allowing for latitude and longitude
values to be passed in. Although there is no way to explicitly mark a parameter as
optional in JavaScript, they will simply be undefined if they are not passed in.

Get the currentDate out of sessionStorage. Remember that its value will be set when
the user taps an item on the Dates panel to navigate to the Date panel. When he taps
the + button to reveal the New Entry panel, this value will still be set to the currently
selected Date panel item.

Get the calories value out of the createEntry form.

Get the food value out of the createEntry form.

Begin a database transaction.

Pass a callback function into the transaction, with the transaction object as its sole
parameter.

Call the executeSql() method of the transaction object.

Define the SQL prepared statement with question marks as data placeholders.

Pass an array of values for the placeholders. If latitude and longitude are not passed
into the insertEntry() function, they will be undefined.

Define the success callback function.

Define the error callback function.

To confirm that Kilo is actually saving these location values, we’ll want to display them
somewhere in the interface. Let’s add an Inspect Entry panel to display the stored
values. We’ll include a Map Location button on the panel that will display where the
entry was created. Add the following to index.html, right before the closing body tag
(</body>):

<div id="inspectEntry">
 <div class="toolbar">
 <h1>Inspect Entry</h1>
 Cancel
 </div>
 <form method="post">
 <ul class="rounded">
 <input type="text" placeholder="Food" name="food" value="" />

136 | Chapter 7: Going Native

http://freepdf-books.com

 <input type="tel" placeholder="Calories"
 name="calories" value="" />
 <input type="submit" value="Save Changes" />

 <ul class="rounded">
 <input type="text" name="latitude" value="" />
 <input type="text" name="longitude" value="" />
 <p class="whiteButton" id="mapLocation">Map Location</p>

 </form>
</div>

This should look very similar to the New Entry panel that we first saw in “Adding the
New Entry Panel” on page 68, so I’ll just call out a couple of things:

The input type has been set to tel to call the telephone keyboard when cursor is
placed in the field. This is a bit of a hack, but I think it’s worth it, because that
keyboard is much more appropriate for a numeric data field.

The latitude and longitude fields are editable and contained within the form, which
means the user would be able to edit them. This probably would not make sense in
the final application, but it makes it a lot easier to test during development because
you can enter location values manually to test the Map Location button.

This Map Location button won’t do anything when clicked at this point; we’ll add
a click handler to it momentarily.

Now we need to give the user a way to navigate to this Inspect Entry panel, so we’ll
modify the behavior of the Date panel such that when the user taps an entry in the list,
the Inspect Entry panel will slide up from the bottom of the screen.

The first step is to wire up the click event handler (which we’ll create next), and also
modify the way clicks on the Delete button are processed. Add the three highlighted
changes below to the refreshEntries() function in kilo.js:

function refreshEntries() {
 var currentDate = sessionStorage.currentDate;
 $('#date h1').text(currentDate);
 $('#date ul li:gt(0)').remove();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'SELECT * FROM entries WHERE date = ? ORDER BY food;',
 [currentDate],
 function (transaction, result) {
 for (var i=0; i < result.rows.length; i++) {
 var row = result.rows.item(i);
 var newEntryRow = $('#entryTemplate').clone();
 newEntryRow.removeAttr('id');
 newEntryRow.removeAttr('style');
 newEntryRow.data('entryId', row.id);
 newEntryRow.appendTo('#date ul');
 newEntryRow.find('.label').text(row.food);
 newEntryRow.find('.calories').text(row.calories);

Controlling the Phone with JavaScript | 137

http://freepdf-books.com

 newEntryRow.find('.delete').click(function(e){
 var clickedEntry = $(this).parent();
 var clickedEntryId = clickedEntry.data('entryId');
 deleteEntryById(clickedEntryId);
 clickedEntry.slideUp();
 e.stopPropagation();
 });
 newEntryRow.click(entryClickHandler);
 }
 },
 errorHandler
);
 }
);
}

We have to add the e parameter (the event) to the function call in order to have
access to the stopPropagation() method of the event, used shortly. If we didn’t add
the e parameter, e.stopPropagation() would be undefined.

The e.stopPropagation(); added to the Delete button click handler tells the browser
not to let the click event bubble up the DOM to parent elements. This is important
because we’ve now added a click handler to the row itself (and the entry row is the
parent of the Delete button). If we didn’t call stopPropagation(), both the Delete
button handler and the entryClickHandler would fire when the user tapped the
Delete button.

The newEntryRow.click(entryClickHandler); tells the browser to call the entryClick
Handler function when the entry is tapped.

Now let’s add the entryClickHandler() function to kilo.js:

function entryClickHandler(e){
 sessionStorage.entryId = $(this).data('entryId');
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'SELECT * FROM entries WHERE id = ?;',
 [sessionStorage.entryId],
 function (transaction, result) {
 var row = result.rows.item(0);
 var food = row.food;
 var calories = row.calories;
 var latitude = row.latitude;
 var longitude = row.longitude;
 $('#inspectEntry input[name="food"]').val(food);
 $('#inspectEntry input[name="calories"]').val(calories);
 $('#inspectEntry input[name="latitude"]').val(latitude);
 $('#inspectEntry input[name="longitude"]').val(longitude);
 $('#mapLocation').click(function(){
 window.location = 'http://maps.google.com/maps?z=15&q='+
 food+'@'+latitude+','+longitude;
 });
 jQT.goTo('#inspectEntry', 'slideup');

138 | Chapter 7: Going Native

http://freepdf-books.com

 },
 errorHandler
);
 }
);
}

Get the entryId from the entry that the user tapped and store it in session storage.

Begin a database transaction.

Pass a callback function into the transaction, with the transaction object as its sole
parameter.

Call the executeSql() method of the transaction object.

Define the SQL prepared statement with a question mark as data placeholder.

Pass a single element array for the placeholder.

Begin the success callback function.

Get the first (and only, since we’re just querying for one entry) row of the result.

Set some variables based on the values from the row.

Set values of the form fields based on the variables.

Attach a click handler to the #mapLocation button. The function sets the window
location to a standard Google Maps URL. If the Maps application is available, it will
launch. Otherwise, the URL will load in a browser. The z value sets the initial zoom
level; the string before the @ symbol will be used as the label for the pin that is dropped
at the location. The latitude and longitude values must appear in the order shown
here, separated by a comma.

Call the goTo() method of the jQTouch object to make the Inspect Entry panel slide
up into view.

Define the error callback function.

Now you need to give your app permission to access location data. Locate Android-
Manifest.xml in the Package Explorer and double-click it. Click the AndroidMani-
fest.xml tab at the bottom of the Android Manifest page to edit its raw XML. Then,
add the lines shown in bold just below the uses-sdk:

<uses-sdk android:minSdkVersion="7" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

Next, choose Run→Run in Eclipse to run the app. Try adding an entry, and then tap
the new entry to bring up the Inspect Entry panel. You’ll see GPS coordinates, as well
as an option to map the location.

Controlling the Phone with JavaScript | 139

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

Accelerometer
Next, let’s set up Kilo to duplicate the last entry in the list by shaking the phone. Add
the following function to the end of kilo.js:

function dupeEntryById(entryId) {
 if (entryId == undefined) {
 alert('You have to have at least one entry in the list to shake a dupe.');
 } else {
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'INSERT INTO entries (date, food, calories, latitude, longitude) ' +
 'SELECT date, food, calories, latitude, longitude ' +
 'FROM entries WHERE id = ?;',
 [entryId],
 function() {
 refreshEntries();
 },
 errorHandler
);
 }
);
 }
 startWatchingShake();
}

This line makes sure an entryId was passed to the function. If not, the user is notified.

Begin the usual database transaction steps.

Define an INSERT statement that copies the values from the specified entryId. This
is a type of query you haven’t seen before. Instead of using a list of values for the
INSERT, this takes the values from the results of a SELECT query for the specified
entryId.

Pass the entryId into the prepared statement, replacing the ? in the SELECT query
with the value of the entryId.

On success, call refreshEntries(), which will display the newly copied entry.

On error, call the standard SQL error handler.

As you’ll see later, we’re going to avoid collecting multiple shake events by disabling
the shake detection while we’re in this function. This will re-enable it when we’re
done.

Now we need to tell the application when to start and stop watching the accelerometer.
We’ll set it up to start watching when the Date panel finishes sliding into view and to
stop listening when the panel starts sliding out. To do this, we just need to add the
following lines to the document ready function in kilo.js:

$('#date').bind('pageAnimationEnd', function(e, info){
 if (info.direction == 'in') {
 startWatchingShake();

140 | Chapter 7: Going Native

http://freepdf-books.com

 }
});
$('#date').bind('pageAnimationStart', function(e, info){
 if (info.direction == 'out') {
 stopWatchingShake();
 }
});

Bind an anonymous handler to the pageAnimationEnd event of the #date panel. Pass
the event and the additional information in as parameters.

Check to see if the direction property of the info object equals in. If it does, call the
startWatchingShake() function, which we’ll look at shortly.

Bind an anonymous handler to the pageAnimationStart event of the #date panel. Pass
the event and the additional information in as parameters.

Check to see if the direction property of the info object equals out. If it does, call
the stopWatchingShake() function, which we’ll look at shortly.

Technically, we can bind to just one of the page animation events, like
so:

$('#date').bind('pageAnimationEnd', function(e, info){
 if (info.direction == 'in') {
 startWatchingShake();
 } else {
 stopWatchingShake();
 }
});

The reason I didn’t do this is that stopWatchingShake() will not be called
until after the page animation is complete. Therefore, the accelerometer
will be actively watched during the page transition, which can some-
times result in choppy animation.

All that’s left for us to do is write the startWatchingShake() and stopWatchingShake()
functions. Add the following functions to the end of kilo.js:

function startWatchingShake() {
 var lastReading = null;
 var threshold = 10;
 var success = function(coords){
 var current = coords.x + coords.y + coords.z;
 if (lastReading != null) {
 if (Math.abs(current - lastReading) > threshold) {
 var entryId = $('#date ul li:last').data('entryId');
 stopWatchingShake();
 dupeEntryById(entryId);
 }
 }
 lastReading = current;
 };

Controlling the Phone with JavaScript | 141

http://freepdf-books.com

 var error = function(){};
 var options = {};
 options.frequency = 250;
 sessionStorage.watchId =
 navigator.accelerometer.watchAcceleration(success, error, options);
}
function stopWatchingShake() {
 navigator.accelerometer.clearWatch(sessionStorage.watchId);
}

Begin the startWatchingShake() function. This function will be called when the
#date panel finishes animating into view.

lastReading will contain the last reading so we can compare it with our current
reading.

Define the threshold for the shake. The higher the number, the harder the user will
have to shake.

Begin defining the success handler. It accepts a coordinates object as its sole
parameter.

The first time through, lastReading will be undefined, so we don’t want to check it
just yet.

Check to see if the sum of the coordinates have exceeded the threshold.

Get the entryId of the last entry on the #date panel.

Disable shake detection for now (we’ll re-enable it at the end of the dupeEntryById
function).

Call the dupeEntryById() function.

Define an empty error handler.

Define an options object to pass in to the watchAcceleration() method of the
accelerometer object.

Set the frequency property of the options object to the number of milliseconds delay
between receiving data from the accelerometer.

Call the watchAcceleration() method of the accelerometer object, passing in the
success handler, the error handler, and the options object as parameters. Store the
result in sessionStorage.watchId, which we’ll need for the stopWatchingShake()
function.

Begin the stopWatchingShake() function. This function will be called when the
#date panel starts animating out of view.

Call the clearWatch() method of the accelerometer object, passing it the watchId
from session storage.

142 | Chapter 7: Going Native

http://freepdf-books.com

What You’ve Learned
In this chapter, you’ve learned how to load your web app into PhoneGap, how to install
your app on your phone, and how to access five device features that are unavailable to
browser-based web apps (beep, alert, vibrate, geolocation, and accelerometer).

In the next chapter, you’ll learn how to package your app as an executable and submit
it to the Android Market.

What You’ve Learned | 143

http://freepdf-books.com

http://freepdf-books.com

CHAPTER 8

Submitting Your App to the
Android Market

Finally, the moment you’ve been waiting for: submitting your completed app to the
Android Market. The process is actually pretty straightforward: you just need to pre-
pare a release version of the app and upload it.

Preparing a Release Version of Your App
You need to do a few things to get the app ready for distribution:

• Remove any debugging or logging code

• Version the app

• Compile the app

• Sign the compiled app with a private key

Removing Debug Code
There’s no reason to have debugging or logging code slowing down your app while it’s
running on a user’s phone. If you have added any such code (see “The JavaScript Con-
sole” on page 119) to your HTML, CSS, or JavaScript files, now’s the time to take it out.

You should also open up the AndroidManifest.xml file: in Eclipse, locate Android
Manifest.xml in the Package Explorer and double-click it. Next, click the Android-
Manifest.xml tab at the bottom of the Android Manifest page to edit its raw XML.
Then, search for “debuggable” and set it to false. When you’re done, it should look
something like this:

145

http://freepdf-books.com

...
<application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:debuggable="false">
...

While you have the manifest file open, you might as well ensure that android:icon and
android:label are specified as shown in the previous listing. You’re probably using the
default icon that’s used by Android. You should prepare an icon for your app in several
resolutions and place them in the appropriate subdirectory in the Package Explorer:

res/drawable-hdpi/ic_launcher.png
72 × 72 pixels

res/drawable-ldpi/ic_launcher.png
36 × 36 pixels

res/drawable-mdpi/ic_launcher.png
48 × 48 pixels

Google has published a set of icon design guidelines, including an icon template pack
you can download. See http://developer.android.com/guide/practices/ui_guidelines/icon
_design.html.

Versioning Your App
Near the top of your AndroidManifest.xml file, you should see values set for the version
name and version code for your app:

...
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.jonathanstark.kilo"
 android:versionCode="1"
 android:versionName="1.0">
...

Because this is probably the first version of your app, these values are fine as is. Once
you’ve published your app and later want to release an update, you’ll update these
values appropriately. The Android system doesn’t check or enforce this version infor-
mation, but it’s a critical piece of data for your long term app strategy.

The version name is the value that will be shown to the user. It’s a string, so you can
put whatever you want here, but the common practice is to use a <major>.<minor>
.<point> format (such as 1.0.0).

The version code is expected to be a positive integer value. It need not correspond to
the version name in any way. In fact, it probably won’t—you should just increment it
by 1 every time you release an update, regardless of whether the release is a major
upgrade or a minor bug fix.

146 | Chapter 8: Submitting Your App to the Android Market

http://freepdf-books.com

http://developer.android.com/guide/practices/ui_guidelines/icon_design.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design.html

Compile and Sign Your App
Android requires that all apps be digitally signed by the developer. The process for
doing so is easy: select your project in the Package Explorer (click KiloForAndroid at
the top of the Package Explorer list) and then click File→Export. Open the Android
folder, and choose Export Android Application. You’ll be led through the following
steps:

1. Select the project to export. This will default to KiloForAndroid. Click Next.

2. Select the key store to store your keys in. If this is your first time through, choose
Create a New Keystore. Choose a secure location on your computer for the key-
store, and give it a name. This keystore will contain all your private keys, so keep
it safe. Use a strong password , and click Next.

3. Now you need to create a key. Fill in the fields requested (it’s OK to leave some of
the bottom fields blank if you don’t have applicable values), including a password
for the private key portion of this key, and the number of years it should be valid
for. Click Next.

4. Choose where to save the compiled and signed Android package (APK) file. Give
it the name KiloForAndroid.apk.

When you’re done, you’ll have a signed app (KiloForAndroid.apk) in the destination
you selected. Next time you export it, you need to only supply the password for your
keystore and the key you wish to sign the app with.

Do not lose either your keystore or key password. If you forget either
password or lose the keystore or key file, you won’t be able to update
your app once it’s published.

Uploading Your App to the Android Market
All that is left to do is upload the signed binary to the Android Market.

You need to be a registered Android Developer to upload your app. If
have not already registered, you can do so at http://market.android.com/
publish/signup. The process is quick and easy—you just fill out a bit of
profile information (name, email, phone, etc.), pay a $25 registration
fee (using Google Checkout), and agree to the Android Market Devel-
oper Distribution Agreement.

1. Launch your web browser, navigate to http://market.android.com/publish/, and sign
into your Google account.

2. If you aren’t forwarded automatically after logging in, navigate to http://market
.android.com/publish/Home and click the Upload Application button (Figure 8-1).

Uploading Your App to the Android Market | 147

http://freepdf-books.com

http://market.android.com/publish/signup
http://market.android.com/publish/signup
http://market.android.com/publish/
http://market.android.com/publish/Home
http://market.android.com/publish/Home

Figure 8-1. Navigate to the Android Market upload page to submit your app

3. Click the Choose File button under “Upload New APK,” browse to KiloFor
Android.apk on your hard drive, and click the Upload button. You’ll be notified
about the permissions that your app requires (users will be warned about these
permissions when they go to install your app). Click Save to save the app you just
uploaded.

4. You can upload a couple of screenshots to be displayed on the Market page for
your app. You need at least two. To take a screenshot of your app, launch your
app from within Eclipse, choose Window→Open Perspective→Other, and choose
DDMS. Select your device from the Devices list, and click the Screen Capture icon
(it looks like a small camera).

5. Upload a high resolution icon for your app. You can also provide Promotional
graphics and video.

6. Enter a title for your app in the Listing Details section (30 characters max).

7. Enter a description for your app (4000 characters max), along with a list of recent
changes to the app and some promotional text.

148 | Chapter 8: Submitting Your App to the Android Market

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

8. Select a type and category for your app.

9. Specify a price for your app.

10. Indicate your copy protection, content rating and location preferences in the Pub-
lishing Options section.

11. Enter your website address, email address, and phone number in the Contact
Information section.

12. Agree to the terms in the Consent section.

13. Click the Publish button.

Congrats! Your app will be available in the Android Market almost immediately.

Distributing Your App Directly
One very attractive feature of the Android platform is that it lets developers skip the
Android Market completely and distribute apps directly to users. This is a great option
in many situations. For example, a corporate IT department might want to distribute
a private app to employees. Or maybe you want to run a private beta of your app before
uploading it to the Android Market.

Whatever the case, direct distribution couldn’t be easier: upload your signed .apk bi-
nary to your web server and provide your users with a link to it. Users click the link—
say, from an email message or a web page—and the app is downloaded and installed.
Simple.

You can also use QR codes to distribute links to your app. A QR code
is a two-dimensional barcode that can store up to 4,296 alphanumeric
characters of arbitrary text and be read by the camera on an Android
phone. When a user encounters your QR code, she can take a picture
of it with Google Goggles (or another QR code reader app), and she’ll
be provided with a link to your app. You can learn more by visiting the
Google Chart Tools page devoted to QR codes. You can create your
own for free using Google’s Live Chart Playground.

The only caveat is that users have to first allow installation of non-Market applications
by navigating to Settings→Applications and enabling the Unknown Sources option
(Figure 8-2). If the user has not first enabled downloads from unknown sources, he will
still be allowed to download the app, but will be alerted that the install is blocked
(Figure 8-3). The alert dialog will allow him to navigate directly to the relevant setting
or cancel the installation. When the user first activates the checkbox, he’ll see a con-
firmation dialog that warns him about the implications of his choice (Figure 8-4).

Distributing Your App Directly | 149

http://freepdf-books.com

http://code.google.com/apis/chart/docs/gallery/qr_codes.html
http://code.google.com/apis/chart/docs/chart_playground.html

Figure 8-2. Users can opt to download applications from sources other than the Android Market

150 | Chapter 8: Submitting Your App to the Android Market

http://freepdf-books.com

Figure 8-3. If the user attempts to install an app from an unknown source without having checked
the appropriate setting, he will be prompted to change the setting or cancel the installation process

Distributing Your App Directly | 151

http://freepdf-books.com

Figure 8-4. When the user first enables the Unknown Sources option, he’ll be presented with a
confirmation dialog that warns him about the implications

152 | Chapter 8: Submitting Your App to the Android Market

http://freepdf-books.com

Further Reading
If you’d like to dig deeper into the mechanics of the Android SDK, the best place to
start is the excellent online documentation available at http://developer.android.com/.
Here are some other resources that I find useful and refer to often:

• Android Discuss mailing list

• Android Developers mailing list

• jQTouch mailing list

• PhoneGap mailing list

• Android reference for WebView

• Android reference for WebChromeClient

• Android reference for WebViewClient

• Android reference for WebSettings

The Android references in the list above are interesting only if you want
to start digging around in the PhoneGap source code or maybe write
your own native HTML app wrapper. WebView is the primary class and
it’s used to display HTML; by default, it doesn’t support JavaScript,
browser widgets (e.g., location bar, back/forward buttons), or error
handling.

The other three classes extend the WebView in various ways. Web-
ChromeClient adds support for JavaScript dialogs, favicons, titles, and
progress indicators. WebViewClient adds support for some useful
event listeners like onFormResubmission(), onPageStarted(), and
onPageFinished(). Finally, WebSettings gives you access to the Web-
View settings state with methods such as getDatabaseEnabled() and
setUserAgentString().

Again, you won’t need to worry about these unless you want to get into
the Java code under the hood.

Now get out there and make some great Android apps!

Further Reading | 153

http://freepdf-books.com

http://developer.android.com/
http://groups.google.com/group/android-discuss
http://groups.google.com/group/android-developers
http://groups.google.com/group/jqtouch
http://groups.google.com/group/phonegap
http://developer.android.com/reference/android/webkit/WebView.html
http://developer.android.com/reference/android/webkit/WebChromeClient.html
http://developer.android.com/reference/android/webkit/WebViewClient.html
http://developer.android.com/reference/android/webkit/WebSettings.html

http://freepdf-books.com

APPENDIX

Detecting Browsers with WURFL

WURFL (Wireless Universal Resource File) is an XML file that contains the information
needed to identify a wide range of mobile devices. On its own, it doesn’t do anything.
But if you use one of the many available libraries for it, you can create web apps that
can figure out what kind of device has connected to your app.

For example, wurfl-php (http://wurfl.sourceforge.net/nphp/) lets you detect which op-
erating system a remote device is running from within a PHP script.

To use WURFL and wurfl-php, you’ll need to be running your web app
on a hosting provider that supports PHP. You’ll also need to understand
how to install files and PHP libraries onto your server. In this appendix,
I show you how to do this using the Unix or Mac OS X command line.
If you are uncomfortable with any of this, but are comfortable working
with PHP, contact your hosting provider’s support department and ask
if they’d be willing to install WURFL and wurfl-php on the server you
use. If you’re using a shared server, it would give your hosting provider
a competitive advantage to offer this feature to all their customers.

Installation
First, download wurfl-php and extract it somewhere on your server (in general, it’s best
to not put libraries in your public web folder, so I’m putting it into the src directory in
my home directory). Replace ~/src with the location you want to install it to and replace
wurfl-php-1.3.1.tar.gz with the name of the file you actually downloaded:

$ mkdir ~/src
$ cd ~/src
$ tar xvfz ~/Downloads/wurfl-php-1.3.1.tar.gz

155

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

http://wurfl.sourceforge.net/nphp/

Next, download the latest WURFL file (http://sourceforge.net/projects/wurfl/files/
WURFL/), copy it into the wurfl-php folder, and gunzip it (see the wurfl-php docu-
mentation for tips on using this file in its compressed state). Replace ~/src/wurfl-
php-1.3.1/ with the full path to the directory that was created in the previous step
when you extracted the wurfl-php distribution, and replace ~/Downloads/wurfl-
latest.xml.gz with the path to the WURFL distribution that you downloaded:

$ cd ~/src/wurfl-php-1.3.1/
$ cp ~/Downloads/wurfl-latest.xml.gz .
$ gunzip wurfl-latest.xml.gz

Finally, download the desktop web browser patch so WURFL doesn’t encounter errors
when someone visits your page from a desktop browser:

$ curl -O http://wurfl.sourceforge.net/web_browsers_patch.xml

Configuration
Create the following wurfl-config file (wurfl-config.xml) in ~/src/wurfl-php-1.3.1/ (or
the directory you created when you extracted wurfl-php):

<?xml version="1.0" encoding="UTF-8"?>
<wurfl-config>
 <wurfl>
 <main-file>wurfl-latest.xml</main-file>
 <patches>
 <patch>web_browsers_patch.xml</patch>
 </patches>
 </wurfl>
 <persistence>
 <provider>file</provider>
 <params>dir=./work/cache</params>
 </persistence>
</wurfl-config>

Create the cache directory and make sure it and its parent is writable by whichever user
runs PHP scripts. If your web server is configured to run your PHP scripts under your
user credentials, this step should not be necessary. As with previous examples, replace
~/src/wurfl-php-1.3.1/ with the location you created earlier. Replace _www with the
username that your PHP scripts run under (you will need superuser credentials to run
this command):

$ mkdir -p ~/src/wurfl-php-1.3.1/work/cache
$ sudo chown -R _www ~/src/wurfl-php-1.3.1/work

If any of the parent directories above your cache directory are not readable by the
username that the PHP scripts run under, you won’t be able to write to the cache. If
WURFL reports an error writing to the cache folder, you can choose another location
for it (such as /var/wurfl/cache) and change your wurfl-config.xml to point to it. Before
you do that, create the cache directory and give write access for it and its parent to the
username that your PHP scripts run under:

156 | Appendix: Detecting Browsers with WURFL

http://freepdf-books.com

http://sourceforge.net/projects/wurfl/files/WURFL/
http://sourceforge.net/projects/wurfl/files/WURFL/

$ sudo mkdir -p /var/www/wurfl/cache
$ sudo chown -R _www /var/www/wurfl

Then you’d change the persistence section of wurfl-config.xml as shown:

<persistence>
 <provider>file</provider>
 <params>dir=/var/www/wurfl/cache</params>
</persistence>

If in doubt, contact your hosting provider’s tech support and explain
that you want the cache directory to be writable by your PHP scripts.

Testing wurfl-php
Now, in your web directory (such as Sites or public_html), create the following PHP file
(name it something like wurfl-test.php). The first time you visit it from your Android
device (or any other browser), it will take a long time as it builds the initial cache. After
that, it should be zippy. Figure A-1 shows how this should appear in your browser.
You can now modify this PHP code to suit your needs:

<html>
<head>
 <meta name="viewport" content="user-scalable=no, width=device-width" />
 <title>WURFL Test</title>
<?php

 define("WURFL_DIR", "/Users/NAME/src/wurfl-php-1.3.1/WURFL/");
 define("RESOURCES_DIR", "/Users/NAME/src/wurfl-php-1.3.1/");

 require_once WURFL_DIR . 'Application.php';

 $wurflConfigFile = RESOURCES_DIR . 'wurfl-config.xml';
 $wurflConfig = new WURFL_Configuration_XmlConfig($wurflConfigFile);
 $wurflManagerFactory = new WURFL_WURFLManagerFactory($wurflConfig);

 $wurflManager = $wurflManagerFactory->create();
 $wurflInfo = $wurflManager->getWURFLInfo();

 $requestingDevice = $wurflManager->getDeviceForHttpRequest($_SERVER);
 $is_android = FALSE;
 if ($requestingDevice->getCapability("device_os") == "Android") {
 $is_android = TRUE;
 }
?>
</head>
<body>
 <?php
 if ($is_android) {
 echo "I spy an Android phone.";
 }

Testing wurfl-php | 157

http://freepdf-books.com

 ?>

 <?php
 foreach ($requestingDevice->getAllCapabilities() as $key => $value) {
 echo "$key = $value";
 }
 ?>

</body>
</html>

I couldn’t use ~, so I had to put in the full path to the WURFL stuff;
replace /Users/NAME/src/wurfl-php-1.3.1/ with the full path to the
wurfl-php directory you created earlier.

Figure A-1. Output of the sample wurfl-php script

158 | Appendix: Detecting Browsers with WURFL

http://freepdf-books.com

About the Authors
Jonathan Stark is a mobile and web application consultant who has been called “an
expert on publishing desktop data to the web” by the Wall Street Journal. He has
written two books on web application programming, is a tech editor for both
php|architect and Advisor magazines, and has been quoted in the media on Internet
and mobile lifestyle trends. Jonathan began his programming career more than 20 years
ago on a Tandy TRS-80 and still thinks Zork was a sweet game.

Brian Jepson is an O’Reilly editor, hacker, and co-organizer of Providence Geeks and
the Rhode Island Mini Maker Faire. He’s also been involved in various ways over the
years with AS220, a non-profit unjuried and uncensored arts center in Providence,
Rhode Island.

Colophon
The animal on the cover of Building Android Apps with HTML, CSS, and JavaScript is
a maleo (Macrocephalon maleo), an endangered bird with a current population between
5,000 and 10,000 that is only found on the Indonesian islands of Sulawesi and Buton.
This distinctive, rare bird is about the size of a full-grown chicken, with white and light
pink belly and breast feathers standing out against its black back and wings. The
maleo’s scientific name indicates that individuals possess strong legs and large heads.
Their sloped foreheads are often described as “helmet-shaped.”

Perhaps the most remarkable characteristic of this monogamous bird is the way it nests
and cares for its offspring. Unlike most birds, who incubate their own eggs, the maleo
lays its eggs in pits in the sand to be incubated by the sun, geothermal energy, or both.
Maleos nest communally, which is likely a defensive measure against egg predators.
When a young maleo hatches and emerges from the sand after two to three months of
incubation, it is independent and able to fly. It quickly heads to the forest on its own
to hide from predators and find food.

Maleo eggs are approximately five times the size of a chicken egg, making them desir-
able among locals. In 2009, the US-based Wildlife Conservation Society purchased a
36-acre area of the Sulawesi beach (containing about 40 nests) in order to raise aware-
ness about the steadily declining species and to protect the birds from human egg
harvesters.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

http://freepdf-books.com

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://freepdf-books.com

	Table of Contents
	Preface
	Who Should Read This Book
	What You Need to Use This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Started
	Web Apps Versus Native Apps
	What Is a Web App?
	What Is a Native App?
	Pros and Cons
	Which Approach Is Right for You?

	Web Programming Crash Course
	Introduction to HTML
	Introduction to CSS
	Applying a stylesheet

	Introduction to JavaScript

	Chapter 2. Basic Styling
	Don’t Have a Website?
	First Steps
	Prepare a Separate Android Stylesheet
	Control the Page Scaling

	Adding the Android CSS
	Adding the Android Look and Feel
	Adding Basic Behavior with jQuery
	What You’ve Learned

	Chapter 3. Advanced Styling
	Adding a Touch of Ajax
	Traffic Cop
	Setting Up Some Content to Work With
	Routing Requests with JavaScript

	Simple Bells and Whistles
	Progress Indicator
	Setting the Page Title
	Handling Long Titles
	Automatic Scroll-to-Top
	Hijacking Local Links Only
	Roll Your Own Back Button

	Adding an Icon to the Home Screen
	What You’ve Learned

	Chapter 4. Animation
	With a Little Help from Our Friend
	Sliding Home
	Adding the Dates Panel
	Adding the Date Panel
	Adding the New Entry Panel
	Adding the Settings Panel
	Putting It All Together
	Customizing jQTouch
	What You’ve Learned

	Chapter 5. Client-Side Data Storage
	Web Storage
	Saving User Settings to Local Storage
	Saving the Selected Date to Session Storage

	Web SQL Database
	Creating a Database
	Inserting Rows
	Error handling

	Selecting Rows and Handling Result Sets
	Deleting Rows

	Web Database Error Code Reference
	What You’ve Learned

	Chapter 6. Going Offline
	The Basics of the Offline Application Cache
	Online Whitelist and Fallback Options
	Creating a Dynamic Manifest File
	Debugging
	The JavaScript Console

	What You’ve Learned

	Chapter 7. Going Native
	Introduction to PhoneGap
	Building Your App Locally with Eclipse and the Android SDK
	Download and Install Eclipse Classic
	Download and Install the Android SDK
	Install the ADT Plug-In in Eclipse
	Add Android Platforms and Other Components
	Download the Latest Copy of PhoneGap
	Set Up a New Android Project
	Running Kilo as an Android App

	Controlling the Phone with JavaScript
	Beep, Vibrate, and Alert
	Geolocation
	Accelerometer

	What You’ve Learned

	Chapter 8. Submitting Your App to the Android
 Market
	Preparing a Release Version of Your App
	Removing Debug Code
	Versioning Your App
	Compile and Sign Your App

	Uploading Your App to the Android Market
	Distributing Your App Directly
	Further Reading

	Appendix. Detecting Browsers with WURFL
	Installation
	Configuration
	Testing wurfl-php

